
At the end of the last lecture, we obtained the following lemma on the gradient

descent for smooth functions.

However, it is still not easy to show the convergence rate for the gradient descent.

We now introduce a continuous version of the gradient descent instead, which is

easier to analyse.

Applying the chain rule, f(xt) is decreasing since

d

dt
f(xt) = ⟨∇f(xt) ,

d

dt
xt⟩ = −⟨∇f(xt), ∇f(xt)⟩ ≤ 0 .

Lecture 10. Convergence Rate of Gradient

Descent

10.1 Gradient flow

Lemma (Descent lemma)

For an L-smooth differentiable function f : Rn → R (not necessarily convex),

and η ≤ 1/L, we have

f(xk+1) ≤ f(xk) −
η

2
∥∇f(xk)∥2 .

Definition (Gradient flow)

A gradient flow is a curve x : R → Rn following the direction of steepest

descent of a function. Given a smooth convex function f : Rn → R and a point

x̂ ∈ Rn, the gradient flow of f with initial point x̂ is the solution to the

following differential equation

d

dt
xt = −∇f(xt) , x0 = x̂ .

Here we use the notation xt = x(t) for convenience.



Now we can take the derivative

by convexity. Then integrating both sides, we obtain that

∥xT − x∗∥2 − ∥x0 − x∗∥2 ≤ 2 Tf(x∗) − 2∫
T

0

f(xt) dt ≤ 2 T(f(x∗) − f(xT )) ,

which further gives that

f(xT ) − f(x∗) ≤
∥x0 − x∗∥2 − ∥xT − x∗∥2

2 T
≤

∥x0 − x∗∥2

2 T
.

We compare the gradient descent with the gradient flow. Assume the gradient

descent iterates with a fixed step size η and an initial point x̂, i.e.,

xk+1 = xk − η ∇f(xk) , x0 = x̂ .

For the gradient descent,

xk+1 = xk − ∫
(k+1)η

kη

∇f(xk) dt .

For the gradient flow,

x(k+1)η = xkη − ∫
(k+1)η

kη

∇f(xt) dt .

Intuitively we know that, if ∇f does not change too fast, the gradient descent

approximates the gradient flow.

d

dt
∥xt − x∗∥2 = 2⟨xt − x∗,

d

dt
xt⟩

= −2 ⟨xt − x∗, ∇f(xt)⟩

= 2 ⟨x∗ − xt, ∇f(xt)⟩

≤ 2(f(x∗) − f(xt))

10.2 Convergence of gradient descent with smoothness

Theorem

Suppose f : Rn → R is a convex and L-smooth function. Choose η ≤ 1/L, and

let the gradient descent iterate with a fixed step size η. Then it holds that



If we hope |f(xT ) − f ∗| < ε, we need to run the gradient descent

T =
∥x0−x∗∥2

2εη
= O(1/ε) steps. If the initial point x0 is far from x∗, and ε is

sufficiently small, the gradient descent is slow. Unfortunately, consider the

f(xT ) − f(x∗) ≤
∥x0 − x∗∥2

2 Tη
.

Proof

Analogously to the gradient flow, we calculate ∥xk+1 − x∗∥2 − ∥xk − x∗∥2.

Note that

Similarly, it suffices to bound −2η ⟨xk − x∗, ∇f(xk)⟩+ η2∥∇f(xk)∥2 by

f(xk) − f(x∗). Since η ≤ 1/L, we have

η2∥∇f(xk)∥2 ≤ 2η (f(xk) − f(xk+1))

by the descent lemma. In addition, the convexity of f gives that

−2η ⟨xk − x∗, ∇f(xk)⟩ = 2η ⟨x∗ − xk, ∇f(xk)⟩ ≤ 2η (f(x∗) − f(xk)) .

