Lecture 9. Descent Method

9.1 Unconstrained optimization problems

We now study the general convex optimization problems. First, we consider the easiest case: no constraints. Namely, the optimization problem is

$$\min_{x\in \mathbb{R}^n} \quad f(x)$$

where f(x) is a convex function.

Recall that, the optimality condition for convex functions is

Theorem

Suppose $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ is a convex function. Then x^* is a *global* minimum point of f iff

$$orall y \in D, \quad
abla f(x^*)^{\mathsf{T}}(y-x^*) \geq 0 \,.$$

In particular, if $D = \mathbb{R}^n$, then x^* is a global minimum point iff $\nabla f(x^*) = \mathbf{0}$.

For convenience, we assume that $D = \mathbb{R}^n$, the objective function f(x) is differentiable and has a finite minimum point x^* (and the minimum value f^*). For some simple cases, we can compute the minimum point by solving the equation $\nabla f(x^*) = 0$. However, in general we cannot expect that closed-form solutions always exist. So we introduce some algorithms to find optimal solutions.

9.2 Descent method

Analogously to the simplex method, we would like to move from a solution x to a better "neighbor" y. The convexity guarantees that

$$f(y) \geq f(x) +
abla f(x)^{\mathsf{T}}(y-x) \,.$$

As we hope y is better, i.e., f(y) < f(x), it requires that $\nabla f(x)^{\mathsf{T}}(y-x) < 0$.

Conversely, we know that if the directional derivative $\nabla f(x)^{\mathsf{T}} v < 0$, then there exists $\varepsilon > 0$ such that $f(x + \varepsilon v) < f(x)$. So $\nabla f(x)^{\mathsf{T}} v < 0$ is a reasonable requirement for the moving direction v.

This inspired the so-called *descent method*: start from a solution \boldsymbol{x}_0 and move to $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + t_k \boldsymbol{v}_k$ iteratively, where t_k is the *step size* to be determined and \boldsymbol{v}_k is the moving direction satisfying $\nabla f(\boldsymbol{x}_k)^{\mathsf{T}} \boldsymbol{v}_k < 0$.

The first question is when we can stop? Of course the ideal stopping criterion is $\nabla f(\boldsymbol{x}_k) = \boldsymbol{0}$ for some k. If so, we know that \boldsymbol{x}_k is indeed a minimum point. However, in practice, we cannot expect this happens. So we usually use stopping criteria such as $\|\nabla f(\boldsymbol{x})\| < \delta$, $|f(\boldsymbol{x}_{k+1}) - f(\boldsymbol{x}_k)| < \delta$, or 1000 iterations.

```
given a starting point \boldsymbol{x}_0
repeat
choose a proper step size t_k
\boldsymbol{x}_{k+1} \leftarrow \boldsymbol{x}_k + t_k \boldsymbol{v}_k where \nabla f(\boldsymbol{x}_k)^{\mathsf{T}} \boldsymbol{v}_k < 0
k \leftarrow k+1
until \|\nabla f(\boldsymbol{x}_k)\| \leq \delta for some sufficiently small \delta
```

The next question is, does this algorithm converge to an optimal solution? In fact, we claim that if we assume that t_k , v_k only depend on x_k , and the choice of t_k satisfies $f(x_{k+1}) < f(x_k)$ for every $x_k \notin \arg \min f(x)$ (note that the optimal solution may not be unique), then the value of objective functions $\{f(x_k)\}$ generated by the descent method converge to the minimum value f^* . (However, $\{x_k*\}$ may not converge and we will give an example later.)

We assume $f(\boldsymbol{x})$ has a finite minimum value f^* , and $f(\boldsymbol{x}_{k+1}) < f(\boldsymbol{x}_k)$. So $f(\boldsymbol{x}_k)$ has a limit as k goes to infinity. Now we would like to show that the limit is f^* .

