
Affine sets are generalization of lines. Given two points x, y ∈ Rn, the line passing

through x, y can be represented by

ℓ = {x + θ(y − x) ∣ θ ∈ R} .

Note that x + θ(y − x) = (1 − θ)x + θy. So we have the following definition of

affine combination.

A set is affine if it is closed under affine combinations.

Lecture 3. Convex Sets

3.1 Affine sets

Definition (Affine combination)

Given x1, … , xm ∈ Rn, θ1x1 + θ2x2 + … + θmxm is an affine combination of

x1, … , xm if θ1 + … + θm = 1.

Definition (Affine set)

A set S is an affine set, if for all m ≥ 1, for all m points x1, x2, … , xm ∈ S, any

affine combination of x1, … , xm is still in S.

Example

A line is an affine set;

Rn is an affine set;

Given w ∈ Rn and b ∈ R, the hyperplane P = {x ∈ Rn ∣ wTx + b = 0} is

an affine set;

In general, given A ∈ Rm×n and b ∈ Rm, the solution set of the system of

linear equations S = {x ∈ Rn ∣ Ax = b} is an affine set.



Note that if m = 1, the solution set S is a hyperplane. If m > 1 and A ≠ 0, S is the

intersection of m hyperplanes.

Why can we only verify affine combinations of two points in S? Suppose we have

an affine combination θ1x1 + θ2x2 + θ3x3 for 3 points x1, x2, x3. Since

θ1 + θ2 + θ3 = 1, clearly there must exists two of them such that their sum is non-

zero. Assume that θ1 + θ2 ≠ 0. Then we have

θ1x1 + θ2x2 + θ3x3 = (θ1 + θ2)( θ1

θ1 + θ2
x1 +

θ2

θ1 + θ2
x2)+ θ3x3 .

If any affine combination of two points is still in S, then 
θ1

θ1+θ2
x1 + θ2

θ1+θ2
x2 is in S

and thus θ1x1 + θ2x2 + θ3x3 is in S. For an affine combination of more than 3

points, we can rewrite it in a similar way recursively. So it suffices to verify affine

combinations of 2 points.

We have shown that the solution to each linear equation is an affine set.

Conversely, any affine set is also a solution set to a system of linear equations.

Proof

Given x1, x2 ∈ S, we have Ax1 = Ax2 = b. So for any θ ∈ R,

A(θx1 + (1 − θ)x2) = θAx1 + (1 − θ)Ax2 = b.

Proposition

Any affine set ⊆ Rn is the solution set to a system of linear equations.

Proof

If S is an affine set, pick an arbitrary point x0 ∈ S. Then we claim that the

following set

S ′ = S − x0 ≜ {x − x0 ∣ x ∈ S}

is a linear space. For all x1, x2 ∈ S ′, we have x1 + x0, x2 + x0 ∈ S by

definition. Hence, for any a1, a2 ∈ R,

a1x1 + a2x2 + x0 = a1(x1 + x0) + a2(x2 + x0) + (1 − a1 − a2)x0 ∈ S .

Therefore, a1x1 + a2x2 ∈ S ′.



Roughly speaking, affine can be viewed as linear added by some bias term. Similar

to the linear map, we can define an affine map f : Rn → Rm by x ↦ Ax + b for

some A ∈ Rm×n and b ∈ Rn. We can also define affinely independent points as

follows.

Clearly, there are at most n + 1 affinely independent points in Rn, since there are

at most n linearly independent vectors in Rn.

Similar to the definition of lines, we can define the segment from x to y by

s = {x + θ(y − x) ∣ θ ∈ [0, 1]} .

Note that the difference between lines and segments is the range of θ. Again, since

x + θ(y − x) = (1 − θ)x + θy, we have the following definition.

A set is convex if it is closed under convex combinations.

Since S ′ can be represented as {x ∣ Ax = 0}, then S = S ′ + x0 can be

represented as {x ∣ Ax = Ax0}, which is the solution set to Ax = Ax0.

Definition (Affine independence)

Given m + 1 points x0, x1, … , xm ∈ Rn, we say they are affinely independent,

if there does not exist θ0, θ1, … , θm ∈ R such that θ0 + θ1 + ⋯ + θm = 0, and

θ0x0 + θ1x1 + ⋯ + θmxm = 0 .

Equivalently, x0, x1, … , xm ∈ Rn are affinely independent, if and only if

x1 − x0, x2 − x0, … , xm − x0 are linearly independent.

3.2 Convex sets

Definition (Convex combination)

Given x1, … , xm ∈ Rn, θ1x1 + θ2x2 + … + θmxm is a convex combination of

x1, … , xm if θ1 + … + θm = 1 and for all i ∈ [m], θi ≥ 0.

Definition (Convex set)



In particular, we can define the convex hull of any set.

Clearly, for any set S ∈ Rn, its convex hull is a convex set.

For a general set S, if we would like to show that S is convex, using the same

argument we used in the section of affine sets, we only need to show that any

convex combination of two arbitrary points in S is still in S.

