Lecture 9. Descent Method

9.1 Unconstrained optimization problems

We now study the general convex optimization problems. First, we consider the easiest case: no constraints. Namely, the optimization problem is

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

where $f(x)$ is a convex function.
Recall that, the optimality condition for convex functions is

Theorem

Suppose $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function. Then x^{*} is a global minimum point of f iff

$$
\forall y \in D, \quad \nabla f\left(x^{*}\right)^{\top}\left(y-x^{*}\right) \geq 0 .
$$

In particular, if $D=\mathbb{R}^{n}$, then x^{*} is a global minimum point iff $\nabla f\left(x^{*}\right)=\mathbf{0}$.

For convenience, we assume that $D=\mathbb{R}^{n}$, the objective function $f(x)$ is differentiable and has a finite minimum point x^{*} (and the minimum value f^{*}). For some simple cases, we can compute the minimum point by solving the equation $\nabla f\left(x^{*}\right)=0$. However, in general we cannot expect that closed-form solutions always exist. So we introduce some algorithms to find optimal solutions.

9.2 Descent method

Analogously to the simplex method, we would like to move from a solution x to a better "neighbor" y. The convexity guarantees that

$$
f(y) \geq f(x)+\nabla f(x)^{\top}(y-x) .
$$

As we hope y is better, i.e., $f(y)<f(x)$, it requires that $\nabla f(x)^{\top}(y-x)<0$.

Conversely, we know that if the directional derivative $\nabla f(x)^{\top} v<0$, then there exists $\varepsilon>0$ such that $f(x+\varepsilon v)<f(x)$. So $\nabla f(x)^{\top} v<0$ is a reasonable requirement for the moving direction v.

This inspired the so-called descent method: start from a solution \boldsymbol{x}_{0} and move to $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+t_{k} \boldsymbol{v}_{k}$ iteratively, where t_{k} is the step size to be determined and \boldsymbol{v}_{k} is the moving direction satisfying $\nabla f\left(\boldsymbol{x}_{k}\right)^{\top} \boldsymbol{v}_{k}<0$.

The first question is when we can stop? Of course the ideal stopping criterion is $\nabla f\left(\boldsymbol{x}_{k}\right)=\mathbf{0}$ for some k. If so, we know that x_{k} is indeed a minimum point. However, in practice, we cannot expect this happens. So we usually use stopping criteria such as $\|\nabla f(\boldsymbol{x})\|<\delta,\left|f\left(\boldsymbol{x}_{k+1}\right)-f\left(\boldsymbol{x}_{k}\right)\right|<\delta$, or 1000 iterations.

$$
\begin{aligned}
& \text { given a starting point } \boldsymbol{x}_{0} \\
& \text { repeat } \\
& \quad \text { choose a proper step size } t_{k} \\
& \quad \boldsymbol{x}_{k+1} \leftarrow \boldsymbol{x}_{k}+t_{k} \boldsymbol{v}_{k} \text { where } \nabla f\left(\boldsymbol{x}_{k}\right)^{\top} \boldsymbol{v}_{k}<0 \\
& \quad k \leftarrow k+1 \\
& \text { until }\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\| \leq \delta \text { for some sufficiently small } \delta
\end{aligned}
$$

The next question is, does this algorithm converge to an optimal solution? In fact, we claim that if we assume that $t_{k}, \boldsymbol{v}_{k}$ only depend on \boldsymbol{x}_{k}, and the choice of t_{k} satisfies $f\left(\boldsymbol{x}_{k+1}\right)<f\left(\boldsymbol{x}_{k}\right)$ for every $\boldsymbol{x}_{k} \notin \arg \min f(\boldsymbol{x})$ (note that the optimal solution may not be unique), then the value of objective functions $\left\{f\left(\boldsymbol{x}_{k}\right)\right\}$ generated by the descent method converge to the minimum value f^{*}. (However, $\left\{\boldsymbol{x}_{k} *\right\}$ may not converge and we will give an example later.)

