
We would like to present a fundamental property of convex sets. Roughly

speaking, we would like to show that every convex set C ⊆ Rd can be

characterized by its ‘supporting hyperplanes’, and every two convex sets can be

separated by a hyperplane.

Given a set C ⊆ Rn, the distance between a point x and C is defined by

dist(x,C) = inf
y∈C

 ∥x − y∥ .

We define the (metric) projection of x onto C as the closest points in C to x.

Lecture 4. Supporting and Separating

Hyperplane Theorem

4.1 Projection to convex sets

Definition (Projection)

Let C ⊆ Rn be a nonempty, closed and convex set. Then for any x ∈ Rn, the

projection of x onto C is defined as

PC(x) ≜ arg min
y∈C

 ∥x − y∥ .

That is, ∥x − PC(x)∥ = dist(x,C).



Clearly, if x ∈ C then PC(x) = x. Now we assume that x ∉ C.

We first show that the minimizer exists. Since C ≠ ∅, select any z ∈ C and let

r = ∥x − z∥. Then B(x, r) ∩ C ≠ ∅. Since C is closed, B(x, r) ∩ C is bounded and

closed, and thus compact. Note that

inf
y∈C

 ∥x − y∥ = inf
y∈B(x,r)∩C

 ∥x − y∥ .

By the extreme value theorem, the infinium can be achieved by some y ∈ C.

Next, we show that the minimizer is unique. Suppose there are two points

y1 ≠ y2 ∈ C such that dist(x,C) = ∥x − y1∥ = ∥x − y2∥. Let yc = 1
2 (y1 + y2).

Since C is convex, yc ∈ C and thus ∥x − yc∥ ≥ dist(x,C). However, we have

which yields that

Thus the minimizer is unique, and PC(x) is well-defined.

Question

Is this well-defined?
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Let C be a nonempty, closed and convex set. Given x and y = PC(x), for any

z ∈ C, it holds that ⟨x − y, z − y⟩ ≤ 0.



Geometrically, this means C and x ∉ C can be strictly separated by a hyperplane.

This is a special case of the separating hyperplane theorem we will discuss shortly.

Proof

Note that for all t ∈ (0, 1), y + t(z − y) ∈ C. So

∥x − y − t(z − y)∥2 ≥ ∥x − y∥2 .

Thus, −2t⟨x − y, z − y⟩ + t2∥z − y∥2 ≥ 0 for all t ∈ (0, 1), which concludes

that ⟨x − y, z − y⟩ ≤ 0.

Corollary

Let C ⊆ Rn be a nonempty, closed and convex set. For any x ∉ C, there exists

w ∈ Rn ∖ {0} such that

sup
z∈C

 ⟨w, z⟩ < ⟨w, x⟩ .

Proof

Let y = PC(x), and w = x − y. Since x ∉ C, w ≠ 0. Then we have for any

z ∈ C,

⟨w, z − y⟩ ≤ 0 ,

which is equivalent to

⟨w, z⟩ ≤ ⟨w, y⟩ = ⟨w, x⟩ − ⟨w, w⟩ .



In fact, the hyperplane orthogonal to x − PC(x) separates x and C. We can also

generalize this lemma to two convex sets.

The idea is to find x ∈ C, y ∈ D such that ∥x − y∥ = dist(C,D), and show that

w = y − x (the hyperplane orthogonal to y − x) is a desired one.

Taking the supremum over C, it gives that

sup
z∈C

 ⟨w, z⟩ ≤ ⟨w, x⟩ − ⟨w, w⟩ < ⟨w, x⟩ .

Theorem (Strictly separating hyperplane theorem)

Let C,D ⊆ Rn be two disjoint closed convex sets, and at least one of them is

bounded. Then there exists w ∈ Rn ∖ {0} such that

sup
x∈C

 ⟨w, x⟩ < inf
y∈C

 ⟨w, y⟩ .

Namely, there exists w ≠ 0 and b such that

∀ x ∈ C, wTx + b < 0 and ∀ y ∈ D, wTy + b > 0 .

