
What is optimization? Roughly speaking, optimization is to minimize or maximize

a function (which is called the objective function) under some constraints.

For example, we some several ways to return the campus from Hongqiao Station:

by taxi (Didi / Gaode), by metro or by bus (Hongqiao 4 Line / Min-Hong 2 Line),

etc. We would like to minimize the time, but our money is limited. This is an

optimization problem.

Formally, an optimization problem can be defined by

where f is called the objective function and Ω is called the feasible set, usually

specified by constraint functions

Ω = {x ∣ g1(x) ≤ 0, g2(x) ≤ 0, … , gm(x) ≤ 0} .

The optimal solution is usually denoted by

x∗ = arg min
x∈Ω

 f(x) .

In this course, we consider continuous optimization problem, where the objective

function and the constraints are continuous functions. We now give some more

examples.

Lecture 1. Introductory examples

1.1 Introduction

min / max f(x)

subject to x ∈ Ω

1.2 Knapsack problem

Example

Suppose there are n types of items. The i-th type has volume ai, weight bi and

value ci. We have a knapsack to bring some items. However the capacity of

this knapsack is A and the load-bearing is B. That is, the total volume of the



For each i, define a variable xi to denote the number of carried items of the i-th

type. Then we can formalize the problem as

How can we solve this problem? For simplicity, we assume that there are only two

types: Cola and potato chips. Each Cola has volume 2, weight 5 and value 10; each

potato chips has volume 5, weight 3 and value 15. Our knapsack has capacity 10

and load-bearing 15. Now the problem is

items in the knapsack can not exceed A and the total weight of the items in

the knapsack can not exceed B. What is the maximum value we can bring?

maximize  
n

∑
i=1

ci ⋅ xi

subject to  
n

∑
i=1

ai ⋅ xi ≤ A,

 
n

∑
i=1

bi ⋅ xi ≤ B,

 xi ≥ 0,  ∀ i ∈ [n].

maximize  10x1 + 15x2

subject to  2x1 + 5x2 ≤ 10,

 5x1 + 3x2 ≤ 15,

 x1 ≥ 0, x2 ≥ 0.



Actually, we can solve this problem by drawing a graph:

Question

1. What if we require integer x1, x2?

2. What if there are more types?

1.3 Data fitting

Example



However, before solving this problem, we should first ask the following question: if

we choose a certain value of g, how can we measure the difference between the

theoretical values of h and the practical data?

If we only have two numbers y and ŷ, it is natural to use the absolute value y − ŷ

to measure the difference. Moreover, it is clear that 3 is closer to 1 than 2.

However, if we have two vectors, how can we measure the difference? Is (2, 1)

closer to (1, 1) than (1, 2)?

We need to extend the concept of the absolute value to measure the distances

between vectors in Rn.

Consider the free falling motion. The height and the time of a free fall follow

the law h = gt2/2. However, the practical data may not exhibit the perfect

law.

Suppose we have the following data and we would like to use h = gt2/2 to fit

the data. Which value of coefficients g should we choose?

h 10 20 30 40

t2 1.011 2.019 3.032 4.041

Question

Generally, we have the following question. Let x = (x1, x2, … , xn) ∈ Rn,

y ∈ R = wTx + b = b + w1x1 + ⋯ + wnxn, where w = (w1, w2, … , wn) ∈ Rn.

Given a set of data {(x1, y1), … , (xm, ym)} and we guess the values of w and b

, how can we measure the difference between (y1, … , ym) and (ŷ1, … , ŷm),

where ŷi = wTxi + b? ∣ ∣Definition (Norm)

Given a vector space V  over a field F  (usually V = Rn), a norm ∥⋅∥ : V → R is

a function having the following properties:

1. (Nonnegativity) ∀ v ∈ V , ∥v∥ ≥ 0.

2. (Positive definiteness) ∥v∥ = 0 iff v = 0.

3. (Absolute homogeneity) ∀ r ∈ R and v ∈ V , ∥r ⋅ v∥ = |r| ⋅ ∥v∥.

4. (Triangle inequality) ∀ u, v ∈ V , ∥u + v∥ ≤ ∥u∥ + ∥v∥.



This definition is not constructive. That means any function ∥⋅∥ : V → R satisfying

above properties can reasonably measure the distance between two vectors. We

now see some specific examples.

Another example is called the canonical norm, which is induced by the inner

product. Usually, the inner product of two vectors x = (x1, … , xn)T and

y = (y1, … , yn)T is define by their dot product

⟨x, y⟩ ≜ xTy = x1y1 + ⋯ + xnyn .

However, in fact, the inner product can be defined more general.

Example (Lp norm)

Lp norm defined on Rn: ∥x∥p = (|x1|p + |x2|p + ⋯ + |xn|p)
1/p

, where

p ≥ 1. In particular,

L1 norm: ∥x∥1 = |x1| + |x2| + ⋯ + |xn|.

L2 norm: ∥x∥2 =√x2
1 + x2

2 + ⋯ + x2
n, which is the most common

norm in Rn.

L∞ norm: ∥x∥∞ = limp→∞∥x∥p = max{|x1|, |x2|, … , |xn|}.

Sometimes we will see the so-called L0 norm, given by

∥x∥0 = |x1|0 + ⋯ + |xn|0, that is, the number of nonzero entries. Note

that it is not a norm indeed. We call it L0 norm just for convenience.

Question

Why do Lp norms satisfy the triangle inequality?