We assume $f(\boldsymbol{x})$ has a finite minimum value f^{*}, and $f\left(\boldsymbol{x}_{k+1}\right)<f\left(\boldsymbol{x}_{k}\right)$. So $f\left(\boldsymbol{x}_{k}\right)$ has a limit as k goes to infinity. Now we would like to show that the limit is f^{*}.

Let $c=\lim _{k \rightarrow \infty} f\left(\boldsymbol{x}_{k}\right)$. Intuitively, if $c>f^{*}$, as we hope $f\left(\boldsymbol{x}_{k+1}\right)<f\left(\boldsymbol{x}_{k}\right)$ as long as $f\left(\boldsymbol{x}_{k}\right) \neq f^{*}$, we can argue that $f\left(\boldsymbol{x}_{k+1}\right)$ still decreases too fast even if $f\left(\boldsymbol{x}_{k}\right)$ is sufficiently close to c.

Rigorously, let $S=\left\{\boldsymbol{x} \mid c \leq f(\boldsymbol{x}) \leq f\left(\boldsymbol{x}_{0}\right)\right\}$. Then S is a compact set, if we assume $f(\infty)=\infty$ for convenience (otherwise S may not be necessarily bounded). Let $g(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function defined by

$$
g(\boldsymbol{y})=f\left(\boldsymbol{y}+t_{\boldsymbol{y}} \boldsymbol{v}_{\boldsymbol{y}}\right)-f(\boldsymbol{y}),
$$

where $t_{\boldsymbol{y}}, \boldsymbol{v}_{\boldsymbol{y}}$ are the step size and the direction we choose if $\boldsymbol{x}_{k}=\boldsymbol{y}$. That is, $g(\boldsymbol{y})$ measures the difference between $f\left(\boldsymbol{x}_{k+1}\right)$ and $f\left(\boldsymbol{x}_{k}\right)$ if we set $\boldsymbol{x}_{k}=\boldsymbol{y}$.

By our assumption $f\left(\boldsymbol{x}_{k+1}\right)<f\left(\boldsymbol{x}_{k}\right)$ as long as $f\left(\boldsymbol{x}_{k}\right) \neq f^{*}$, and noting that $x \in S$ if $f(\boldsymbol{x}) \geq c>f^{*}$, we conclude that $g(\boldsymbol{x})>0$ for all $\boldsymbol{x} \in S$. Applying the extreme value theorem, there exists

$$
\delta=\min _{\boldsymbol{x} \in S} g(\boldsymbol{x})>0
$$

which implies that $f\left(\boldsymbol{x}_{k+1}\right) \leq f\left(\boldsymbol{x}_{k}\right)-\delta$ for every $\boldsymbol{x}_{k} \in S$.This contradicts our assumption that there exists $\left\{\boldsymbol{x}_{k}\right\}$ such that $f\left(\boldsymbol{x}_{k}\right) \downarrow c$, and thus completes the proof.

Tip

In fact, it is not necessary to define g as the difference between the function values. Analogously to the amortised analysis for some data structures, we may define g to measure the difference between some potential function. So this argument above is a simplified result of the Lyapunov's global stability theorem in discrete time.
Suppose $d_{k+1}=\rho\left(d_{k}\right)$ where $\rho: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a continuous function and $\rho(0)=0$. If there exists a continuous (Lyapunov) function $\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

1. $\ell(0)=0, \ell(x)>0$ for all $x \neq 0$, (positivity)
2. $\ell(x) \rightarrow \infty$ as $\|x\| \rightarrow \infty$, (radical unboundedness)
3. $\ell(\rho(x))<\ell(x)$ for all $x \neq 0$. (strict decrease)

Then for all $d_{0} \in \mathbb{R}^{n}$, we have $d_{k} \rightarrow 0$ as $k \rightarrow \infty$.
For our setting, just select an optimal solution \boldsymbol{x}^{*}, and set $d_{k}=\boldsymbol{x}_{k}-\boldsymbol{x}^{*}$, $\rho\left(d_{k}\right)=d_{k}+t_{k} \boldsymbol{v}_{k}$ and $\ell\left(d_{k}\right)=f\left(d_{k}+\boldsymbol{x}^{*}\right)-f^{*}$.

