
CS-3334: Advanced Combinatorics Fall 2022

Lecture 9: November 1
Lecturer: Kuan Yang Scribe: Weihao Zhu

9.1 Algorithmic Lovász Local Lemma, Revisit

Recall that last time we have introduced the algorithmic Lovász Local Lemma. We discussed the algorithm
given by Robin Moser and Gábor Tardos in 2010. In this section, we will introduce the original proof of the
algorithmic local lemma, which was given by Moser in 2009.

Consider a k-SAT formula:

φ = C1 ∧ C2 ∧ . . . ∧ Cm

of which each clause has exactly k literals. Robin Moser gave a fix-it algorithm to find a valid assignment
as follows:

Algorithm 1: Moser’s fix-it algorithm for k-SAT model

Input: A k-SAT formula: φ = C1 ∧ C2 ∧ . . . ∧ Cm.
1 Function Solve(φ):
2 randomly initialize x1, . . . , xn

3 while there exists unsatisfied clause C do
4 Fix(C) // Call Fix(C) to adjust assignments of variables in C

5 Function Fix(C):
6 randomly re-sample vbl(C)
7 while there exists unsatisfied clause D overlapping with C do
8 Fix(D)

Robin Moser proved that when each caluse does not intersect with too many other clauses, Solve(φ) can
find a satisfying assignment in polynomial time with high probability. Precisely, the theorem is as follows:

Theorem 9.1 (Robin Moser, 2009 STOC best paper award) Let d be the maximum degree of clauses,
i.e., each cluase intersects with at most d clauses (including itself). Then, Solve(φ) finds a satisfying as-
signment in polynomial time with high probability as long as d ≤ 2k−3.

Proof: Consider the recursion tree.

Suppose there are T times of Fix calls before terminating. Clearly, Solve(φ) used n + kT random bits in
total. We now argue that if T is sufficiently large, the number of random bits used by the recursion tree is
smaller than kT .

A key observation is that for each sub-tree rooted at some Fix(C), all satisfied clauses before Fix(C) cannot
become unsatisfied after all Fix calls in the sub-tree have been executed. Thus we can see that all clauses
in the first level are distinct. Denote by m 0/1 bits whether each clause is fixed at the first level.

9-1

9-2 Lecture 9: November 1

Figure 9.1: The graph shows an example of the recursion tree.

For any other node in the recursion tree, it is clear that each Fix call has at most d children. So we only
need to record it by its index in the children of its parent node. Denote by ⌈log2 d⌉ bits.

To record the structure of the recursion tree, consider its DFS sequence. For each node, use “1” to denote
that the node is pushed in stack, and use “0” to record the outing. Overall, the number of bits we need is at
most m+(⌈log2 d⌉+2)T ≤ m+(k−1)T . Finally, we use another n bits to record the final assignment. Note
that every random bit used in Moser’s algorithm is determined uniquely by the final assignment and the
recursion tree, since for each Fix(C) call, the assignment of vbl(C) is determined before Fix(C). Therefore,
we use m+ (k − 1)T + n bits to uniquely encode a sequence of n+ kT random bits.

Now, we need to apply the incompressibility theorem, which is as follows:

Theorem 9.2 (Incompressibility theorem) N uniform random bits cannot be encoded to no more than
N − l bits with probability at least 1−O(2−l).

In Moser’s proof, n + kT random bits are encoded to n + m + (k − 1)T bits. However, T is not a fixed
integer, which implies that we cannot use the incompressibility theorem directly. We need to find some other
methods.

Let’s fix t = m + log2 n, and we provide only n + kt random bits in total. The algorithm will be forced to
terminate if all random bits have been used up. If the algorithm succeeds after T steps of Fix calls, n+ kt
random bits are decoded into n+m+ (k − 1)T + k(t− T) bits. Otherwise when the algorithm fails to find
a satisfying assignment, then n+ kt random bits are encoded into at most n+m+ (k− 1)t bits. According
the incompressibility theorem, the probability that the algorithm fails is at most

2(n+m+(k−1)t)−(n+kt) = 2− log2 n = 1/n,

which completes the proof.

Notice that we used the incompressibility theorem in the proof, which is an important theorem in coding
theory. Another essential theorem in coding theory is Shannon’s source coding theorem. We will give its
simplified version here.

Theorem 9.3 (Shannon’s source coding theorem, simplified version) For a discrete random vari-
able X with finite support Ω. Let f : Ω → {0, 1}∗ be a uniquely decodable code. Then

E[|f(X)|] ≥ H(X) = −
∑
x

Pr[X = x] log(Pr[X = x]).

Lecture 9: November 1 9-3

9.2 Entropy Function

In the proof above, we use two different strategies to encode the recursion tree, one by the algorithm and the
other by the DFS sequence. Why the number of bits we need in these two strategies are different? Given
the same support Ω, do some random variables give us more “information”, while some give us less? If so,
can we define a function that describes how much “information” the random variable provides us? In this
section, we will introduce the entropy function and its applications.

