
Recall that the gradient descent converges slowly if the condition number is large.

For example, consider the function f(x1,x2) = 1
100 x

2
1 + x2

2. At some point (y1, y2),

−∇f(y1, y2) = (− 1
50 y1, −2y2). It locally decreases rapidly but not globally. The

ideal descending direction is d = (−y1, −y2), which can also be written as

d = −( )∇f(y1, y2) = −(∇2f(y1, y2))−1
∇f(y1, y2) .

In general, if f(x) = xTQx where Q ≻ 0, the ideal direction at x = (x1,x2) is

d = −(x1,x2) = −
1

2
Q−1∇f(x) ,

since ∇f(x) = 2Qx.

More generally, recall the Newton's method introduced before for finding roots,

where we use a Taylor series to estimate the objective function. When f(x) is not

quadratic, consider its Taylor approximation

f(x) ≈ f(xk) + ∇f(xk)T(x − xk) +
1

2
(x − xk)T∇2f(xk)(x − xk) .

Denote by g(x) the right hand side. Note that

if ∇2f(xk) is invertible. Thus the minimizer of g(x) is

x = xk − (∇2f(xk))−1
∇f(xk). Then, we let xk+1 = xk − (∇2f(xk))−1

∇f(xk) be

the minimizer of the second-order Taylor series at xk. This method is called the

Newton's method for optimization.

Note that if the objective function is strictly convex, then ∇2f(xk) ≻ 0, which

implies that ∇2f(xk) is invertible and (∇2f(xk))−1
≻ 0. This is because if ∇2f(xk)'s

Lecture 12. Newton’s Method

12.1 Newton’s method for optimization
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eigenvalues λ1,λ2, … ,λn are all positive, their inverse λ−1
1 ,λ−1

2 , … ,λ−1
n  are also

positive. Therefore, (∇2f(xk))−1
≻ 0.

Recall our requirement for the descending direction. We hope ⟨∇2f(xk),d⟩ < 0.

Clearly, if (∇f(xk))−1
≻ 0, d = −(∇2f(xk))−1

∇f(xk) is a descending direction,

since

⟨∇f(xk), d⟩ = −∇f(xk)T(∇2f(xk))−1
∇f(xk) < 0 ,

unless ∇f(xk) = 0.

Intuitively this is not true since we use the second order Taylor series to

approximate the function, but the Taylor series only works locally.

If the second-order Taylor series estimates the value of functions well, then xk+1

given by the Newton's method is the minimum point of the Taylor series and it

should be close to the minimum point of f. But what happens if the Taylor series

doesn't approximates well? Now we consider some "bad" examples.

12.2 Convergence rate of the Newton's method

Question

Does the Newton's method always work well?

Example

Consider the function

f(x) = x sinh−1 −√1 + x2 = x ln(x + √x2 + 1) − √x2 + 1.

If we set xk+1 = xk − f ′(xk)
f ′′(xk)

, then we can show that |xk+1| > |xk| as long as

Its first-order derivative is f ′(x) = sinh−1(x);

Its second-order derivative is f ′′(x) = 1
x2+1 .



The reason why the Newton's method does not converge in this example is that the

second-order derivative of f is close to zero when |x| is large, which yields that the

second-order Taylor series is not a good approximation near the minimum point.

The Taylor series approximates well in the neighborhood of xk, but loses control at

x∗, if |xk − x∗| is large.

However, just keeping |xk − x∗| small is not enough yet. Here is another "bad"

example.

In this example, the reason to failure is that f ′′(x) changes rapidly so the second

order Taylor series cannot approximates f(x) well even in the neighborhood of xk.

We now give some conditions to guarantee the convergence of the Newton’s

method iterates.

|xk| ≥ 4. Thus, the Newton's method does not converge in this example.

Example

Consider the function f(x) = x
4
3 .

In this case, xk+1 = xk −
f ′(xk)
f ′′(xk) = −2xk. Clearly, the Newton's method does

not produce convergent iterates.

Its first-order derivative is f ′(x) = 4
3 x

1
3 ;

Its second-order derivative is f ′′(x) = 4
9 x

− 2
3 .

Definition



Given a twice continuously differentiable function f : Rn → R, we say ∇2f(x)

is M-Lipschitz, if for all x, y ∈ R
n,

∥∇2f(x) − ∇2f(y)∥ ≤ M ⋅ ∥x − y∥2 .

Theorem

Suppose f : Rn → R is a μ-strongly convex function, and ∇2f is M-Lipschitz.

Let {xk} be the iterates generated by the Newton's method. Then

∥xk+1 − x∗∥ ≤
M

2μ
∥xk − x∗∥2 .

Remark

Let yk = M
2μ ∥xk − x∗∥. Then we have yk+1 ≤ y2

k ≤ y2k+1

0 . So if y0 < 1, the

iterates given by the Newton's method converge rapidly (much more rapidly

than what we get for the gradient descent).

This is called the quadratic convergence, or the convergence of order 2.

