
Given an optimization problem

the optimal solution is usually denoted by

x∗ = arg min
x∈Ω

 f(x) .

The first question is: for which optimization problems, the optimal solution exist?

In general, the question is hard to answer. We only have the following conclusion

for some special objective functions and feasible sets.

We now review some definitions in analysis.

Lecture 2. Optimality Condition

2.1 Existence of the optimal solution

minimize f(x)
subject to x ∈ Ω ,

Theorem (Weierstrass extreme value theorem)

Given a compact set S, if function f : S → R is continuous on S, then it is

bounded and has (both min/max) extreme values.

Definition (Open ball)

For a norm function ∥⋅∥ and n ∈ N+, an n-dimensional open ball of radius

ϵ ∈ R ≥ 0 is the collection of points of distance less than ϵ. Explicitly, the open

ball with center x and radius ϵ is defined by B(x, ϵ) ≜ {x′ : ∥x′ − x∥ < ϵ}.

Example



We can define open sets and closed sets.

For closed sets, there is another different but equivalent definition.

Then we define compact sets.

The following figure shows the open balls of ℓ1-norm and ℓ2-norm:

Definition

(open set) A set S is open if

∀ x ∈ S, ∃ ϵ > 0, such that B(x, ϵ) ⊆ S

(closed set) A set S is closed if its complement is open.

Theorem

A set S is closed iff for all sequence {xn}∞
n=1, where ∀ n, xn ∈ S, it holds that

if  lim
n→∞

xn = x then x ∈ S .

Example

1. For (0, 1)，since ∀x ∈ (0, 1), there exists a open ball B(x, ϵ) ⊆ (0, 1)

where ϵ = min{x,1−x}
2 , hence, (0, 1) is a open set.

2. For (0, 1)，since xn = 1
2n → 0 ∉ (0, 1), hence, (0, 1) is not a closed set.

Definiton (Compact sets)



In Rn, there is another definition.

For optimization problems whose feasible sets are not compact, we usually cannot

have simple ways to determine whether optimal solutions exist. However, for

continuous function f : R → R and M ∈ R, if f(−∞) = ∞, f(∞) = ∞, then

{x : f(x) ≤ M} is a compact set, and thus f has minimum values.

Just like the P vs. NP problem, verifying a solution is believed to be easier. So we

first study how to justify a solution is indeed an optimal one.

We first identify global minima and local minima.

Similarly, we can also define strictly global minima and strictly local minima.

Unfortunately, it is too hard to verify global minima in general. It also provides

evidence why general optimization problems are difficult to solve. In this course

we will study a special type of optimization problem, where local minima are also

global minima.

A set S is compact if any open cover of it has a finite subcover.

Theorem (Heine–Borel Theorem)

A set S ⊆ Rn is compact iff it is bounded and closed.

2.2 Global minimum and local minimum

Definition

Given a function f : D ⊆ Rn → R, where D is dom(f). A point x is said to be a

The value f(x) is called the global / local minimum value of f, respectively.

local minimum point, if there exists ε > 0 such that

∀ x′ ∈ B(x, ε) ∩ D, f(x′) ≥ f(x) ;

global minimum point, if ∀ x′ ∈ D, f(x′) ≥ f(x).



We now give some criteria that can be used to prove local minima.

Suppose f : R → R is continuous and differentiable. We know that if x∗ is a

extreme point only if f ′(x) = 0. Can we have similar results in high dimensions?

The generalization of derivative in high dimensions is the directional derivative.

Given f : R → R, we can use y = f ′(x0)(x − x0) + f(x0) to do a linear

approximation of f(x) at x0, where f ′(x0) can be seen as a linear mapping. It is

natural to define the differential of a function f : Rn → R at x0 by a linear mapping

A : Rn → R if f(x) ≈ f(x0) + A(x − x0).

2.3 First-order optimality condition

Definition (Directional derivative)

Given f : Ω → R, x0 ∈ Ω, v ∈ Rn, the directional derivative of f at x0 with

respect to v is defined by

∇vf(x0) = lim
h→0

f(x0 + hv) − f(x0)
h

if the limit exists.