A set S is a convex set, if for all m ≥ 1, for all m points x1, x2, … , xm ∈ S, any

convex combination of x1, … , xm is still in S.

Definition (Convex hull)

The convex hull of a set S is the set of all convex combinations of points in S,

namely,

conv(S) ≜ {
m

∑
i=1

θixi ∣ ∀ i ∈ [m], θi ≥ 0, xi ∈ S,  and 
m

∑
i=1

θi = 1} .

Question

If we would like to determine the convex hull of some set S, can we only check

convex combinations of any two points? If not, how many points are

sufficient?

Tip (Carathéodory's theorem)

At most n + 1 points in Rn are sufficient. Because n + 2 points are affinely

dependent, there exists θ0, … , θn+1 such that θ0 + ⋯ + θn+1 = 0, and

θ0x0 + ⋯ + θn+1xn+1 = 0. Thus,

xn+1 =
θ0x0

θ0 + ⋯ + θn

+
θ1x1

θ0 + ⋯ + θn

+ ⋯ +
θnxn

θ0 + ⋯ + θn

is a convex combination of x0, … , xn.

3.3 Examples of convex sets



We first give some geometric examples of convex sets.

A particular example of convex sets is the convex cone.

A convex cone is a set closed under conic combinations. A convex cone hull of a set S

is the conic combination version of a convex hull.

Clearly, any cone is a convex set.

Example

Definition (Conic combination)

Given x1, … , xm ∈ Rn, θ1x1 + θ2x2 + … + θmxm is a conic combination of

x1, … , xm if for all i ∈ [m], θi ≥ 0.

Definition (Convex cone)

The convex cone hull of a set S is the set of all conic combinations of points in

S, namely,

cone(S) ≜ {
m

∑
i=1

θixi ∣ ∀ i ∈ [m], θi ≥ 0, xi ∈ S} .



Another examples include Rn, hyperplanes and halfspaces.

Convexity is not only a property of geometric shapes.

Example

Affine sets are all convex sets. So Rn and hyperplane {x ∣ wTx + b = 0}

are convex sets.

A halfspace defined by H ≜ {x ∣ wTx + b ≤ 0} (or < 0 for open halfspace)

is a convex set.

However, H is not affine unless H = Rn.

Proof (Convexity of halfspaces)

For all x, y ∈ H = {x ∣ wTx + b ≤ 0}, let z ≜ θx + θ̄y, where θ ∈ [0, 1] and

θ̄ = 1 − θ. Since

wTz = wT(θx + θ̄y) + b = θ(wTx + b) + θ̄(wTy + b) ≤ 0 ,

we conclude that z is also in the halfspace H.

Example (Definite matrices)

Let Sn
+ and Sn

++ denote the set of all positive semidefinite matrices and the set

of all positive definite matrices, respectively, namely,

Then both Sn
+ and Sn

++ are convex sets.

S
n
+ = {A ∈ R

n×n ∣ A ⪰ 0} ,
S

n
++ = {A ∈ Rn×n ∣ A ≻ 0} .

Proof

For all A1, A2 ∈ Sn
+, let θ ∈ [0, 1] and θ̄ = 1 − θ,

1. it's easy to verify that θA1 + θ̄A2 is symmetric.

2. ∀ v ∈ Rn, vT(θA1 + θ̄A2)v = θ(vTA1v) + θ̄(vTA2v) ≥ 0,.



In fact, note that we do not need the norm function to be L2-norm. We only use

the triangle inequality and the absolute homogeneity in the proof. Hence the norm

balls defined by other norm functions are also convex sets.

Why? An idea is to define a norm and the ellipsoid can be viewed as a norm ball.

The other viewpoint is that, an ellipsoid is the image of a ball under a linear (or

affine) map. To see this, note that

∥x∥2 ≤ 1 ⟺ xTx ≤ 1 ⟺ Λx ∈ E, where Λ = ( ) .

Example (Euclidean balls)

Given c ∈ Rn, the Euclidean ball

{x ∣ ∥x − c∥2 ≤ r, x ∈ R
n}

is a convex set for any r ∈ R≥0.

Proof

For any two points x, y in {x ∣ ∥x − c∥2 ≤ r, x ∈ Rn},

∥θx + θ̄y − c∥2

= ∥θ(x − c) + θ̄(y − c)∥2

≤ ∥θ(x − c)∥2 + ∥θ̄(y − c)∥2

= θ∥x − c∥2 + θ̄∥y − c∥2

≤ r .

Convexity-preserving operations

Example (Ellipsoid)

The Ellipsoid in R2

E = {(x1, x2)T ∣
x2

1

λ2
1

+
x2

2

λ2
2

≤ 1}

is convex.

λ1 0
0 λ2



In general, given an invertible Q ∈ Rn×n, the set {x ∣ xTQTQx ≤ 1} gives an

ellipsoid.

Now we show that an affine map is a convexity-preserving operation.