9.3 Gradient descent

We now consider a specific descent method, the gradient descent, where we select $v_{k}=-\nabla f\left(x_{k}\right)$. Then trivially $\nabla f\left(x_{k}\right)^{\top} v_{k}<0$.

There is an advantage to choose $-\nabla f\left(x_{k}\right)$ since it is the direction of steepest descent, namely, the value of f decreases most rapidly: For any unit length vector v, the directional derivative $\nabla f(x)^{\top} v$ satisfies

$$
-\|v\| \cdot\|\nabla f(x)\| \leq \nabla f(x)^{\top} v \leq\|v\| \cdot\|\nabla f(x)\|
$$

by the Cauchy-Schwarz inequality, and the equality holds iff $v= \pm \nabla f(x) /\|\nabla f(x)\|$.
Applying this choice of directions, we obtain the gradient descent method:

```
given a starting point \(x_{0}\)
repeat
    choose a proper step size \(t_{k}\)
    \(x_{k+1} \leftarrow x_{k}-t_{k} \nabla f\left(x_{k}\right)\)
    \(k \leftarrow k+1\)
until \(\left\|\nabla f\left(x_{k}\right)\right\| \leq \delta\) for some sufficiently small \(\delta\)
```

We now consider how to choose the step size t_{k}. Intuitively, the choice of step size can effect the converge rate of the algorithm.

Let's start from an easy example: $f(x)=a x^{2}$ where $a>0$. Since we hope $f\left(x_{k+1}\right)<f\left(x_{k}\right)$, it requires that $\left|x_{k+1}\right|<\left|x_{k}\right|$, which is equivalent to

$$
\left|\left(1-2 a t_{k}\right) x_{k}\right|<\left|x_{k}\right| .
$$

So $t_{k}<1 / a$ suffices.
Next, consider the multivariate function $f(\boldsymbol{x})=\boldsymbol{x}^{\top} Q \boldsymbol{x}$ where $Q \succeq 0$. Now $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-2 t_{k} Q \boldsymbol{x}_{k}$. So

$$
f\left(\boldsymbol{x}_{k+1}\right)=\boldsymbol{x}_{k}^{\top} Q \boldsymbol{x}_{k}+4 t_{k}^{2}\left(Q \boldsymbol{x}_{k}\right)^{\top} Q\left(Q \boldsymbol{x}_{k}\right)-4 t_{k}\left(Q \boldsymbol{x}_{k}\right)^{\top}\left(Q \boldsymbol{x}_{k}\right) .
$$

It is sufficient to find a value of t_{k} such that for all $\boldsymbol{v} \in \mathbb{R}^{n}, t_{k} \boldsymbol{v}^{\top} Q \boldsymbol{v}<\boldsymbol{v}^{\top} \boldsymbol{v}$. We need the following lemma.

Let $Q \succeq 0$ be a positive semi-definite matrix, and $\lambda_{\min }$ and $\lambda_{\max }$ be its minimum and maximum eigenvalues, respectively. Then for all $x \in \mathbb{R}^{n}$, we have

$$
\lambda_{\min }\|x\|_{2}^{2} \leq x^{\top} Q x \leq \lambda_{\max }\|x\|_{2}^{2}
$$