In particular, if v = ei = (0, … , 0, 1, 0, … , 0), the directional derivative is

called the partial derivative

∂f

∂xi

(x0) = ∇ei
f(x0) .

Definition (Differential)

Given f : Rn → Rm, if there exists a matrix J : Rn → Rm (i.e., J ∈ Rm×n), such

that

lim
x→x0

∥f(x) − f(x0) − J(x − x0)∥

∥x − x0∥
= 0 ,

then we call f is differentiable at x0, and df(x0) = J is the differential of f at

x0 (sometimes it also known as the Jacobian matrix).

In particular, if m = 1, ∇f(x0) = J T = ( ∂f
∂x1

, … , ∂f
∂xn

)T is called the gradient of

f.

If m ≥ 2, suppose f : (x1, … , xn)T → (f1, … , fm)T. Then the Jacobian matrix



Now we give some examples and calculation rules of differentials.

is given by

df = = .
⎛⎜⎝∇f T

1

⋮

∇f T
m

⎞⎟⎠ ⎛⎜⎝ ∂f1

∂x1
⋯ ∂f1

∂xn

⋮ ⋱ ⋮
∂fm

∂x1
⋯ ∂fm

∂xn

⎞⎟⎠Tip

If f is differentiable at x0, then the directional derivatives ∇v at x0 form a

linear mapping with respect to v. Thus it gives that

∇vf(x0) = ∇f(x0)Tv =
n

∑
i=1

∂f

∂xi

⋅ vi

immediately.

Remark

The existence of directional derivatives cannot imply the existence of

differential.

Consider the following function:

f(x, y) = { .

Then f(x, y) has directional derivative at (0, 0) for all direction, but is not

differential at (0, 0). (Actually, f is even not continuous at (0, 0).)

y2/x, x ≠ 0
0, x = 0

Example

f(x) = Ax + b where x ∈ Rn and A ∈ Rm×n. Then df(x) = A.

f(x) = w
T

x + b where x, w ∈ Rn. Then df(x) = w
T and ∇f(x) = w.

f(x) = xTAx where x ∈ Rn and A ∈ Rn×n. Then df(x) = xT(A + AT).



Here is a simple proof of the last example:

f(x) = x
T

Ax = ∑1≤i≤n ∑1≤j≤n Aijxixj, so

∂f

∂xk

= ∑
1≤i,j≤n

Aij(
∂xi

∂xk

(xi) ⋅ xj +
∂xj

∂xk

(xj) ⋅ xi) = ∑
i

Aikxi +∑
j

Akjxj ,

which yields that ∇f(x) = (AT + A)x.

We are ready to give the first-order optimality condition.

An important idea is to restrict a multivariate function to a line.

Proposition

Multiplication: Given two functions f, g : Rn → Rm, let h : Rn → R = f Tg

. Then dh(x) = f(x)T dg(x) + g(x)T df(x).

Chain rule: Given f : Rn → Rm differentiable at x0, g : Rm → Rℓ

differentiable at f(x0), let h : Rn → Rℓ = g ∘ f (i.e, h(x) = g(f(x))). Then

dh(x0) = dg(f(x0)) df(x0) .

Theorem (First-order necessary condition)

Suppose f : Ω ⊆ Rn → R is a function differential at some x∗ ∈ Ω and

continuous in B(x∗, ε) ∩ Ω. If x∗ is a local minimum point, then for any

feasible direction v (i.e. ∃ ε > 0 such that x∗ + δv ∈ Ω for any 0 < δ < ε),

∇vf(x∗) = ∇f(x∗)Tv ≥ 0 .

Proof

Fix v ∈ Rn. Define g : [0, ε] → R by g(t) ≜ f(x∗ + tv). Then g(0) = f(x∗). Since

x∗ is a local minimum point, it holds that g(t) − g(0) ≥ 0 for any t > 0.

Therefore, 
g(t)−g(0)

t
≥ 0, which gives that

∇vf(x∗) = g′(0) = limt→0+
g(t)−g(0)

t
≥ 0.

Corollary



In particular, if Ω is an open set, any point is an interior point. So ∇f(x∗) = 0.