Thus, we obtain that

Summing over both sides from 0 to T − 1, it implies that

∥xT − x∗∥2 − ∥x0 − x∗∥2 ≤
T

∑
k=1

2η (f(x∗) − f(xk)) ≤ 2Tη (f(x∗) − f(xT )) ,

which is equivalent to

f(xT ) − f(x∗) ≤
∥x0 − x∗∥2 − ∥xT − x∗∥2

2Tη
.

∥xk+1 − x∗∥2 = ⟨xk+1 − x∗, xk+1 − x∗⟩

= ⟨xk − x∗ − η∇f(xk), xk − x∗ − η∇f(xk)⟩

= ∥xk − x∗∥2 − 2η ⟨xk − x∗, ∇f(xk)⟩+ η2∥∇f(xk)∥2 .

∥xk+1 − x∗∥2 − ∥xk − x∗∥2 = −2η ⟨xk − x∗, ∇f(xk)⟩+ η2∥∇f(xk)∥2

≤ 2η (f(x∗) − f(xk)) + 2η (f(xk) − f(xk+1))

= 2η (f(x∗) − f(xk+1)) .



following function

f(x) = {

This function is convex and 1-smooth. Hence xk+1 = xk + η/xk ≤ xk + 1/xk and

the convergence rate of the gradient descent will be very small if x0 = 1.

Recall that, if we run the gradient descent for a quadratic function f(x) = ax2

where a ∈ R>0, it gives that xk+1 = (1 − 2aη)xk and thus f(xk) = a(1 − 2aη)2kx2
0.

Clearly f(xk) converges to the optimal value 0 at an exponential rate.

We now introduce the following definition, which requires the function is a bit

"better" than some quadratic function.

There are some other forms of quadratic functions. Why don’t we choose other

functions such as xTQx or ∥x − y0∥2 for some given y0? In fact, these functions

mentioned can just achieve a similar effect to 
μ

2 ∥x∥2. For example, xTQx is almost

equivalent to λmax(Q)xTx = λmax(Q)∥x∥2. In addition,

− log x , x < e105

−105 , x ⩾ e105
.

Question

Under which assumptions the gradient descent converges rapidly?

10.3 Strongly convex functions

Definition (Strong convexity)

A function f : Rn → R is strongly convex with μ > 0 if f(x) − μ

2 ∥x∥2 is convex.



∥x − y0∥2 = ∥x∥2 + ∥y0∥2

constant

− 2⟨x, y0⟩

don’t affect convexity

.

Hence, all quadratic functions achieve similar effects to ∥x∥.

Recall that, a function is convex iff its hessian matrix is positive semidefinite. The

hessian matrix of f(x) − μ

2 ∥x∥2 is

∇2f(x) −
μ

2
∇2(∥x∥2) = ∇2f(x) −

μ

2
∇2(xTx) = ∇2f(x) − μI .

We also have the following lemma similar to the first order condition for convexity

and smoothness.

 

Lemma

Suppose f : Rn → R is a twice continuously differentiable function. Then f is

μ-strongly convex iff ∇2f(x) ⪰ μIn. Namely, for all x ∈ Rn, λmin(∇2f(x)) ≥ μ.

Lemma

Suppose f : Rn → R is a differentiable function. Then f is μ-strongly convex iff

for all x, y ∈ Rn,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+
μ

2
∥y − x∥2 .

Proof

Let g(x) = f(x) − μ

2 ∥x∥2. By the first order condition for convexity, g(x) is

convex iff for all x, y ∈ Rn,

g(y) ≥ g(x) + ⟨∇g(x), y − x⟩ .

Note that ∇g(x) = ∇f(x) − μx. So it gives that g(x) is convex iff for all

x, y ∈ Rn,

g(y) ≥ g(x) + ⟨∇f(x), y − x⟩− μ⟨x, y − x⟩ .

The last inequality is equivalent to

f(y) −
μ

2
∥y∥2 ≥ f(x) −

μ

2
∥x∥2 + ⟨∇f(x), y − x⟩− μ⟨x, y⟩+ μ⟨x, x⟩ .