Proof

Since $Q \in \mathbb{R}^{n \times n}$ is symmetric, consider its eigen-decomposition $Q=U \Lambda U^{\top}$, where $\Lambda=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ is the diagonal matrix consisting of Q 's eigenvalues, and $U=\left(u_{1}, \ldots, u_{n}\right)$ consists of corresponding unit-length eigenvectors. It easy to see that $U U^{\top}=I$.
Assume $\boldsymbol{x}=U \boldsymbol{y}$ (i.e. $\boldsymbol{y}=U^{-1} \boldsymbol{x}=U^{\top} \boldsymbol{x}$). Then

$$
\boldsymbol{x}^{\top} Q \boldsymbol{x}=\boldsymbol{y}^{\top} U^{\top} Q U \boldsymbol{y}=\boldsymbol{y}^{\top} U^{\top} U \Lambda U^{\top} U \boldsymbol{y}=\boldsymbol{y}^{\top} \Lambda \boldsymbol{y}=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2} .
$$

So clearly we have $\lambda_{\min }\|\boldsymbol{y}\|^{2} \leq \boldsymbol{x}^{\top} Q \boldsymbol{x} \leq \lambda_{\max }\|\boldsymbol{y}\|^{2}$. Moreover, we have

$$
\|\boldsymbol{y}\|^{2}=\boldsymbol{y}^{\top} \boldsymbol{y}=\boldsymbol{x}^{\top} U^{\top} U \boldsymbol{x}=\boldsymbol{x}^{\top} \boldsymbol{x}=\|\boldsymbol{x}\|^{2},
$$

which completes the proof.

Note that in this proof we do not really need $Q \succeq 0$. This lemma holds for all symmetric Q. Applying this lemma, it gives that $t_{k}<1 / \lambda_{\max }$ suffices in the gradient descent method for quadratic functions.

However, for general cases, we cannot expect a universal condition for t_{k}. For example, consider the function $f(x)=|x|$. If we choose t_{k} to be a constant $t>0$, no matter what value t is, the algorithm does not work as long as $\left|x_{k}\right|<t$.

Question

Under which assumptions can we choose a constant as the step size?

9.4 L-smooth functions

We would like to avoid functions similar to $|x|$, where $\nabla f(x)$ changes too drastically near x^{*}.

Definition (Lipschitz continuity)

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is L-Lipschitz, if for all $x, y \in \operatorname{dom} f$,

$$
\|f(x)-f(y)\| \leq L\|x-y\| .
$$

We usually use L^{2}-norm, unless otherwise specified.
An L-Lipschitz function is continuous, but may not be differentiable. Intuitively, for a Lipschitz continuous function, there exists a double cone (white) whose origin can be moved along the graph so that the whole graph always stays outside the double cone.

Example

- $f(x)=k x$ where $x \in \mathbb{R}$ is $|k|$-Lipschitz.
- $f(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}$ where $\boldsymbol{x} \in \mathbb{R}^{n}$ is $\|\boldsymbol{w}\|$-Lipschitz
- $f(\boldsymbol{x})=Q \boldsymbol{x}$ where $\boldsymbol{x} \in \mathbb{R}^{n}$ is $\lambda_{\max }\left(Q^{\top} Q\right)^{1 / 2}$-Lipschitz, since

$$
\begin{aligned}
\|f(\boldsymbol{x})-f(\boldsymbol{y})\| & =\|Q(\boldsymbol{x}-\boldsymbol{y})\|=\left((\boldsymbol{x}-\boldsymbol{y})^{\top} Q^{\top} Q(\boldsymbol{x}-\boldsymbol{y})\right)^{1 / 2} \\
& \leq \lambda_{\max }\left(Q^{\top} Q\right)^{1 / 2}\|\boldsymbol{x}-\boldsymbol{y}\|
\end{aligned}
$$

by the bound for the Rayleigh quotient. In particular, if Q is symmetric,

$$
\lambda_{\max }\left(Q^{\top} Q\right)^{1 / 2}=\max \left\{\left|\lambda_{\min }(Q)\right|,\left|\lambda_{\max }(Q)\right|\right\} .
$$

Recall that we hope $\nabla f(x)$ does not change rapidly. So we define the following notion of "smoothness".