4.2 Supporting hyperplane theorem

Definition

The interior of a set C is defined as:

int(C) ≜ {x ∈ C ∣ ∃ ϵ > 0,B(x, ϵ) ⊆ C} .

The closure of a set C is defined as

cl(C) ≜ {x ∈ Rn ∣ ∃x1, ⋯ ,xn, ⋯ ∈ C, lim
n→∞

xn = x} .

The boundary of a set C is defined as

bd(C) or ∂C ≜ cl(C) ∖ int(C)

or equivalently,

≜



∂C ≜ {x ∈ Rn ∣ ∀ ϵ > 0,B(x, ϵ) ∩ C ≠ ∅ ∧ B(x, ϵ) ⊈ C} .

Theorem (Supporting hyperplane theorem)

Given a nonempty convex set C ⊆ Rn, and a point x0 ∈ ∂C, there exists

w ≠ 0 ∈ Rn such that P = {x ∈ Rn ∣ wTx = wTx0} is a supporting hyperplane

of C at x0, namely,

∀ x ∈ C, ⟨w, x⟩ ≤ ⟨w, x0⟩ .

Proof ​

If int(C) = ∅, then C lies in an affine set of dimension less than n.

Otherwise, there exists n + 1 affinely independent points in C, which

implies that C contains a n-simplex. However, the interior of the simplex

is nonempty, which contradicts int(C) = ∅. Now choose any hyperplane

that the affine set lies on and we are done.

If int(C) ≠ ∅, let Cε ≜ {x ∣ B(x, ε) ⊆ cl(C)}. Note that x0 ∉ Cε and Cε is

closed. By the corollary in Section 4.1, for all ε < 0, there exists a

hyperplane strictly separates Cε and x0, namely, ∃wε ≠ 0 such that

wT

ε x < wT

ε x0, ∀x ∈ Cε. We normalize wε such that ∥wε∥ = 1.

Next we consider a series of points εk = 1
k

, k = 1, 2, … For each k, εk

corresponds to a wεk , and ∥wεk∥ = 1. Hence, by the Bolzano–Weierstrass

theorem, there exists a convergent subsequence of {wεk}. Denote by w its

limit. Then we show that this w is the coefficient of the desired



In fact, for any closed convex C ≠ ∅,

C = ∩ {H ∣ H is a closed subspace containing C} = ∩ {H : H is a supporting halfspace} .

We will not give the formal proof of this proposition in our lecture. However, let us

try to understand this proposition intuitively.

For a 2-dimension convex set. We can find a tangent line at each boundary point,

hyperplane.

For any x ∈ int(C), there exists N > 0 such that

∀ k > N , wT

εk
x < wT

εk
x0 .

Thus, wTx ≤ wTx0 by taking the limit on both sides.

For any y ∈ ∂C, there exists a sequence {yk ∈ intC}k∈N → y by

convexity. (Why?) Since wTyk ≤ wTx0 for each k, we can conclude that

wTy ≤ wTx0.

Proposition

Let C ⊂ Rn be a convex set with nonempty interior, x ∈ ∂C be a boundary

point. Then there exists a sequence {xk ∈ intC}k∈N such that limk→∞ xk = x.

Proof ​

By definition, there exists {yk ∈ C}k∈N such that limk→∞ yk = x. Since

int(C) ≠ ∅, choose any point z ∈ int(C), thus there exists r > 0 such that

B(z, r) ⊆ C. That is, for any w ∈ Rn with ∥w∥ ≤ r, z + w ∈ C. So by

convexity, for any k ∈ N and t ∈ (0, 1),

yk + t(z + w − yk) = yk + t(z − yk) + tw ∈ C ,

which implies that B(yk + t(z − yk), rt) ⊆ C. Thus, yk + t(z − yk) ∈ int(C).

Let xk = yk + 1
k

(z − yk). We have xk ∈ int(C) for all k ∈ N, and

limk→∞ xk = x.

Corollary of the supporting hyperplane theorem

Any nonempty closed convex is the intersection of some halfspaces.



and the set only lies in a single side of the line. For all of these boundary points, we

can get a lot of tangent lines, and an area bounded by these lines. Hence, the

proposition tells us this area is just the original convex set.