As a corollary, above lemma implies that f(y) > f(x) + ∇f(x)T(y − x) for any

x ≠ y. Hence, f is strictly convex.

Recall the property of monotone gradient for convex functions. We have a similar

corollary.

We now establish the convergence of gradient descent with strong convexity. First

consider the gradient flow again. By strong convexity, we can bound the derivative

Rearranging it, we obtain that

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩− μ⟨x, y⟩+
μ

2
∥x∥2 +

μ

2
∥y∥2

= f(x) + ⟨∇f(x), y − x⟩+
μ

2
∥y − x∥2 .

Example

1. An affine functions f(x) = Ax + b can not be strongly convex since it is

not strictly convex.

2. f(x) = − log x can not be strongly convex since f ′(x) = − 1
x

 and

f ′′(x) = 1
x2  and we can not find out such μ when x → 0.

3. f(x) = ax2, a > 0 is 2a-strongly convex.

4. f(x) = x4 is not strongly convex since f ′(x) = 4x3, f ′′(x) = 12x2 and we

can not find such μ > 0.

5. f(x) = xTQx where Q ≻ 0 is strongly convex. Because ∇2f(x) = 2Q, f

is 2λmin(Q)-strongly convex.

Corollary

Suppose f : Rn → R is a differentiable function. Then f is μ-strongly convex iff

for all x, y ∈ Rn,

⟨∇f(x) − ∇f(y), x − y⟩ ≥ μ∥x − y∥2 .

10.4 Convergence of gradient descent with strong

convexity



as follows

For a time-continuous non-negative process ut = u(t), if d
dt

ut = −αut, then we

have ut = u0 exp(−αt). The same result holds if we replace the equality by an

inequality.

Applying the Gronwall’s lemma, we conclude ∥xT − x∗∥2 ≤ ∥x0 − x∗∥2 exp(−2μT )

immediately, which gives an exponential decay rate. Intuitively, as the

discretization version of the gradient flow, the gradient descent for strongly convex

functions should also follow the exponential decay.

d

dt
∥xt − x∗∥2 = 2⟨xt − x∗,

d

dt
xt⟩

= −2 ⟨xt − x∗, ∇f(xt)⟩

= −2 ⟨xt − x∗, ∇f(xt) − ∇f(x∗)⟩

≤ −2μ∥xt − x∗∥2 .

Theorem (Gronwall’s lemma)

For a time-continuous non-negative process ut = u(t), if d
dt

ut ≤ −αtut, then

we have

uT ≤ u0 exp(−∫
T

0

αt dt) .

Theorem

Suppose f : Rn → R is n L-smooth and μ-strongly convex function. Choose

η ≤ 1/L, and let the gradient descent iterate with a fixed step size η. Then it

holds that

∥xT − x∗∥2 ≤ (1 − μη)T ∥x0 − x∗∥2 .

Proof



The function value also has an exponential decay. Since f is L-smooth, we have

f(xT ) − f(x∗) ≤ ⟨∇f(x∗), xT − x∗⟩+
L

2
∥xT − x∗∥2 ,

which gives the following corollary.

For a quadratic function f(x) = 1
2 xTQx where Q ⪰ 0, we already have the

following facts:

Applying the above theorem, if we take the step size η = 1/λmax(Q), {xn} will

converge at an exponential rate of 1 − λmin(Q)

λmax(Q)
 (since x∗ = 0). Recall the in last

lecture, we have shown f(xk+1) < f(xk) as long as η < 2/λmax(Q), which means

that η = 1/λmax(Q) is not necessary for convergence. Since we hope 1 − μη is as

small as possible, we may choose a greater value of η to obtain a better rate.

By strong convex,

where the second inequality is due to the descent lemma

f(xk+1) ≤ f(xk) − η

2 ∥∇f(xk)∥2.

