
Consider the LP:

Trivially x1 = x2 = 0 is optimal. How about max 3x1 + 2x2?

It is also easy to see that 3x1 + 2x2 ≤ 13 since

3x1 + 2x2 = 2(x1 + x2) + x1 ≤ 5 × 2 + 3.

In general, given A = (aij) ∈ R
m×n, b ∈ R

m, and the LP constraints Ax ≤ b, x ≥ 0,

we can assign each constraint a coefficient yi as follows:

If yj ≥ 0 and ∑i yiaij ≥ cj for all j, then ∑i yibi is an upper bound, which further

implies that

max
Ax≤b,x≥0

c1x1 + c2x2 + ⋯ + cnxn ≤ min
ATy≥c,y≥0

y1b1 + y2b2 + ⋯ + ymbm .

We want the upper bound as small as possible. Therefore, we would like to solve

the following LP:

which is termed as the dual linear program.

Lecture 8. Duality of Linear Programming

8.1 Primal and dual problems

min 3x1 + 2x2

subject to x1 + x2 ≤ 5 ,
x1 ≤ 3 ,
x1, x2 ≥ 0 .

max c1x1 + c2x2 + ⋯ + cnxn

subject to a11x1 + a12x2 + ⋯ + a1nxn ≤ b1 . y1

a21x1 + a22x2 + ⋯ + a2nxn ≤ b2 . y2

⋮ ⋮
am1x1 + am2x2 + ⋯ + amnxn ≤ bm . ym

min bTy

subject to ATy ≥ c ,
y ≥ 0 ,



We note that the primal problem may have different forms. If the primal has a

constraint aT

i x ≥ bi, then we have the corresponding variable yi ≤ 0 in the dual. If

the primal has a constraint aT

i x = bi, then we have the corresponding variable yi

unconstrained in sign in the dual.

Now we use the form max  cTx, subject to Ax ≤ b, x ≥ 0. By the discussion above,

we know that the optimal value of the dual problem gives an upper bound of the

primal problem. This property is called the weak duality.

Proposition

The dual of the dual is the primal.

Proof

The dual program can be rewritten as:

It is clear that the dual of dual is:

which is equivalent to the primal.

max −bTy

subject to −ATy ≤ −c ,
y ≥ 0 .

min −cTx

subject to −ATx ≥ −b ,
x ≥ 0 ,

Theorem (Weak duality theorem)

If x is feasible for primal and y is feasible for dual, then cTx ≤ bTy.

Proof

Since Ax ≤ b, ATy ≥ c and x, y ≥ 0, we have cTx ≤ yTAx ≤ yTb.

Corollary



However, if the primal problem is infeasible, we cannot conclude that the dual

problem is unbounded below. It is possible that both primal and dual problems are

infeasible.

We’ve already known that any feasible solution of the dual gives an upper to the

primal. The question is that, is there any gap between the optimal value of the

primal and the optimal value of the dual?

If cTx is unbounded above, then the dual problem is infeasible.

Example

Consider the following problem:

Its dual problem is

It is easy to check that both of them are infeasible.

max 2x1 − x2

subject to x1 − x2 ≤ 1 ,
x2 − x1 ≤ −2 ,
x1, x2 ≥ 0 .

min y1 − 2y2

subject to y1 − y2 ≤ 1 ,
y2 − y1 ≤ −2 ,
y1, y2 ≥ 0 .

8.2 Strong duality

Theorem (Strong duality theorem)

If the primal problem has a finite optimal solution x∗, then the dual problem

also has a finite optimal solution y∗ with the same optimal value of the primal.



Now we can complete the following table.

unbounded infeasible ∃ optimal

unbounded × √ ×

infeasible √ √ ×

∃ optimal × × √

The proof of the strong duality is an application of the Farkas’ lemma, which we

have introduced in Lecture 4.

To apply this lemma, we consider the following corollary.

Let C be the cone of column vectors of A. The corollary tells us that either C

Namely, it always holds that cTx∗ = bTy∗.

Theorem (Farkas' lemma)

Let A ∈ R
n×m, b ∈ R

n. Then exactly one of the following sets is empty:

1. {x ∈ Rm ∣ Ax = b, x ≥ 0};

2. {y ∈ R
n ∣ ATy ≤ 0, bTy > 0}.

