
We have analysed the convergence (and the rate) of the gradient descent with a

fixed step size, where we should choose the step size η ≤ 1/L if the objective

function is L-smooth. However, if the smoothness is difficult to determine, how

can we set the step size?

Note that a convex function restricted to any line is also convex. A naive idea is to

improve the length of step so that the restricted function achieve its minimum

value. Specifically, since xk+1 = xk − ηk∇f(xk) where the step size ηk is to be

determined, we consider the function g(s) = f(xk − s∇f(xk)). It is also a convex

function of s, and f(xk+1) = g(ηk). We can greedily make f(xk+1) as small as

possible, which is to set

ηk = arg min
s

 g(s) = arg min
s

 f (xk − s∇f(xk)) .

This method is called the exact line search.

Lecture 11. Line Search

11.1 Exact line search

Example

Consider f(x) = xTQx + wTx,Q ≻ 0. Let dk = ∇f(xk) = 2Qxk + w. Then, by

definition,

ηk = arg min
s

 f(xk − sdk)

= arg min
s

(f(xk) − 2sdT

kQxk + s2dT

kQdk − swTdk)

= arg min
s

(−sdT

k (2Qxk + w) + s2dT

kQdk)

= arg min
s

(−sdT

k dk + s2dT

kQdk)

=
dT

k
dk

2dT

kQdk

Proposition



In the method of exact line search, we need to find the minimum point of a R → R

convex function. This is equivalent to find the zero points of g(s) if we let

g(s) = f ′ (xk − s∇f(xk)).

Now we introduce some methods to find the zero points. Note that g(s) is an

increasing function, since g(s) is convex. Thus, there is a smart method using

binary search. If g is continuous and we know that there exists s1 < s2 such that

g(s1) < 0 and g(s2) > 0, then we can check whether g((s1 + s2)/2) is zero and

continue partitioning the interval into two parts and updating the left and right

points until finding the zero point.

A better method is to apply the so-called Newton's method. The idea is that given a

value of s = ŝ, we can approximate g(s) locally (near ŝ):

g(s) ≈ g(ŝ) + g′(ŝ)(s − ŝ) .

The zero point of the right hand side is ŝ − g(ŝ)
g′(ŝ)

, which should be a good

approximation of the zero point of g(s) (if the zero point is near ŝ).

Applying the method of exact line search, successive gradient directions are

always orthogonal.

Proof

Let g(s) = f (xk − s∇f(xk)), then ηk = arg mins g(s). By the first-order

necessary condition, we have g′(ηk) = 0, which means

0 = g′(ηk) = ⟨∇f(xk − ηk∇f(xk)), −∇f(xk)⟩ = −⟨∇f(xk+1), −∇f(xk)⟩.

Therefore, −∇f(xk+1) and −∇f(xk) are orthogonal.

Newton’s method to find zero points



The Newton method is to do the approximation iteratively. Namely, we choose an

arbitrary s0 = ŝ and let

sk+1 = sk −
g(sk)

g′(sk)
.

Example (Fast inverse square root)

Given a positive real number x, how to calculate 1
√x

?

Let g(y) = 1
y2 − x. Then g(y) = 0 iff y = 1

√x
. Applying the Newton’s method,

we choose a magic value of y0 and let y1 = y0 ( 3
2 − x

2 y
2
0). It converges to 1

√x

rapidly.

The algorithm is best known for its implementation in 1999 in Quake III

Arena.

Convergence rate of exact line search

Theorem

Suppose f : Rn → R is μ-strongly convex and L-smooth. Let {xk} be the

sequence given by the gradient descent with exact line search. Then

f(xT ) − f ∗ ≤ (1 −
μ

L
)
T

(f(x0) − f ∗) .