Unfortunately, the first-order condition is a necessary condition. If ∇f(x∗) = 0, we

still do not know whether x∗ is a local minimum. An simple example is function

f(x) = x3 and x∗ = 0. For multivariate functions, there is another case called the

saddle point.

We can compute the high-order derivatives to refute saddle points.

For a multivariate function f : Rn → R, ∇f is a mapping

(x1, … , xn)T ↦ ( ∂f

∂x1
, … , ∂f

∂xn
)

T

. We can further compute the Jacobian matrix of

Suppose x∗ is further an interior point (i.e., ∃ ε > 0 such that B(x∗, ε) ⊆ Ω).

Then ∇f(x∗) = 0.

Proof

Let v = −∇f(x∗). Then 0 ≤ ∇vf(x∗) = −∇f(x∗)T∇f(x∗). It implies that

∇f(x∗) = 0.

2.4 Second-order optimality condition

Example (Saddle point)

Consider function f(x, y) = x2 − y2. Clearly ∇f(0, 0) = 0. But (0, 0) is a saddle

point, neither a minimum nor a maximum.



∇f:

J(∇f) = .

The transpose matrix of the Jacobian is called the Hessian matrix of f, and denoted

by H(f), or ∇2f. So H(f) = J(∇f)T = ∇(∇f).

We are ready to establish the second-order condition. Consider a function

f : R → R. Intuitively, if x∗ is a local minimum, then we have f ′(x∗) = 0,

f ′(x∗ − ε) < 0 and f ′(x∗ + ε) > 0 for sufficiently small ε > 0. Thus f ′′(x∗) ≥ 0.

Now let f be a multivariate function f : Rn → R. Fix v ∈ Rn and consider the

restriction of f. Let g(t) ≜ f(x∗ + tv). Using the chain rule, we have

In particular, we need g′′(0) = vT∇2f(x∗)v ≥ 0.

Another idea is to consider the second-order Taylor series:

f(x∗ + δ) = f(x∗) + ∇f(x∗)Tδ +
1
2

δT∇2f(x∗)δ + o(∥δ∥2) .

Hence we can reasonable guess that δT∇2f(x∗)δ ≥ 0 since f(x∗ + δ) ≥ f(x∗).

⎛⎜⎝ ∂ 2f

∂x2
1

⋯ ∂ 2f

∂xnx1

⋮ ⋱ ⋮
∂ 2f

∂x1xn
⋯ ∂ 2f

∂x2
n

⎞⎟⎠Theorem (Schwarz’s theorem, or Clairaut's theorem)

Given a function f : Ω ⊆ Rn → R, and a point x ∈ Ω such that B(x, ε) ⊆ Ω for

some ε > 0. If f has continuous 
∂ 2f

∂xixj
 for all i, j in B(x, ε). Then

∂ 2

∂xixj
f(x) = ∂ 2

∂xjxi
f(x) for all i, j, which yields that H(f)(x) is a symmetric

matrix.

g′(t) = ∇f(x∗ + tv) ⋅ v = ∇f(x∗ + tv)Tv ,

g′′(t) = dg′(t) = ∇f(x∗ + tv)T dv + vT d(∇f(x∗ + tv)) = vT∇2f(x∗ + tv)v .

Theorem (Second-order necessary condition)

Suppose f : Rn → R is a twice continuously differentiable function, and x∗ is a

local minimum. Then ∀v ∈ Rn,



In order to determine whether the Hessian of a function satisfies above condition,

we introduce the definition of definite matrix.

To prove this proposition, we first introduce the eigendecomposition, which is a

simplified case of SVD (singular value decomposition).

vT∇2f(x∗)v ≥ 0 .

Definite matrix

Definition (Definite matrix)

Let A ∈ Rn×n be a symmetric matrix. Then A is

positive definite (denoted by A ≻ 0, or A > 0), if ∀ v ∈ Rn ≠ 0, vTAv > 0;

positive semidefinite (denoted by A ⪰ 0, or A ≥ 0 ), if ∀ v ∈ Rn, vTAv ≥ 0;

negative definite (denoted by A ≺ 0, or A < 0), if ∀ v ∈ Rn ≠ 0, vTAv < 0;

negative semidefinite (denoted by A ⪯ 0, or A ≤ 0), if ∀ v ∈ Rn, vTAv ≤ 0;

indefinite, if ∃ v1, v2 ∈ Rn, vT

1 Av1 < 0 < vT

2 Av2.

Proposition

Suppose A is a real symmetric matrix, then

A ⪰ 0 iff all of its eigenvalues are non-negative,

A ≻ 0 iff all of its eigenvalues are positive.