Definition (Smoothness)

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is L-smooth if ∇f if L-Lipschitz, i.e., for all x, y,

$$
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\| .
$$

Example

$f(\boldsymbol{x})=\boldsymbol{x}^{\top} Q \boldsymbol{x}$ with $Q \succeq 0$ is $2 \lambda_{\max }(Q)$-smooth $(\nabla f(\boldsymbol{x})=2 Q \boldsymbol{x})$.

We use the notation $A \succeq B$ if $A-B \succeq 0$. Then we have the following equivalent definitions.

Lemma

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a twice differentiable function. Then f is L-smooth iff $-L \boldsymbol{I}_{n} \preceq \nabla^{2} f(\boldsymbol{x}) \preceq L \boldsymbol{I}_{n}$ for all $\boldsymbol{x} \in \mathbb{R}^{n}$, where \boldsymbol{I}_{n} is the $n \times n$ identity matrix. Namely, for all $\boldsymbol{x} \in \mathbb{R}^{n},\left|\lambda_{i}\left(\nabla^{2} f(\boldsymbol{x})\right)\right| \leq L$, where $\lambda_{1}, \ldots, \lambda_{n}$ are n eigenvalues.

Note that if $f: \mathbb{R} \rightarrow \mathbb{R}$, we can easily prove the " \Longleftarrow " direction since the mean value theorem gives that $f^{\prime}(x)-f^{\prime}(y)=f^{\prime \prime}(z)(x-y)$ for some z. However, there is no such theorem for vector-valued functions.

Proof \checkmark

- " $\Longleftarrow "$ direction. We would like to restrict the vector-valued function ∇f to a line. Fix any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$. Let $\varphi:[0,1] \rightarrow \mathbb{R}$ be a function defined by

$$
\varphi(t)=\langle\nabla f(\boldsymbol{y})-\nabla f(\boldsymbol{x}), \nabla f(\boldsymbol{x}+t(\boldsymbol{y}-\boldsymbol{x}))\rangle .
$$

Then, $\varphi(1)=\langle\nabla f(\boldsymbol{y}), \nabla f(\boldsymbol{y})-\nabla f(\boldsymbol{x})\rangle$ and $\varphi(0)=\langle\nabla f(\boldsymbol{x}), \nabla f(\boldsymbol{y})-\nabla f(\boldsymbol{x})\rangle$. By the mean value theorem, there exists $t \in[0,1]$ such that $\varphi(1)-\varphi(0)=\varphi^{\prime}(t)$. Note that

$$
\begin{aligned}
\varphi^{\prime}(t) & =\left\langle\nabla f(\boldsymbol{y})-\nabla f(\boldsymbol{x}), \nabla^{2} f(\boldsymbol{x}+t(\boldsymbol{y}-\boldsymbol{x}))(\boldsymbol{y}-\boldsymbol{x})\right\rangle \\
& \leq\|\nabla f(\boldsymbol{y})-\nabla f(\boldsymbol{x})\| \cdot\left\|\nabla^{2} f(\boldsymbol{x}+t(\boldsymbol{y}-\boldsymbol{x}))(\boldsymbol{y}-\boldsymbol{x})\right\|
\end{aligned}
$$

by the Cauchy-Schwarz inequality. It implies that

$$
\begin{aligned}
\|\nabla f(\boldsymbol{y})-\nabla f(\boldsymbol{x})\|^{2} & =\varphi(1)-\varphi(0) \\
& \leq\|\nabla f(\boldsymbol{y})-\nabla f(\boldsymbol{x})\| \cdot\left\|\nabla^{2} f(\boldsymbol{x}+t(\boldsymbol{y}-\boldsymbol{x}))(\boldsymbol{y}-\boldsymbol{x})\right\|,
\end{aligned}
$$

which further gives that

$$
\|\nabla f(\boldsymbol{y})-\nabla f(\boldsymbol{x})\| \leq\left\|\nabla^{2} f(\boldsymbol{x}+t(\boldsymbol{y}-\boldsymbol{x}))(\boldsymbol{y}-\boldsymbol{x})\right\| \leq L\|\boldsymbol{y}-\boldsymbol{x}\| .
$$