Let $c = \lim_{k\to\infty} f(\boldsymbol{x}_k)$. Intuitively, if $c > f^*$, as we hope $f(\boldsymbol{x}_{k+1}) < f(\boldsymbol{x}_k)$ as long as $f(\boldsymbol{x}_k) \neq f^*$, we can argue that $f(\boldsymbol{x}_{k+1})$ still decreases too fast even if $f(\boldsymbol{x}_k)$ is sufficiently close to c.

Rigorously, let $S = \{ \boldsymbol{x} \mid c \leq f(\boldsymbol{x}) \leq f(\boldsymbol{x}_0) \}$. Then *S* is a *compact set*, if we assume $f(\infty) = \infty$ for convenience (otherwise *S* may not be necessarily bounded). Let $g(\boldsymbol{x}) : \mathbb{R}^n \to \mathbb{R}$ be a function defined by

$$g(oldsymbol{y}) = f(oldsymbol{y} + t_{oldsymbol{y}}oldsymbol{v}_{oldsymbol{y}}) - f(oldsymbol{y})\,,$$

where t_y , v_y are the step size and the direction we choose if $\boldsymbol{x}_k = \boldsymbol{y}$. That is, $g(\boldsymbol{y})$ measures the difference between $f(\boldsymbol{x}_{k+1})$ and $f(\boldsymbol{x}_k)$ if we set $\boldsymbol{x}_k = \boldsymbol{y}$.

By our assumption $f(\boldsymbol{x}_{k+1}) < f(\boldsymbol{x}_k)$ as long as $f(\boldsymbol{x}_k) \neq f^*$, and noting that $x \in S$ if $f(\boldsymbol{x}) \geq c > f^*$, we conclude that $g(\boldsymbol{x}) > 0$ for all $\boldsymbol{x} \in S$. Applying the extreme value theorem, there exists

$$\delta = \min_{oldsymbol{x} \in S} g(oldsymbol{x}) > 0 \,,$$

which implies that $f(\boldsymbol{x}_{k+1}) \leq f(\boldsymbol{x}_k) - \delta$ for every $\boldsymbol{x}_k \in S$. This contradicts our assumption that there exists $\{\boldsymbol{x}_k\}$ such that $f(\boldsymbol{x}_k) \downarrow c$, and thus completes the proof.

Tip

In fact, it is not necessary to define *g* as the difference between the function values. Analogously to the *amortised analysis* for some data structures, we may define *g* to measure the difference between some *potential function*. So this argument above is a simplified result of the *Lyapunov's global stability theorem in discrete time*.

Suppose $d_{k+1} = \rho(d_k)$ where $\rho : \mathbb{R}^n \to \mathbb{R}$ is a continuous function and $\rho(0) = 0$. If there exists a continuous (Lyapunov) function $\ell : \mathbb{R}^n \to \mathbb{R}$ such that

- 1. $\ell(0) = 0$, $\ell(x) > 0$ for all $x \neq 0$, (*positivity*)
- 2. $\ell(x) \to \infty$ as $||x|| \to \infty$, (radical unboundedness)
- 3. $\ell(\rho(x)) < \ell(x)$ for all $x \neq 0$. (strict decrease)

Then for all $d_0 \in \mathbb{R}^n$, we have $d_k \to 0$ as $k \to \infty$. For our setting, just select an optimal solution \boldsymbol{x}^* , and set $d_k = \boldsymbol{x}_k - \boldsymbol{x}^*$, $\rho(d_k) = d_k + t_k \boldsymbol{v}_k$ and $\ell(d_k) = f(d_k + \boldsymbol{x}^*) - f^*$.

9.3 Gradient descent

We now consider a specific descent method, the gradient descent, where we select $v_k = -\nabla f(x_k)$. Then trivially $\nabla f(x_k)^{\mathsf{T}} v_k < 0$.

There is an advantage to choose $-\nabla f(x_k)$ since it is the direction of *steepest descent*, namely, the value of *f* decreases most rapidly: For any *unit* length vector *v*, the directional derivative $\nabla f(x)^{\mathsf{T}}v$ satisfies

$$\| \| \| \| \| \nabla f(x) \| \leq
abla f(x)^{\mathsf{T}} v \leq \| v \| \cdot \|
abla f(x) \|$$

by the Cauchy-Schwarz inequality, and the equality holds iff $v = \pm
abla f(x) / \|
abla f(x) \|$.