Proposition

Suppose C ⊆ Rn is a convex set, f : Rn → Rm is an affine map. Then

f(C) ≜ {f(x) ∣ x ∈ C}

is convex.

Proof

Without loss of generality, assume f(x) = Ax + b for some A ∈ Rm×n and

b ∈ Rm. Then for all y1, y2 ∈ f(C) = AC + b, there exists x1, x2 ∈ C such that

y1 = f(x1) and y2 = f(x2).

For all θ ∈ R, since C is convex, θx1 + θ̄x2 is also in C. Therefore,

θy1 + θ̄y2 = θ(Ax1 + b) + θ̄(Ax2 + b) = A(θx1 + θ̄x2) + b ∈ AC + b ,

which yields that f(C) is also convex.

Proposition (Convexity-preserving operations)

The following operations preserve the convexity:

(Affine map) If C is convex, f is an affine map, then f(C) is convex.

(Intersection) If C and D are both convex, then C ∩ D is also convex.

This property works for infinite sets intersection.

Unfortunately, union is not a convexity-preserving operation.

(Cartesian product) If C ⊆ Rn and D ⊆ Rm are both convex, then their

cartesian product

C × D ≜ {(x1, x2) ∣ x1 ∈ C, x2 ∈ D}

is also convex.

(Minkowski addition) If C ⊆ Rn and D ⊆ Rn are both convex, then their

Minkowski sum

≜



In particular, we define the simplex (单纯形) as “simplest” polytope:

C + D ≜ {x1 + x2 ∣ x1 ∈ C, x2 ∈ D}

is also convex.

C − D is also convex.

Polyhedron and polytope

Definition (Polyhedron and polytope)

A polyhedron (多面体) is the intersection of some halfspaces:

P = {x ∣ ∀ i, wT

i x + bi ≤ 0} .

A polytope (多胞体) is a bounded polyhedron.

Tip

Affine sets are polyhedra. (Because wTx + b = 0 is equivalent to

wTx + b ≤ 0 ∧ wTx + b ≥ 0.)

Halfspaces are polyhedra.

Polyhedra are convex sets.

the 0-simplex is just a point;

the 1-simplex is a segment;

the 2-simplex is a triangle;

the 3-simplex is a tetrahedron;

……

Specifically, a k-simplex is a k-dimensional polytope which is the convex

hull of its k + 1 vertices. More formally, suppose the k + 1 points u0, … , uk

are affinely independent. Then the simplex determined by them is their convex

hull

C = {θ0u0 + ⋯ θkuk ∣
k

∑
i=0

θi = 1 and θi ≥ 0 for all i = 0, 1, … , k} .

The standard simplex or probability simplex is the k dimensional simplex in



Suppose S = conv(u0, u1, … , un) ⊆ Rn is a n-simplex. Then x ∈ S if and only if

there exists θ0, θ1, … , θn such that ∑n
i=0 θiui = x, ∑n

i=0 θi = 1 and θi ≥ 0 for all

i = 0, 1, … , n. Equivalently, we have

x = u0 +
n

∑
i=1

θi(ui − u0) .

Now let y ≜ (θ1, θ2, … , θn)T and B = (u1 − u0, u2 − u0, … , un − u0) ∈ Rn×n.

Clearly x = By. Thus, S can be equivalently written as

Note that u1 − u0, … , un − u0 are n linearly independent vectors (since

u0, … , un are affinely independent). So B has full rank and is invertible. Let

A = B−1. For any x ∈ S, x = u0 + By for some y. Thus

Ax = A(u0 + By) = Au0 + y, which yields that y = Ax − Au0. Note that the

constraints for y are ∑ yi ≤ 1 and yi ≥ 0. Denote A by

A = ( )T = .

Rk+1 whose k + 1 vertices are the k + 1 standard unit vectors in Rk+1.

Namely, the standard k-simplex is given by

Δk ≜ {x = (x0, … , xk)T ∣
k

∑
i=0

xi = 1 and xi ≥ 0 for all i = 0, 1, … , k} .

For example, the standard 2-simplex is the triangle whose vertices are

(0, 0, 1)T, (0, 1, 0)T and (1, 0, 0)T.

Question

Why are simplexes polyhedra?

S = {θ0u0 + … + θnun ∣
n

∑
i=0

θi = 1, θi ≥ 0}

= {u0 + By ∣
n

∑
i=1

yi ≤ 1, yi ≥ 0} .

a1, … , an

⎛⎜⎝aT

1

⋮

aT

n

⎞⎟⎠



We obtain that yi = aT

i x − aT

i u0. Overall, S can be written as

S = {x ∣
n

∑
i=1

(aT

i x − aT

i u0) ≤ 1,  and aT

i x − aT

i u0 ≥ 0 for all i = 1, 2, … , n} ,

which gives that S is a polytope.

In fact, note that aT

i
(ui − u0) = 1 and aT

i
(uj − u0) = 0 for all i ≠ j. This argument

has a simple geometric explanation.