The last inequality follows from the third example of Lipschitz functions. " \Longrightarrow " direction. Fix any $\boldsymbol{x}, \boldsymbol{v} \in \mathbb{R}^{n}$. Let $\psi: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ be a function defined by

$$
\psi(t)=\langle\nabla f(\boldsymbol{x}+t \boldsymbol{v}), \boldsymbol{v}\rangle .
$$

Then, by the Cauchy-Schwarz inequality and the L-smoothness, we have

$$
\begin{aligned}
|\psi(t)-\psi(0)| & =|\langle\nabla f(\boldsymbol{x}+t \boldsymbol{v})-\nabla f(\boldsymbol{x}), \boldsymbol{v}\rangle| \\
& \leq\|\nabla f(\boldsymbol{x}+t \boldsymbol{v})-\nabla f(\boldsymbol{x})\| \cdot\|v\| \\
& \leq t L\|v\|^{2},
\end{aligned}
$$

which further gives that $\left|\frac{\psi(t)-\psi(0)}{t}\right| \leq L\|\boldsymbol{v}\|^{2}$. Taking the limit $t \rightarrow 0$ on both sides, and applying the chain rule, we obtain that

$$
\left|\boldsymbol{v}^{\top} \nabla^{2} f(\boldsymbol{x}) \boldsymbol{v}\right|=\left|\psi^{\prime}(0)\right| \leq L\|\boldsymbol{v}\|^{2} .
$$

Thus, $-L \boldsymbol{I}_{n} \preceq \nabla^{2} f(\boldsymbol{x}) \preceq L \boldsymbol{I}_{n}$.

An L-smooth functions may be not convex. If f is further convex, all absolute values are not necessary.

Lemma

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a differentiable function. Then f is L-smooth iff for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$,

$$
|f(\boldsymbol{y})-f(\boldsymbol{x})-\langle\nabla f(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle| \leq \frac{L}{2}\|\boldsymbol{y}-\boldsymbol{x}\|^{2} .
$$

Recall that f is convex iff $f(\boldsymbol{y})-f(\boldsymbol{x})-\langle\nabla f(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle \geq 0$, which shows that f is underestimated by an affine function. Now, if f is L-smooth, it is overestimated by
a quadratic function.

$$
f_{2}(y)=f(x)+\nabla f(x)^{T}(y-x)+\frac{L}{2}\|y-x\|_{2}^{2}
$$

Proof \vee

- " $\Longleftarrow "$ direction. Fix $\boldsymbol{x} \in \mathbb{R}^{n}$. Define

$$
\begin{aligned}
& g_{1}(\boldsymbol{y})=f(\boldsymbol{y})-f(\boldsymbol{x})-\langle\nabla f(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle+\frac{L}{2}\|\boldsymbol{y}-\boldsymbol{x}\|^{2} \\
& g_{2}(\boldsymbol{y})=f(\boldsymbol{y})-f(\boldsymbol{x})-\langle\nabla f(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle-\frac{L}{2}\|\boldsymbol{y}-\boldsymbol{x}\|^{2}
\end{aligned}
$$

Note that for all $\boldsymbol{y} \in \mathbb{R}^{n}, g_{2}(\boldsymbol{y}) \leq 0 \leq g_{1}(\boldsymbol{y})$, and $g_{1}(\boldsymbol{x})=g_{2}(\boldsymbol{x})=0$. So \boldsymbol{x} is a local minimum point of g_{1}, which gives that $\nabla^{2} g_{1}(\boldsymbol{x}) \succeq 0$. Since $\nabla^{2} g_{1}(\boldsymbol{y})=\nabla^{2} f(\boldsymbol{y})+L \boldsymbol{I}_{n}$, we conclude that $\nabla^{2} f(\boldsymbol{x}) \succeq-L \boldsymbol{I}_{n}$. Similarly, \boldsymbol{x} is a local maximum point of g_{2}, and thus $\nabla^{2} g_{2}(\boldsymbol{x})=\nabla^{2} f(\boldsymbol{x})-L \boldsymbol{I}_{n} \preceq 0$.