Applying this choice of directions, we obtain the gradient descent method:

$$egin{array}{l} ext{given a starting point } x_0 \ ext{repeat} \ ext{choose a proper step size } t_k \ ext{$x_{k+1} \leftarrow x_k - t_k
abla f(x_k)$} \ ext{$k \leftarrow k+1$} \ ext{until } \|
abla f(x_k) \| \leq \delta ext{ for some sufficiently small } \delta \ egin{array}{l} ext{for some sufficiently small } \delta \ ext{for some sufficiently small } \delta \ eta \ eba \ eta \ eba \$$

We now consider how to choose the step size t_k . Intuitively, the choice of step size can effect the converge rate of the algorithm.

Let's start from an easy example: $f(x) = ax^2$ where a > 0. Since we hope $f(x_{k+1}) < f(x_k)$, it requires that $|x_{k+1}| < |x_k|$, which is equivalent to

$$\left|(1-2at_k)x_k
ight|<\left|x_k
ight|.$$

So $t_k < 1/a$ suffices.

Next, consider the multivariate function $f(\boldsymbol{x}) = \boldsymbol{x}^{\mathsf{T}} Q \boldsymbol{x}$ where $Q \succeq 0$. Now $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - 2t_k Q \boldsymbol{x}_k$. So

$$f(oldsymbol{x}_{k+1}) = oldsymbol{x}_k^\mathsf{T} Q oldsymbol{x}_k + 4 t_k^2 (Q oldsymbol{x}_k)^\mathsf{T} Q (Q oldsymbol{x}_k) - 4 t_k (Q oldsymbol{x}_k)^\mathsf{T} (Q oldsymbol{x}_k)$$
 .

It is sufficient to find a value of t_k such that for all $\boldsymbol{v} \in \mathbb{R}^n$, $t_k \boldsymbol{v}^\mathsf{T} Q \boldsymbol{v} < \boldsymbol{v}^\mathsf{T} \boldsymbol{v}$. We need the following lemma.

Lemma (Rayleigh quotient)

Let $Q \succeq 0$ be a positive semi-definite matrix, and λ_{\min} and λ_{\max} be its minimum and maximum eigenvalues, respectively. Then for all $x \in \mathbb{R}^n$, we have

$$\|\lambda_{\min}\|x\|_2^2 \leq x^{\sf T}Qx \leq \lambda_{\max}\|x\|_2^2$$

Proof

Since $Q \in \mathbb{R}^{n \times n}$ is symmetric, consider its eigen-decomposition $Q = U\Lambda U^{\mathsf{T}}$, where $\Lambda = \operatorname{diag}\{\lambda_1, \ldots, \lambda_n\}$ is the diagonal matrix consisting of Q's eigenvalues, and $U = (u_1, \ldots, u_n)$ consists of corresponding unit-length eigenvectors. It easy to see that $UU^{\mathsf{T}} = I$. Assume $\boldsymbol{x} = U\boldsymbol{y}$ (i.e. $\boldsymbol{y} = U^{-1}\boldsymbol{x} = U^{\mathsf{T}}\boldsymbol{x}$). Then

$$oldsymbol{x}^{\mathsf{T}}Qoldsymbol{x} = oldsymbol{y}^{\mathsf{T}}U^{\mathsf{T}}QUoldsymbol{y} = oldsymbol{y}^{\mathsf{T}}U^{\mathsf{T}}U\Lambda U^{\mathsf{T}}Uoldsymbol{y} = oldsymbol{y}^{\mathsf{T}}\Lambdaoldsymbol{y} = \sum_{i=1}^n \lambda_i y_i^2\,.$$

So clearly we have $\lambda_{\min} \| \boldsymbol{y} \|^2 \leq \boldsymbol{x}^{\mathsf{T}} Q \boldsymbol{x} \leq \lambda_{\max} \| \boldsymbol{y} \|^2$. Moreover, we have

$$\|oldsymbol{y}\|^2 = oldsymbol{y}^{\mathsf{T}}oldsymbol{y} = oldsymbol{x}^{\mathsf{T}}U^{\mathsf{T}}Uoldsymbol{x} = oldsymbol{x}^{\mathsf{T}}oldsymbol{x} = \|oldsymbol{x}\|^2$$

which completes the proof.