Tip

The triangle inequality follows the so-called Minkowski inequality, which we

will prove several weeks later.

Definition (Inner product)

An inner product for a vector space V  is a function ⟨⋅, ⋅⟩ : V × V → F (we

assume F = R in our course) satisfying



Given a vector space with an inner product, the canonical norm is given by

∥x∥ = √⟨x, x⟩.

We now return to the linear regression problem. A famous and well-applied

method is the least square method, which use the L2-norm as the objective

function.

Given X = (x1, … , xm)T ∈ Rm×n and y = (y1, … , ym) ∈ Rm, assume the value of

coefficients are w = ŵ = (ŵ1, … , ŵn)T, then the value of y should be (using X

and our ŵ) ŷ = (ŷ1, … , ŷn) where

ŷi = ŵ1x1 + ⋯ + ŵnxn + b ,

and our goal is to minimize ∥ŷ − y∥2
2 = ∑n

i=1(ŷi − yi)2. Using the form of matrix

multiplication, this is to solve

1. (Nonnegetivity) ∀ v ∈ V , ⟨v, v⟩ ≥ 0.

2. (Positive definiteness) ⟨v, v⟩ = 0 iff v = 0.

3. (Symmetry) ∀ u, v ∈ V , ⟨u, v⟩ = ⟨v, u⟩.

4. (Linearity) ∀ r ∈ F, u, v, w ∈ V , ⟨ru + v, w⟩ = r⟨u, w⟩ + ⟨v, w⟩.

Example (Euclidean space Rn)

The inner product is given by

⟨x, y⟩ = xTy =
n

∑
i=1

xiyi ,

and thus the canonical norm is the L2 norm.

Theorem (Cauchy-Schwarz inequality)

For any vector space with any inner product and the canonical norm, it holds

that

|⟨x, y⟩| ≤ ∥x∥ ⋅ ∥y∥ .

Least square method

min
w∈Rn,b∈R

 ∥Xw + b1 − y∥2
2



Note that the term b1 is not necessary. Let

x
′
i = (xi1, … , xin, 1), w′ = (w1, … , wn, b), the above problem is converted into the

following form:

min
w∈Rn+1

 ∥X
′
w − y∥2

2

We now consider how to solve the above problem. Xw is the column space of the

matrix X, denoted by R(X) or im(X). The above optimization problem is to ask

the minimum distance from y to the subspace R(X). The answer is the distance

from y to the orthogonal projection of y onto the subspace.

Assume y′ is the orthogonal projection, and let e = y − y′. Then we have that e is

orthogonal to the subspace R(X), i.e., for any w ∈ Rn, eTXw = 0. It yields that

XTe = 0. Also there exists ŵ such that y′ = Xŵ (actually ŵ is the desired w in

the above optimization problem). So we have

{

Thus, we have

XT(y − Xŵ) = 0 ,

which implies

XTy = XTXŵ .

So ŵ = (XTX)−1XTy if XTX is invertible. Then rank(X) = n suffices. We will

revisit this topic later.

Given a data set {xi = (xi1, xi2, … , xin)T}i=1,2,…m, a support-vector machine is to

classify (separate) these data using a (n − 1)-dimensional hyperplane. Associate

yi ∈ {−1, +1} to each xi. We would like to divide the group of xi for which

yi = −1 from the group of xj for which yj = +1. Then a hyperplane wTx + b = 0 is

a desired one if for all i = 1, 2, … , m,

yi(w
T

xi + b) > 0 .

However, there are infinite many hyperplanes satisfying our requirements. For

example, we would like to classify black points and white points in the following

picture, and two dot lines are satisfied ones. Which one is better? A reasonable

XTe = 0 ,

∃ ŵ such that y − e = Xŵ .

1.4 Classification and the support vector machine



choice is to find the "maximum-margin" hyperplane, that is, to make the minimum

distance from points to the hyperplane as large as possible.

We first consider the problem of computing the distance from a point to a

hyperplane.

Assume the hyperplane is P : wTx + b = 0 and the point is y. Again (similar to the

least square method), consider the orthogonal projection of y onto P . Suppose the

orthogonal projection is y′. It is clear that w ⊥ P . So ∃ r ∈ R such that y − y′ = rw

. Also, wTy′ + b = 0 since y′ ∈ P .

Now we have

wT(y − rw) + b = 0 ,

which yields

r =
wTy + b

∥w∥2
2

.

The distance from y to P  is

∥rw∥ =
wTy + b

∥w∥2
.

Back to the problem of classification. Now our goal is to solve the following

optimization:

But this form is too complicated to solve. We would like to simplify it.

Note that wTxi + b = yi(wTxi + b) and we could choose proper w and b so that

Distance to a hyperplane ∣ ∣max
w∈Rn, b∈R

min
i

 
wTxi + b

∥w∥

subject to yi(w
T

xi + b) > 0 .∣ ∣∣ ∣



min yi(wTxi + b) = 1. So the optimization is equivalent to

which is further equivalent to

The last form is easy to solve (since it is actually a convex optimization).

max
w∈Rn, b∈R

 
1

∥w∥

subject to yi(wTxi + b) ≥ 1 ,

min
w∈Rn, b∈R

 ∥w∥2

subject to yi(wTxi + b) ≥ 1 .

Remark

The constraints yi(wTxi + b) ≥ 1 are equivalent to our assumption

min yi(wTxi + b) = 1, because our goal is to minimize the norm of w. If

min yi(wTxi + b) > 1, the corresponding w cannot be the optimal solution.