9.2.1 Definitions and Properties

Definition 9.1 (Entropy) Given a discrete random variable X ∈ Ω. Define the entropy

H(X) =
∑
ω∈Ω

−Pr[X = ω] · log2 Pr[X = ω].

(By convention, define 0 · log 0 = 0.) Usually, denote p(ω) = Pr[X = ω].

Based on the defintion of the entropy function, we have several basic properties as follows.

Proposition 9.4
H(X) ≥ 0.

Proposition 9.5 (Uniform bound) Let Ω = {ω : Pr[X = ω] > 0} be the support of X. Then,

H(X) ≤ log2 |Ω|

with equality if and only if X is uniformly distributed.

Proof: Let f(x) = −x log2 x, x ∈ [0, 1]. Since f is concave, by Jensen’s inequality, we have

H(X) =
∑
ω

f(Pr[X = ω]) ≤ |Ω|·f(1/|Ω|) = log2 |Ω|,

which completes the proof.

Proposition 9.6 (Concentration) If H(X) ≤ t, then there exists ω ∈ Ω such that

P (ω) = Pr[X = ω] ≥ 2−t.

Similar to conditional expectation, we can also define conditional entropy as follows.

Definition 9.2 (Conditional entropy) Let E be an event, define

H(X|E) =
∑
x

−Pr[X = x|E] · log2 Pr[X = x|E].

If Y is another random variable, define

H(X|Y) =
∑
y

H(X|Y = y) ·Pr[Y = y] = Ey[H(X|Y = y)].

9-4 Lecture 9: November 1

Lemma 9.7 (Chain rule) Let H(X,Y) be the entropy of joint r.u.s. (X,Y), i.e.,

H(X,Y) =
∑
x,y

−Pr[X = x, Y = y] · log2 Pr[X = x, Y = y].

Then,

H(X,Y) = H(X) +H(Y |X).

In particular,

H(X,Y) = H(X) +H(Y)

if these two random variables are independent.

Proof: Let p(x, y) denote Pr[X = x, Y = y] and p(x|y) denote Pr[X = x|Y = y]. Then by Bayes’ rule,

p(x, y) = p(y)p(x|y).

So, we have

H(X|Y) = Ey[H(X|Y = y)]

=
∑
y

−p(y)
∑
x

p(x|y) log2 p(x|y)

=
∑
x,y

−p(x, y) · log2
p(x, y)

p(y)

=
∑
x,y

−p(x, y) · log2 p(x, y) +
∑
x,y

p(x, y) log2 p(y)

= H(X,Y) +
∑
y

p(y) log2 p(y)

= H(X,Y)−H(Y).

Intuitively, H(X|Y) measures the amount of additional information in X, given a particular value of Y ,
averaged over all values of Y . Here are some important properties of the conditional entropy.

Proposition 9.8 H(X|Y) = 0 if and only if X = f(Y) for some function f .

Proposition 9.9 H(X|Y) = H(X) if and only if X and Y are independent.

Theorem 9.10 (Subadditivity)

H(X,Y) ≤ H(X) +H(Y).

Lecture 9: November 1 9-5

Proof:

H(X) +H(Y)−H(X,Y) = −
∑
x

p(x) log2 p(x)−
∑
y

p(y) log2 p(y) +
∑
x,y

p(x, y) log2 p(x, y)

= −
∑
x,y

p(x, y) log2
p(x)p(y)

p(x, y)

≥ − log2

(∑
x,y

p(x, y) · p(x)p(y)
p(x, y)

)
(by convexity of − log2 x)

= − log2
∑
x,y

p(x)p(y)

= 0.

Remark. More generally, we have

H(X1, . . . , Xn) ≤ H(X1, . . . , Xn−1) +H(Xn) ≤ . . . ≤ H(X1) + . . .+H(Xn).

Proposition 9.11 (dropping condition)

H(X|Y,Z) ≤ H(X|Y).

Proof: As H(X|Y) = H(X,Y)−H(Y) ≤ H(X), for any z ∈ ΩZ , we have

H(X|Y,Z = z) ≤ H(X|Z = z).

Taking expectation of z, it yields
H(X|Y,Z) ≤ H(X|Z).

9.2.2 Chung-Frankl-Graham-Shearer Theorem

Let’s start from a special case of Shearer’s lemma.

Theorem 9.12 (Shearer’s lemma, special case)

2H(X,Y, Z) ≤ H(X,Y) +H(X,Z) +H(Y,Z).

Proof: As

H(X,Y) = H(X) +H(Y |X),

H(X,Z) = H(X) +H(Z|X),

H(Y,Z) ≥ H(Y |X) +H(Z|X,Y),

we have

H(X,Y) +H(X,Z) +H(Y, Z) ≥ 2H(X) + 2H(Y |X) + 2H(Z|X,Y) = 2H(X,Y, Z).