Note that in this proof we do not really need $Q \succeq 0$. This lemma holds for all symmetric Q. Applying this lemma, it gives that $t_k < 1/\lambda_{\text{max}}$ suffices in the gradient descent method for quadratic functions.

However, for general cases, we cannot expect a universal condition for t_k . For example, consider the function f(x) = |x|. If we choose t_k to be a constant t > 0, no matter what value t is, the algorithm does not work as long as $|x_k| < t$.

Question

Under which assumptions can we choose a constant as the step size?

9.4 *L*-smooth functions

We would like to avoid functions similar to |x|, where $\nabla f(x)$ changes too drastically near x^* .

Definition (*Lipschitz continuity*)

A function $f:\mathbb{R}^n
ightarrow\mathbb{R}$ is *L*-Lipschitz, if for all $x,y\in \mathrm{dom}\, f,$

$$\|f(x)-f(y)\|\leq L\|x-y\|$$
 .

We usually use L^2 -norm, unless otherwise specified.

An *L*-Lipschitz function is continuous, but may not be differentiable. Intuitively, for a Lipschitz continuous function, there exists a double cone (white) whose origin can be moved along the graph so that the whole graph always stays outside the double cone.

Example

- f(x) = kx where $x \in \mathbb{R}$ is |k|-Lipschitz.
- $f(\boldsymbol{x}) = \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}$ where $\boldsymbol{x} \in \mathbb{R}^n$ is $\|\boldsymbol{w}\|$ -Lipschitz
- $f(\boldsymbol{x}) = Q \boldsymbol{x}$ where $\boldsymbol{x} \in \mathbb{R}^n$ is $\lambda_{\max} (Q^{\mathsf{T}} Q)^{1/2}$ -Lipschitz, since

$$egin{aligned} \|f(oldsymbol{x})-f(oldsymbol{y})\| &= \|Q(oldsymbol{x}-oldsymbol{y})\| = ig((oldsymbol{x}-oldsymbol{y})^{\mathsf{T}}Q^{\mathsf{T}}Q(oldsymbol{x}-oldsymbol{y})ig)^{1/2} \ &\leq \lambda_{ ext{max}}(Q^{\mathsf{T}}Q)^{1/2}\|oldsymbol{x}-oldsymbol{y}\| \end{aligned}$$

by the bound for the Rayleigh quotient. In particular, if Q is symmetric,

$$\lambda_{ ext{max}}(Q^{\mathsf{T}}Q)^{1/2} = \max\{|\lambda_{ ext{min}}(Q)|, |\lambda_{ ext{max}}(Q)|\}\,.$$

Recall that we hope $\nabla f(x)$ does not change rapidly. So we define the following notion of "smoothness".

Definition (Smoothness)

A function $f : \mathbb{R}^n \to \mathbb{R}$ is *L*-smooth if ∇f if *L*-Lipschitz, i.e., for all x, y,

$$\|
abla f(x) -
abla f(y)\| \leq L \|x-y\|$$
 .

Example

$$f(\boldsymbol{x}) = \boldsymbol{x}^{\mathsf{T}} Q \boldsymbol{x}$$
 with $Q \succeq 0$ is $2\lambda_{\max}(Q)$ -smooth $(\nabla f(\boldsymbol{x}) = 2Q \boldsymbol{x})$.

We use the notation $A \succeq B$ if $A - B \succeq 0$. Then we have the following equivalent definitions.