Corollary

Suppose A ∈ R
m×n and b ∈ R

m. Then exactly one of the followings is true:

1. There exists x ∈ Rn such that Ax ≥ b and x ≥ 0.

2. There exists y ∈ R
m such that ATy ≥ 0, bTy < 0, and y ≤ 0.



intersects the region {x ∈ R
n ∣ x ≥ b}, or there exists a hyperplane

{x ∈ R
n ∣ yTx = 0} strictly separating b and C, where bTy < 0 and y ≤ 0.

We are now ready to prove the strong duality theorem.

Proof of the corollary  

Let A′ = ( ) ∈ Rm×(m+n). Applying the Farkas' lemma to A′ and b, it

gives that exactly one of the followings is true:

Note that item 1 is equivalent to ∃ x ∈ R
n
≥0 such that Ax ≥ b, and item 2 is

equivalent to ATy ≥ 0, y ≤ 0, and bTy < 0. So we are done.

A −I

1. There exists x′ ∈ R
m+n
≥0  such that A′x′ = b;

2. There exists y ∈ R
m such that A′Ty ≥ 0 and bTy < 0.

Proof of the strong duality theorem

Without loss of generality, we assume that the dual problem has an optimal

solution y∗ (instead of the primal problem in the statement). Suppose the

strong duality is not true. Then there does not exist feasible solution x of the

primal such that cTx = bTy∗.

Let γ = bTy∗. It is equivalent to that there does not exists x ∈ Rn
≥0 such that

( )x ≥ ( ) .

Then the corollary of the Farkas' Lemma shows that there exists y ∈ Rm
≤0 and

w ∈ R≤0 such that

( )( ) ≥ 0 , and ( )( ) < 0 .

Now we can claim that y∗ is not an optimal solution to the dual problem,

which contradicts to our assumption. Consider the following two cases.

−A

cT

−b

γ

−AT c
y

w
−bT γ

y

w

Case 1. w = 0. Then we have ( )( ) = −ATy + wc = −ATy and

( )( ) = −bTy + γw = −bTy. Thus, −ATy ≥ 0 and −bTy < 0.

Noting that

AT(y∗ − y) = ATy − ATy ≥ ATy∗ ≥ c , and y∗ − y ≥ y∗ ≥ 0 ,

−AT c
y

w

−bT γ
y

w



In the proof of the corollary of the Farkas’ lemma, we employ the matrix ( ),

which looks similar to the standard form of the linear program. In fact, if we

consider the standard form, the proof of the strong duality can apply the Farkas’

lemma directly, instead of using the corollary.

As an application of the strong duality of linear program, the following theorem

reveals some relations between the optimal solutions to the primal and the dual.

The complementary slackness shows that if the i-th constraint of the primal at the

optimal solution x is not tight, then the corresponding variable yi is 0 in the

optimal solution of the dual, and vice versa. Namely, we have that

{

The proof is concluded by the contradictions in both cases.

y∗ − y is also a feasible solution to the dual problem. But

bT(y∗ − y) < bTy∗.

Case 2. w < 0. Dividing w on both sides, it leads to

( )( ) ≤ 0 , and ( )( ) > 0 ,

which implies that AT(y/w) ≥ c and bT(y/w) < γ. So y/w is a feasible

solution to the dual problem, and better than y∗.

−AT c
y/w

1
−bT γ

y/w

1

A −I

Complementary slackness

Theorem (Complementary slackness)

Suppose x and y are feasible solutions to the primal problem and the dual

problem, respectively. Then x and y are optimal solutions if and only if

yT(b − Ax) = 0 , xT(ATy − c) = 0 .

either yi = 0,  or (Ax)i = bi is tight,
either xj = 0,  or (ATy)j = cj is tight.

Proof

It is clear that cTx ≤ yTAx ≤ yTb. Then x and y are optimal solutions if and

only if cTx = yTb, that is,



We now consider an application of the strong duality in linear programming.

Given an undirected graph G = (V , E), a matching is a set of edges such that no

edge in the set is a loop and no two edges share common vertices, and a vertex

cover is a set of vertices that includes at least one endpoint of every edge. Here are

some examples of matchings and vertex covers.

Clearly the set ∅ is a matching and V  is a vertex cover. So we consider the problem

of maximum matching and minimum vertex cover.

We can write an integer programming formulation of the maximum matching

problem. Any matching M ⊆ E can be represented by |E| variables such that

xe = 1 if the edge e ∈ M and xe = 0 otherwise. Conversely, any assignment to

{xe}e∈E can represent a matching if xe ∈ {0, 1} and ∑(u,v)∈E x(u,v) ≤ 1 for all v ∈ V .

cTx = yTAx , and yTAx = yTb .