Now, let’s come to the Chung-Frankl-Graham-Shearer theorem, which can be proved in a similar way.

9-6 Lecture 9: November 1

Theorem 9.13 (Chung, Frankl, Graham & Shearer, 1986) Let S1, . . . , Sm be subsets of [n] such that
every i ∈ [n] belongs to at least k of S1, . . . , Sm. Then

kH(X1, . . . , Xn) ≤
m∑
i=1

H(XSi
).

This theorem leads to many useful and interesting results.

Corollary 9.14 Let F be a family of subsets of [n] and pi denote the fraction of sets if F that contain i.
Then,

log2 |F| ≤
n∑

i=1

Hb(pi),

where Hb(p) = H(Bernoulli(p)) = −p log2 p− (1− p) log2 (1− p).

Proof: For each S ∈ F , let vS be its indicator vector of length n. Let X = (X1, . . . , Xn) be a random
variable taking values in {0, 1}n and set Pr[X = vS] =

1
|F| for all S ∈ F .

Clearly, H(X) = |F|·(−1/|F|· log2 1/|F|) = log2 |F| and H(Xi) = Hb(pi). So the result follows from
subadditivity.

Corollary 9.15 ∑
i≤np

(
n

i

)
≤ 2nHb(p)

when 0 < p ≤ 1/2.

Proof: (by Frankl) Let F =
(

[n]
≤pn

)
be the family of all subsets of [n] of size no larger than pn, and pi be the

fraction of containing i.

Clearly, p1 = p2 = . . . = pn and ∑
i

pi|F|=
∑
S∈F

|S|≤ pn|F|.

So pi ≤ p and thus Hb(pi) ≤ Hb(p). Applying above results finishes the proof.

Now, let’s introduce another corollary of the Chung-Frankl-Graham-Shearer theorem, which is also known
as the product theorem.

Corollary 9.16 (Product theorem) Let S1, . . . , Sm ⊆ Ω, where each i ∈ Ω appears in at least k subsets
Sj. Then for every F ⊆ 2Ω,

|F|k≤
m∏
i=1

|F|Si
|,

where F|S= {F ∩ S : F ∈ F}.

Proof: Let n = |Ω|. Each subset of Ω corresponds to a {0, 1} vector of length n. Let X = (X1, X2, . . . , Xn)
be a random variable sampled uniformly from all corresponding vectors of elements in F . For each set
S = {a1, a2, . . . , a|S|}, let XS be the joint random variable (Xa1 , Xa2 , . . . , Xa|S|). Clearly the support of XS

Lecture 9: November 1 9-7

is all corresponding vectors of elements in F|S . Then, applying Shearer’s lemma and the uniform bound, we
have

k log2 |F| = kH(X1, . . . , Xn) ≤
m∑
i=1

H(XSi
) ≤

m∑
i=1

log2 |F|Si
|.

We will show two applications of the product theorem as follows.

Theorem 9.17 Let F ⊆ 2[n] be a family of subsets of [n]. Suppose that for any S, T ∈ F , S ∩ T contains a
pair of consecutive numbers. Then, |F|≤ 2n−2.

Remark. Note that the bound is optimal. Consider F = 2[n−2] + {n− 1, n}.

Proof: Let N0 and N1 be the set of all even numbers and ood numbers in [n], respectively. Consider the
projections: Fi = {F ∩Ni : F ∈ F}.

Note that for any S, T ∈ F , there exists a k such that {k, k + 1} ⊆ S ∩ T . So, S ∩ T ∩ N0 ̸= ∅ and
S ∩ T ∩N1 ̸= ∅. Namely, for any Si, Ti ∈ Fi, Si ∩ Ti ̸= ∅.

It implies that F|Ni
is an intersecting set family, and thus |F|Ni

|≤ 2|Ni|−1. Finally by the product theorem
we have

|Fi|≤ 2|N0|−1 · 2|N1|−1 = 2n−2.

Theorem 9.18 (Chung, Frankl, Graham & Shearer, 1986) Every triangle intersecting family of sub-

graphs of Kn has size smaller than 2(
n
2)−2.

Proof: Let G be a triangle intersecting family. For any S ⊆ [n] with |S|= ⌈n
2 ⌉, let ES =

(
S
2

)
∪
(
[n]\S

2

)
and

r = |ES |=
(⌊n/2⌋

2

)
+
(⌈n/2⌉

2

)
≤ 1

2

(
n
2

)
.

For any S, each triangle has at least one edge in ES . Thus, G restricted to ES is an intersecting family. So
|G|ES

|≤ 2|ES |−1 = 2r−1.

Each edge of Kn appears in at least k = r

(n2)
·
(

n
⌊n/2⌋

)
different ES ’s. Applying the product theorem, it gives

that |G|k≤ (2r−1)(
n

⌊n/2⌋). Therefore,

|G|≤ 2(
n
2)·

r−1
r < 2(

n
2)−2.