Lemma

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is a twice differentiable function. Then f is L-smooth iff $-LI_n \preceq \nabla^2 f(\boldsymbol{x}) \preceq LI_n$ for all $\boldsymbol{x} \in \mathbb{R}^n$, where I_n is the $n \times n$ identity matrix. Namely, for all $\boldsymbol{x} \in \mathbb{R}^n$, $|\lambda_i(\nabla^2 f(\boldsymbol{x}))| \leq L$, where $\lambda_1, \ldots, \lambda_n$ are n eigenvalues.

Note that if $f : \mathbb{R} \to \mathbb{R}$, we can easily prove the " \Leftarrow " direction since the mean value theorem gives that f'(x) - f'(y) = f''(z)(x - y) for some *z*. However, there is no such theorem for vector-valued functions.

Proof ~

" ⇐= " direction. We would like to restrict the vector-valued function ∇*f* to a line. Fix any *x*, *y* ∈ ℝⁿ. Let φ : [0, 1] → ℝ be a function defined by

$$arphi(t) = ig\langle
abla f(oldsymbol{y}) -
abla f(oldsymbol{x}),
abla f(oldsymbol{x} + t(oldsymbol{y} - oldsymbol{x}))ig
angle \,.$$

Then, $\varphi(1) = \langle \nabla f(\boldsymbol{y}), \nabla f(\boldsymbol{y}) - \nabla f(\boldsymbol{x}) \rangle$ and $\varphi(0) = \langle \nabla f(\boldsymbol{x}), \nabla f(\boldsymbol{y}) - \nabla f(\boldsymbol{x}) \rangle$. By the mean value theorem, there exists $t \in [0, 1]$ such that $\varphi(1) - \varphi(0) = \varphi'(t)$. Note that

$$egin{aligned} arphi'(t) &= ig\langle
abla f(oldsymbol{y}) -
abla f(oldsymbol{x}), \,
abla^2 f(oldsymbol{x} + t(oldsymbol{y} - oldsymbol{x}))(oldsymbol{y} - oldsymbol{x}) \ &\leq \|
abla f(oldsymbol{y}) -
abla f(oldsymbol{x})\| \cdot \|
abla^2 f(oldsymbol{x} + t(oldsymbol{y} - oldsymbol{x}))(oldsymbol{y} - oldsymbol{x})| \ & \leq \|
abla f(oldsymbol{y}) -
abla f(oldsymbol{x})\| \cdot \|
abla^2 f(oldsymbol{x} + t(oldsymbol{y} - oldsymbol{x}))(oldsymbol{y} - oldsymbol{x})| \ & \leq \|
abla f(oldsymbol{y}) -
abla f(oldsymbol{x})\| \cdot \|
abla^2 f(oldsymbol{x} + t(oldsymbol{y} - oldsymbol{x}))(oldsymbol{y} - oldsymbol{x})| \ & \leq \| abla f(oldsymbol{x}) -
abla f(oldsymbol{x})\| \cdot \|
abla^2 f(oldsymbol{x} + t(oldsymbol{y} - oldsymbol{x}))(oldsymbol{y} - oldsymbol{x})| \ & \leq \| abla f(oldsymbol{x}) - oldsymbol{x} f(oldsymbol{x})\| \cdot \|
abla^2 f(oldsymbol{x} + t(oldsymbol{y} - oldsymbol{x}))(oldsymbol{y} - oldsymbol{x})| \ & \leq \| abla f(oldsymbol{x}) - oldsymbol{x} f(oldsymbol{x}) + oldsymbol{x} f(oldsymbol{x}) - oldsymbol{x} f(oldsymbol{x}) + oldsymbol{x} f(oldsymbol{x}) - oldsymbol{x} f(o$$

by the Cauchy-Schwarz inequality. It implies that

$$egin{aligned} \|
abla f(oldsymbol{y}) -
abla f(oldsymbol{x})\|^2 &= arphi(1) - arphi(0) \ &\leq \|
abla f(oldsymbol{y}) -
abla f(oldsymbol{x})\| \cdot \|
abla^2 f(oldsymbol{x} + t(oldsymbol{y} - oldsymbol{x}))(oldsymbol{y} - oldsymbol{x})\|\,, \end{aligned}$$

which further gives that

$$\|
abla f(oldsymbol{y}) -
abla f(oldsymbol{x})\| \leq \|
abla^2 f(oldsymbol{x} + t(oldsymbol{y} - oldsymbol{x}))(oldsymbol{y} - oldsymbol{x})\| \leq L \|oldsymbol{y} - oldsymbol{x}\|$$
 .