When considering high dimensional spaces, we can just use the supporting

hyperplane theorem. For each boundary point x0 ∈ ∂C, let

P = {x ∣ wTx = wTx0} ,

and make C lie in the halfspace of wTx ≤ wTx0. Thus, this proposition tells us that

C = ⋂
x0∈∂C

{x ∣ wTx ≤ wTx0} .

We would like to show that any two disjoint (not necessarily bounded or closed!)

convex sets can be separated by a hyperplane. Note that the hyperplane may not

Remark

Note that the number of those halfspaces may be infinite and even

uncountable.

4.3 Separating hyperplane theorem



separate these two sets strictly.

Theorem (Separating hyperplane theorem)

Let C and D be two disjoint convex sets. Then there exists a hyperplane

{x ∣ wTx + b = 0, w ≠ 0} separating C and D, namely, for all x ∈ C,

wTx + b ≤ 0 and for all x ∈ D, wTx + b ≥ 0.

Proof

Consider the set

C − D ≜ {u − v ∣ u ∈ C, v ∈ D} .

It suffices to separates C − D and {0}. This is because, if there exists a

hyperplane w ≠ 0 such that ∀x ∈ C − D, wTx ≤ 0. Then for all u ∈ C and

v ∈ D, we have wTu ≤ wTv. Finally, let b = − supu∈C wTu.

Case 1: 0 ∉ ∂ (C − D). By the corollary in Section 4.1, there is a

hyperplane separating {0} and cl (C − D).

Case 2: 0 ∈ ∂ (C − D). Applying the supporting hyperplane theorem, we

can find a supporting hyperplane for C − D at 0, which separates {0} and

C − D.

4.4 Farkas’ lemma



We now present an application of the separating hyperplane theorem. This lemma

will help us prove the strong duality in Lecture 8.

Recall the conic combination and the cone hull.

The two sets can also be understood in the following ways:

Theorem (Farkas' lemma)

Let A ∈ Rn×m, b ∈ Rn. Then exactly one of the following sets is empty:

1. {x ∈ Rm ∣ Ax = b, x ≥ 0};

2. {y ∈ Rn ∣ ATy ≤ 0, bTy > 0}.

1. The first set is non-empty means that b locates in a cone hull of {a1, … , am}:

Let A = (a1, … , am). If there exists x ≥ 0 such that Ax = b, then

b = x1a1 + ⋯ + xmam ∈ cone(a1, … , am).

2. The second set is non-empty means that there exists y ∈ Rn such that the

hyperplane {x ∣ yTx = 0} separates b and the column vectors of A.

The Farkas’ lemma tells us there exists a separating hyperplane passing

through 0 unless b ∈ cone(a1, … , am).

Proof

First, we prove that if the first set is nonempty, the second one must be empty.

Otherwise, there exist x and y such that:

0 < bTy = (Ax)Ty = xTATy ≤ 0 .

Next, we prove that if the first set is empty, the second one must be nonempty.

It is easy to find a hyperplane to separate cone({a1, … , am}) and b by the

strictly separting hyperplane theorem in Section 4.1. (Why?) Hence, there

exists y and t such that

∀ z ∈ cone(A), zTy + t < 0 and bTy + t > 0 .



The key problem is how to make the separating hyperplane pass through the

original point. Actually, we can show that the hyperplane {z ∣ yTz = 0} is also

a separating hyperplane.

Therefore, the hypeplane {z ∣ yTz = 0} is a desired hyperplane, and the

second set is nonempty in this case.

Overall, exactly one of the two sets must be nonempty whenever the first one

is empty or nonempty.

1. For all ai and λi > 0, λiai ∈ cone(A). Then λia
T

i y + t < 0, which is

equivalent to aT

i y + t/λi < 0. Taking the limit as λi → ∞, it gives

aT

i y ≤ 0.

2. In addition, 0 ∈ cone(A) implies that t < 0. Thus bTy > 0.

Question

Why is cone(A) closed?