Proof

Let g(s) = f (xk − s∇f(xk)). Since f is L-smooth, we have

g(s) ≤ f(xk) − ⟨∇f(xk), s∇f(xk)⟩ +
L

2
∥s∇f(xk)∥2 = f(xk) − s∥∇f(xk)∥2 +

Ls

2

Denote the right hand side by ~g(s). The minimizer of ~g(s) is s = 1/L. Since

https://en.wikipedia.org/wiki/Fast_inverse_square_root
https://en.wikipedia.org/wiki/Quake_III_Arena


If we know that f is L-smooth and set the fixed step size η = 1/L, it is easy to see

that the result of convergence rate is the same as that with exact line search. But

the advantage of the exact line search method is that we do not need to know the

smoothness of f in advance.

In general, it is expensive to calculate the step size in exact line search, and we

usually do not need to know the exact minimizer. It is sufficient to show that the

value of the objective function decreases sufficiently at each step. So we consider a

so-called backtracking line search method.

ηk = arg mins g(s), we have

Moreover, f is μ-strongly convexity, so it holds that

f(x) ≥ f(xk) + ⟨∇f(xk), x − xk⟩ +
μ

2
∥xk − x∥2 .

Denote the right hand side by 
~
f(x). The minimizer of 

~
f(x) is

x = xk − 1
μ

∇f(xk), since ∇
~
f(x) = μ(x − xk) + ∇f(xk). Thus,

Combining (1) and (2), we have f(xk+1) − f(x∗) ≤ (1 − μ

L
) (f(xk) − f(x∗)).

f(xk+1) = min
s

g(s) ≤ min
s

~g(s) = ~g( 1

L
) = f(xk) −

1

2L
∥∇f(xk)∥2 . (1)

f(x∗) ≥
~
f(x) ≥ min

x

~
f(x) =

~
f(xk −

1

μ
∇f(xk))

= f(xk) −
1

μ
∥∇f(xk)∥2 +

1

2μ
∥∇f(xk)∥2

= f(xk) −
1

2μ
∥∇f(xk)∥2 . (2)

11.2 Backtracking line search

Definition (Armijo's rule)

Armijo’s rule is a well-known and widely applied backtracking rule to update

the step size. Given a descending direction dk, and α,β < 1, we first initialize

η = 1 and then update η to βη as long as

f(xk + η dk) > f(xk) + αη⟨∇f(xk), dk⟩.

In particular, if we set dk = −∇f(xk), then ⟨∇f(xk), dk⟩ = −∥∇f(xk)∥2.



The intuition is that, we know f(xk + η dk) ≥ f(xk) + η⟨∇f(xk), dk⟩ by convexity.

If f(xk + η dk) ≤ f(xk) + αη⟨∇f(xk), dk⟩ for some α < 1, we think f(xk + η dk)

decrease by a sufficient amount (then we can get an inequality similar to the

descent lemma f(xk+1) ≤ f(xk) − η

2 ∥∇f(xk)∥2 for gradient descent for L-smooth

functions). Moreover, this requirement is always true if η is sufficiently close to 0,

since f(xk + η dk) ≈ f(xk) + η⟨∇f(xk), dk⟩ if η → 0. Therefore, the update process

stops after a finite number of iterations.

Armijo choose α = β = 1
2 . In the textbook, it suggests α ∈ [0.01, 0.3] and

β ∈ [0.1, 0.8].

We first give a lower bound of the step size. Initially set η = 1 and α ≤ 1
2 . Since f

is L-smooth, we have

if η ≤ 1/L. Thus the update process terminates once we have η ≤ 1/L, which

further implies that η ≥ β/L.

Then, applying the lower bound of η, we give the following result of the

convergence rate.

Convergence rate of backtracking line search

f(xk − η∇f(xk)) ≤ f(xk) − η ⟨∇f(xk), ∇f(xk)⟩ +
Lη2

2
∥∇f(xk)∥2

≤ f(xk) −
η

2
∥∇f(xk)∥2

≤ f(xk) − αη ∥∇f(xk)∥2

Theorem



Suppose f : Rn → R is μ-strongly convex and L-smooth. Let {xk} be the

sequence given by the gradient descent with Armijo’s backtracking line search.

Then

f(xT ) − f ∗ ≤ (1 − min{2μα, 4μα(1 − α)β/L})
T

(f(x0) − f ∗) .