The last inequality follows from the third example of Lipschitz functions.

" ⇒ " direction. Fix any *x*, *v* ∈ ℝⁿ. Let ψ : ℝ_{≥0} → ℝ be a function defined by

$$\psi(t) = \left\langle
abla f(oldsymbol{x} + toldsymbol{v}), \, oldsymbol{v}
ight
angle .$$

Then, by the Cauchy-Schwarz inequality and the L-smoothness, we have

$$egin{aligned} |\psi(t)-\psi(0)|&=\left|\langle
abla f(oldsymbol{x}+toldsymbol{v})-
abla f(oldsymbol{x}),\,oldsymbol{v}
ight|\ &\leq \|
abla f(oldsymbol{x}+toldsymbol{v})-
abla f(oldsymbol{x})\|\cdot\|v\|\ &\leq tL\|v\|^2\,, \end{aligned}$$

which further gives that $\left|\frac{\psi(t)-\psi(0)}{t}\right| \leq L \|\boldsymbol{v}\|^2$. Taking the limit $t \to 0$ on both sides, and applying the chain rule, we obtain that

$$\left|oldsymbol{v}^{\mathsf{T}}
abla^{2}f(oldsymbol{x})oldsymbol{v}
ight|=\left|\psi^{\prime}(0)
ight|\leq L\|oldsymbol{v}\|^{2}$$
 .

Thus, $-L\boldsymbol{I}_n \preceq \nabla^2 f(\boldsymbol{x}) \preceq L\boldsymbol{I}_n$.

An *L*-smooth functions may be not convex. If f is further convex, all absolute values are not necessary.

Lemma

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is a differentiable function. Then f is L-smooth iff for all $x, y \in \mathbb{R}^n$,

$$\left|f(oldsymbol{y})-f(oldsymbol{x})-\langle
abla f(oldsymbol{x}),\,oldsymbol{y}-oldsymbol{x}
ight
angle\leqrac{L}{2}\|oldsymbol{y}-oldsymbol{x}\|^2\,.$$

Recall that f is convex iff $f(\boldsymbol{y}) - f(\boldsymbol{x}) - \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle \ge 0$, which shows that f is underestimated by an affine function. Now, if f is *L*-smooth, it is overestimated by

a quadratic function.

Proof ~

• " \Leftarrow " direction. Fix $\boldsymbol{x} \in \mathbb{R}^n$. Define

$$egin{aligned} g_1(oldsymbol{y}) &= f(oldsymbol{y}) - f(oldsymbol{x}) - \langle
abla f(oldsymbol{x}), \, oldsymbol{y} - oldsymbol{x}
angle + rac{L}{2} \|oldsymbol{y} - oldsymbol{x}\|^2\,, \ g_2(oldsymbol{y}) &= f(oldsymbol{y}) - f(oldsymbol{x}) - \langle
abla f(oldsymbol{x}), \, oldsymbol{y} - oldsymbol{x}
angle - rac{L}{2} \|oldsymbol{y} - oldsymbol{x}\|^2\,. \end{aligned}$$