∥xk+1 − x∗∥2 = ⟨(xk − x∗) − η ∇f(xk), (xk − x∗) − η ∇f(xk)⟩

= ∥xk − x∗∥2 + η2∥∇f(xk)∥2 − 2η ⟨∇f(xk), xk − x∗⟩

≤ ∥xk − x∗∥2 + η2∥∇f(xk)∥2 − 2η(f(xk) − f(x∗) +
μ

2
∥xk − x∗∥

= (1 − μη)∥xk − x∗∥2 + η2∥∇f(xk)∥2 − 2η(f(xk) − f(x∗))

≤ (1 − μη)∥xk − x∗∥2 + 2η(f(xk) − f(xk+1)) − 2η(f(xk) − f(x∗)

= (1 − μη)∥xk − x∗∥2 − 2η(f(xk+1) − f(x∗))

≤ (1 − μη)∥xk − x∗∥2

Corollary

f(xT ) − f ∗ ≤
L

2
(1 − μη)T ∥x0 − x∗∥2 .

10.5 Condition number

f(x) is λmin(Q)-strongly convex;

f(x) is λmax(Q)-smooth.



Now let us calculate the optimal convergence rate of f(x). Since ∇f(x) = Qx, we

have

xk+1 = (I − η Q) xk .

Applying the eigen-decomposition Q = UΛU T, where Λ = diag{λ1, λ2, … , λn} and

UU T = I.

Then I − η Q = UΛ′U T where Λ′ = diag{1 − ηλ1, 1 − ηλ2, … , 1 − ηλn}. So

xk = (UΛ′U T)k
x0 = U(Λ′)k

U Tx0 .

Let yk = U Txk. We have

yk = (Λ′)
k
y0 = diag{(1 − ηλ1)k, (1 − ηλ2)k, … , (1 − ηλn)k}y0.

Note that x∗ = arg min f(x) = 0. Thus,

.

We would like to choose η to minimize max {|1 − ηλmin|, |1 − ηλmax|}, which means

η = 2
λmin+λmax

= 2
μ+L

. In this case,

∥xk − x∗∥2 ≤
λmax − λmin

λmax + λmin

2k

∥x0 − x∗∥2 =
L − μ

L + μ

2k

∥x0 − x∗∥2 .

The argument above reveals that for quadratic functions, the convergence rate of

gradient descent depends on ( κ−1
κ+1 )

2
.

∥xk − x∗∥2 = ∥xk∥2 = xT

k xk = xT

k UU Txk

= yT

k yk = ∥yk∥2 =
n

∑
i=1

(1 − ηλi)
2ky2

0,i

≤ max
1≤i≤n

{(1 − ηλi)
2k}∥y0∥2

= (max
1≤i≤n

{1 − ηλi})
2k

∥y0∥2

= max{|1 − ηλmin|, |1 − ηλmax|}2k
∥y0∥2

= max{|1 − ηλmin|, |1 − ηλmax|}2k
∥x0∥2∣ ∣ ∣ ∣Definition (Condition number)

Given an n × n positive definite matrix Q ≻ 0, its condition number is defined

by

κ(Q) =
λmax(Q)

λmin(Q)
≥ 1 .



For nonquadratic functions, we can approximate them locally (near the minimum

point x∗) by the following Taylor series

Hence, in the neighborhood of the minimum point x∗, the convergence rate

depends on ( κ(∇2f(x∗))−1

κ(∇2f(x∗))+1 )
2

. If the condition number of ∇2f(x∗) is large, the results

given by gradient descent with fixed step size cannot converge rapidly.

Here are some well-conditioned and ill-conditioned examples:

Example

These two examples shows that the gradient descent may converge very

slowly when the coefficient matrix has a large condition number.

For Q = ( ), its condition number is 2, so the convergence rate is 1
3 .

1
2 0

0 1

For Q = ( ), its condition number is 100, so the convergence rate

is 99
101 .

1
100 0

0 1

f(x) ≈ f(x∗) + ∇f(x∗)T(x − x∗) +
1

2
(x − x∗)T∇2f(x∗)(x − x∗)

= f(x∗) +
1

2
(x − x∗)T∇2f(x∗)(x − x∗)