- " \Longrightarrow " direction. Fix $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$. Let

$$
h(\theta)=f(\boldsymbol{x}+\theta(\boldsymbol{y}-\boldsymbol{x})) .
$$

It is clear that $h^{\prime}(\theta)=\langle\nabla f(\boldsymbol{x}+\theta(\boldsymbol{y}-\boldsymbol{x})), \boldsymbol{y}-\boldsymbol{x}\rangle$, and

$$
f(\boldsymbol{y})-f(\boldsymbol{x})=h(1)-h(0)=\int_{0}^{1} h^{\prime}(\theta) \mathrm{d} \theta .
$$

Moreover, $\langle\nabla f(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle=h^{\prime}(0)=\int_{0}^{1} h^{\prime}(0) \mathrm{d} \theta$. Therefore, it holds that

$$
f(\boldsymbol{y})-f(\boldsymbol{x})-\langle\nabla f(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle=\int_{0}^{1} h^{\prime}(\theta)-h^{\prime}(0) \mathrm{d} \theta .
$$

Note that

$$
\begin{aligned}
\left|h^{\prime}(\theta)-h^{\prime}(0)\right| & =\mid \nabla f(\boldsymbol{x}+\theta(\boldsymbol{y}-\boldsymbol{x}))-\nabla f(\boldsymbol{x})), \boldsymbol{y}-\boldsymbol{x} \mid \\
& \leq\|\nabla f(\boldsymbol{x}+\theta(\boldsymbol{y}-\boldsymbol{x}))-\nabla f(\boldsymbol{x})\| \cdot\|\boldsymbol{y}-\boldsymbol{x}\| \\
& \leq \theta L\|\boldsymbol{y}-\boldsymbol{x}\|^{2} .
\end{aligned}
$$

We now have

$$
\begin{aligned}
|\langle f(\boldsymbol{y})-f(\boldsymbol{x})-\nabla f(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle| & \leq \int_{0}^{1}\left|h^{\prime}(\theta)-h^{\prime}(0)\right| \mathrm{d} \theta \\
& \leq \int_{0}^{1} \theta L\|\boldsymbol{y}-\boldsymbol{x}\|^{2} \mathrm{~d} \theta=\frac{L}{2}\|\boldsymbol{y}-\boldsymbol{x}\|^{2},
\end{aligned}
$$

which completes the proof.

Recall that, we hope to find the value of the step size t such that $f\left(\boldsymbol{x}_{k+1}\right)<f\left(\boldsymbol{x}_{k}\right)$. Now we assume that f is L-smooth. Then

$$
\begin{aligned}
f\left(\boldsymbol{x}_{k+1}\right) & =f\left(\boldsymbol{x}_{k}-t \cdot \nabla f\left(\boldsymbol{x}_{k}\right)\right) \\
& \leq f\left(\boldsymbol{x}_{k}\right)-\left\langle\nabla f\left(\boldsymbol{x}_{k}\right), t \cdot \nabla f\left(\boldsymbol{x}_{k}\right)\right\rangle+\frac{L}{2}\left\|t \cdot \nabla f\left(\boldsymbol{x}_{k}\right)\right\|^{2} \\
& =f\left(\boldsymbol{x}_{k}\right)-t\left(1-\frac{L t}{2}\right)\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|^{2} \\
& <f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

if we set $t<2 / L$. In particular, if we choose $t \leq 1 / L$, it gives the following descent lemma.

Lemma (Descent lemma)

For an L-smooth differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (not necessarily convex), and $t \leq 1 / L$, we have

$$
f\left(\boldsymbol{x}_{k+1}\right) \leq f\left(\boldsymbol{x}_{k}\right)-\frac{t}{2}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|^{2} .
$$