Note that for all $\boldsymbol{y} \in \mathbb{R}^n$, $g_2(\boldsymbol{y}) \leq 0 \leq g_1(\boldsymbol{y})$, and $g_1(\boldsymbol{x}) = g_2(\boldsymbol{x}) = 0$. So \boldsymbol{x} is a local minimum point of g_1 , which gives that $\nabla^2 g_1(\boldsymbol{x}) \succeq 0$. Since $\nabla^2 g_1(\boldsymbol{y}) = \nabla^2 f(\boldsymbol{y}) + L \boldsymbol{I}_n$, we conclude that $\nabla^2 f(\boldsymbol{x}) \succeq -L \boldsymbol{I}_n$. Similarly, \boldsymbol{x} is a local maximum point of g_2 , and thus $\nabla^2 g_2(\boldsymbol{x}) = \nabla^2 f(\boldsymbol{x}) - L \boldsymbol{I}_n \preceq 0$. • " \Longrightarrow " direction. Fix $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$. Let

$$h(heta) = f(oldsymbol{x} + heta(oldsymbol{y} - oldsymbol{x})) \,.$$

It is clear that $h'(\theta) = \langle \nabla f(\boldsymbol{x} + \theta(\boldsymbol{y} - \boldsymbol{x})), \boldsymbol{y} - \boldsymbol{x} \rangle$, and

$$f(oldsymbol{y}) - f(oldsymbol{x}) = h(1) - h(0) = \int_0^1 h'(heta) \,\mathrm{d} heta$$

Moreover, $\langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle = h'(0) = \int_0^1 h'(0) \,\mathrm{d}\theta$. Therefore, it holds that

$$f(oldsymbol{y}) - f(oldsymbol{x}) - \langle
abla f(oldsymbol{x}), \, oldsymbol{y} - oldsymbol{x}
angle = \int_0^1 h'(heta) - h'(0) \, \mathrm{d} heta \, \mathrm{d}$$

Note that

$$egin{aligned} ighl(h'(heta) - h'(0) iggr| &= |
abla f(oldsymbol{x} + heta(oldsymbol{y} - oldsymbol{x})) -
abla f(oldsymbol{x})), \, oldsymbol{y} - oldsymbol{x} ert \ &\leq \|
abla f(oldsymbol{x} + heta(oldsymbol{y} - oldsymbol{x})) -
abla f(oldsymbol{x}) ert \, oldsymbol{x} - oldsymbol{x} ert \ &\leq heta L \|oldsymbol{y} - oldsymbol{x}\|^2 \,. \end{aligned}$$

We now have

$$ig|\langle f(oldsymbol{y})-f(oldsymbol{x})-
abla f(oldsymbol{x}),\,oldsymbol{y}-oldsymbol{x}
angle|\leq \int_0^1ig|h'(heta)-h'(0)ig|\,\mathrm{d} heta \ \leq \int_0^1 heta L\|oldsymbol{y}-oldsymbol{x}\|^2\,\mathrm{d} heta=rac{L}{2}\|oldsymbol{y}-oldsymbol{x}\|^2\,,$$

which completes the proof.

Recall that, we hope to find the value of the step size t such that $f(\boldsymbol{x}_{k+1}) < f(\boldsymbol{x}_k)$. Now we assume that f is L-smooth. Then

$$egin{aligned} f(oldsymbol{x}_{k+1}) &= f(oldsymbol{x}_k - t \cdot
abla f(oldsymbol{x}_k)) \ &\leq f(oldsymbol{x}_k) - \langle
abla f(oldsymbol{x}_k), \, t \cdot
abla f(oldsymbol{x}_k)
angle + rac{L}{2} \| t \cdot
abla f(oldsymbol{x}_k) \|^2 \ &= f(oldsymbol{x}_k) - t \Big(1 - rac{Lt}{2} \Big) \|
abla f(oldsymbol{x}_k) \|^2 \ &< f(oldsymbol{x}_k) \end{aligned}$$

if we set t < 2/L. In particular, if we choose $t \le 1/L$, it gives the following *descent lemma*.

Lemma (Descent lemma)

For an *L*-smooth differentiable function $f:\mathbb{R}^n \to \mathbb{R}$ (not necessarily convex), and $t \leq 1/L$, we have

$$f(oldsymbol{x}_{k+1}) \leq f(oldsymbol{x}_k) - rac{t}{2} \|
abla f(oldsymbol{x}_k)\|^2 \,.$$