8.3 Applications of linear programming duality

Theorem (Kőnig's theorem)

Suppose the graph G = (V , E) is a bipartite graph, namely, V = L ∪ R for

some disjoint L and R, such that E ⊆ L × R. Then the size of its maximum

matching equals the size of its minimum vertex cover.



So the problem can be formulated as

If we relax the constraints xe ∈ {0, 1} to be xe ≥ 0, it can be reformulated as a

linear program

The relaxed problem is called the maximum fractional matching problem.

Analogously, for each vertex v we can assign a variable yv to represent whether v is

in the vertex cover. We relax the constraints yv ∈ {0, 1} again. Then we obtain the

problem of maximum fractional vertex cover as follows

It is easy to verify that the fractional minimum vertex cover problem is the dual of

the fractional maximum matching problem. So we know that for any graph, the

size of the maximum fractional matching equals the size of the minimum fractional

vertex cover.

In a bipartite graph G, we can further show that the size of the maximum

fractional matching equals the size of the maximum matching. Given a fractional

matching {xe}e∈E, consider the subgraph consisting of fractional edges e where

xe ∉ {0, 1}.

max ∑
e∈E

xe

subject to ∀ e ∈ E, xe ∈ {0, 1} ;

∀ v ∈ V , ∑
(u,v)∈E

x(u,v) ≤ 1 .

max ∑
e∈E

xe

subject to ∀ e ∈ E, xe ≥ 0 ;

∀ v ∈ V , ∑
(u,v)∈E

x(u,v) ≤ 1 .

min ∑
v∈V

yv

subject to ∀ v ∈ V , yv ≥ 0 ;
∀ (u, v) ∈ E, yu + yv ≥ 1 .

Case 1. There exists a cycle {v1, v2, … , vℓ}. Note that ℓ is an even number

since G is bipartite. Let

ε = min{1 − x(v1,v2), x(v2,v3), 1 − x(v3,v4), x(v4,v5), … , 1 − x(vℓ−1,vℓ), x(vℓ,v1)}. Then

add ε to x(vi,vi+1) for all odd i, and subtract ε from x(vi,vi+1) for all even i (we

assume that vℓ+1 = v1). The resulting {xe} satisfy all constraints and the size

of the fractional matching remains the same.



We can also show that the size of the minimum fractional vertex cover equals the

size of the minimum vertex cover in any bipartite graph G. Suppose

G = (L ∪ R, E) where L ∩ R = ∅ and E ⊆ L × R. We construct a random vertex

cover C as follows.

Uniformly choose a real number p ∈ [0, 1]. For every u ∈ L, let u ∈ C if 0 ≤ p ≤ yu,

and u ∉ C otherwise. For every v ∈ L, let v ∈ C if 1 − yv ≤ p ≤ 1, and v ∉ C

otherwise. For every u ∈ L and v ∈ R, if (u, v) ∈ E, then yu + yv ≥ 1. So at least

one of {u, v} is in C, which gives that C is a vertex cover.

Now we calculate the expected size of C. For any v ∈ L ∪ R, Pr[v ∈ C] = yv. Thus,

by the linearity of expectation, E[|C|] = ∑v∈L∪R yv, which is the size of the

minimum fractional vertex cover. In addition, there exists p ∈ [0, 1] such that the

vertex cover C ′ constructed by p has the size |C ′| ≤ E[|C|].

Overall, we conclude that in any bipartite graph, the size of the maximum

matching equals the size of the minimum vertex cover.

Case 2. There is no cycles. Then choose any path {v1, … , vℓ}. Note that all

edges e incident to v1 has xe ∈ {0, 1} except x(v1,v2). So xe = 0 if v1 belongs to

e but e ≠ (v1, v2). Similarly, xe = 0 if vℓ belongs to e but e ≠ (vℓ−1, vℓ). Again,

let ε = min{1 − x(v1,v2), x(v2,v3), 1 − x(v3,v4), x(v4,v5), … , x(vℓ−1,vℓ) or 1 − x(vℓ−1,vℓ)}.

Then subtract ε from x(vi,vi+1) for all odd i, and add ε to x(vi,vi+1) for all even i

(we assume that vℓ+1 = v1). Now the resulting {xe} satisfy all constraints and

the size of the fractional matching is nondecreasing.

Each operation decrease the number of fractional edges. So there is no

fractional edges after finite many operations. Consequently, any fractional

matching can be converted into an integral matching that is not worse, which

implies that the size of the maximum fractional matching equals the size of

the maximum matching