Definition (Eigendecomposition)

Let A ∈ Rn×n be a real symmetric n × n matrix with eigenvalues λ1, … , λn.

Then A can be decomposed as A = UΛU T, where Λ = diag{λ1, … , λn} is a

diagonal matrix of n eigenvalues, and U = (u1, … , un) consists of

orthonormal eigenvectors, namely ui is an orthonormal eigenvector of

corresponding λi (i.e., ∀ i ≠ j, ⟨ui, uj⟩ = 0 and ∀ i, ⟨ui, ui⟩ = 1, and it implies

that UU T = I).



For any eigenvector ui, we have Aui = λiui. So AU = (λ1u1, … , λnun) = UΛ.

Thus A = UΛU −1 = UΛU T;

Given a matrix

A = ,

a k × k principal submatrix of A is a submatrix of A, consisting of k rows and k

Proof of the proposition

We use the eigendecomposition of A. Since A = UΛU T, we have

vTAv = vTUΛU Tv = (U Tv)TΛ(U Tv) .

Note that U Tv = (u1, … , un)Tv = (uT
1 v, … , uT

nv)T. So vTAv = ∑n
i=1 λi(uT

i v)2.

Clearly the result ≥ 0 for all v iff λi ≥ 0 for all i (just by letting v = ui).

Example

Consider the following matrix

A = ( ) .

Since

( )( )( ) = 2a2 − 2ab + 2b2 = a2 + b2 + (a − b)2 ≥ 0 ,

and is > 0 if (a, b) ≠ (0, 0), A is positive definite.

In addition, each eigenvalue λ of A satisfies det(λI − A) = (λ − 2)2 − 1 = 0.

By solving this equation, we obtain that λ = 1, 3. Since all of the two

eigenvalues are positive, A is positive definite.

2 −1
−1 2

a, b
2 −1

−1 2
a

b

Sylvester’s criterion

⎛⎜⎝a11 ⋯ a1n

⋮ ⋱ ⋮
an1 ⋯ ann

⎞⎟⎠



columns of the same indices I = {i1, … , ik},

AI = .

The determinant of AI  det(AI) is called the principal minor (主子式). In particular,

if I = [k] = {1, … , k}, det(AI) is called the leading principal minor (顺序主子式).

Finally, we give a sufficient condition to assert a local minimum point.

⎛⎜⎝ai1,i1 ⋯ ai1,ik

⋮ ⋱ ⋮
aik,i1 ⋯ aik,ik

⎞⎟⎠Theorem (Sylvester's criterion)

Suppose A is a symmetric matrix, then

A ≻ 0 iff Dk(A) ≜ det(A[k]) > 0 for all k = 1, … , n,

A ⪰ 0 iff DI(A) ≜ det(AI) ≥ 0 for all I ⊆ [n],

A ⪰ 0 if Dk(A) > 0 for k ∈ [n − 1], and Dn(A) ≥ 0.

Remark

We cannot get a criterion for semidefiniteness similar to the first criterion for

positive definiteness. Consider the following matrix, all of its principal minor

are non-negative. Consider the following example:

A = ( ) .

It is easy to see that Dk(A) ≥ 0 for all k. However, A is not positive

semidefinite.

0 0
0 −1

Second-order sufficient condition

Theorem (Second-order sufficient condition)

Suppose f : Rn → R is a twice continuously differentiable function. Then x∗ is

a local minimum if ∇f(x∗) = 0 and ∇2f(x∗) > 0.

Remark



Many minimum points do not satisfy this condition. Consider the function

f(x1, x2) = x4
1 + x4

2. Clearly (0, 0) is a local minimum. But the Hessian of f at

(0, 0) is 0 ≯ 0.