Proof  

Fix k. Let g(t) = ∇f(x∗ + t(xk − x∗)). Then

g′(t) = (∇2f(x∗ + t(xk − x∗)))(xk − x∗). So applying the Newton–Leibniz



Recall the gradient descent iteration xk+1 = xk − η∇f(xk), where we actually

calculate the minimum point of the following function

f̂(x) = f(xk) + ⟨∇f(xk), x − xk⟩+
1

2η
∥x − xk∥2 ,

and let xk+1 = arg minx f̂(x) be its minimizer to approximate the minimum point

of f(x). In particular, if η ≤ 1/L, f̂(x) is an upper estimation of f(x) by L-

smoothness.

The second order Taylor series locally approximate f(x) well, if f satisfies some

conditions, so the Newton’s method converges rapidly near x∗. However, if x0 is

far from x∗, the Newton’s method loses control of ∥xk − x∗∥. In contrast, L-

smoothness guarantees a global upper bound so gradient descent iterations (with a

fixed step size η ≤ 1/L) always converge, although it does not converge as fast as

Newton’s method in the neighbourhood of x∗.

Note that ∇2f is a n × n matrix if f is a function mapping Rn to R. To describe the

"rapid change" of ∇2f, we need to define a norm of matrices.

formula, we have

∥xk+1 − x∗∥ = ∥xk − x∗ − (∇2f(xk))
−1

∇f(xk)∥

= ∥(∇2f(xk))
−1
(∇2f(xk)(xk − x∗)) − (∇2f(xk))

−1
(∇f(xk) − ∇f(

≤ ∥∇2f(xk)−1∥ ⋅ ∥∇2f(xk)(xk − x∗) − (g(1) − g(0))∥

= ∥∇2f(xk)−1∥ ⋅ ∥g′(1) − ∫
1

0
g′(t) dt∥

≤
1

μ
⋅ ∥∫

1

0
(Dg(1) − Dg(t)) dt∥

≤
1

μ
⋅ ∫

1

0
∥g′(1) − g′(t)∥ dt

=
1

μ
⋅ ∫

1

0

∥(∇2f(xk) − ∇2f(x∗ + t(xk − x∗))) ⋅ (xk − x∗)∥ dt

≤
1

μ
⋅ ∫

1

0
∥∇2f(xk) − ∇2f(x∗ + t(xk − x∗))∥ ⋅ ∥xk − x∗∥ dt

≤
1

μ
∫

1

0
M(1 − t)∥xk − x∗∥ ⋅ ∥xk − x∗∥ dt

=
M

2μ
⋅ ∥xk − x∗∥2 .

Norm of matrices



A simple idea is to view a n × n matrix as a n2-dimensional vector, and applying Lp

-norms. If p = 2, such a norm is called the Frobenius norm.

However, a more natural way is to consider the following definition. We may view

an m × n matrix as a linear map from Rn to Rm. So we can define its operator

norm as follows.

Unless specified in context, we use ∥M∥ to denote the spectral norm. Why do we

call it "spectral norm"?

Definition (Frobenius norm)

The Frobenius norm, sometimes also called the Euclidean norm, is the matrix

norm of an m × n matrix A defined as the square root of the sum of the

absolute squares of its elements, namely,

∥A∥F = (
m

∑
i=1

n

∑
j=1

|Aij|
2)

1/2

.

Definition

Given a norm ∥⋅∥a on Rn and a norm ∥⋅∥b on Rm, the operator norm of an

m × n matrix M is given by

∥M∥a,b = max
v≠0

∥Mv∥b

∥v∥a

= max
∥v∥a=1

∥Mv∥b .

In particular, if ∥⋅∥a and ∥⋅∥b are both L2-norms, the operator norm ∥M∥a,b is

also called the spectral norm.

Proposition

If we use λmax(M) to denote the maximum eigenvalue of M, then

∥Q∥ = √λmax(QTQ) .

In particular, if Q ⪰ 0, then ∥Q∥ = λmax(Q).



The spectrum of a matrix is the set of all its eigenvalues. This proposition shows

that why this norm is called the "spectral" norm.

The advantage to use operator norm is that we usually need the Cauchy-Schwarz

inequality, which is trivially true (by definition) under the operator norm: for all

v ∈ Rn and Q ∈ Rm×n, it holds that

∥Qv∥ ≤ ∥Q∥ ⋅ ∥v∥ .

Unfortunately, Newton’s method does not guarantee descent of the function values

even when the Hessian matrix is positive definite. Similar to the gradient descent

with a step size η, we can modify the Newton’s method to include a small step size

η ∈ (0, 1) instead of η = 1, where the step size η is chosen by a certain line search.

This is called the damped Newton’s method.

Since d = −∇2f(xk)∇f(xk) is a descending direction (by convexity), we claim that

there exists η > 0 such that

f(xk + ηd) < f(x) + αη ⟨∇f(xk), d⟩

with parameter α ∈ (0, 1). Again, applying the backtracking line search, we can

find such η by starting from an initial η > 0 (usually η = 1) and repeating η ← βη

until the above sufficient decrease condition is satisfied.

The convergence of the damped Newton’s method has two phase: damped Newton

phase and quadratically convergent phase. We can show that there exists

δ ∈ (0, μ2

M
) and γ > 0 such that the following holds. Specifically, assuming

0 < δ < min{ μ2

M
, 3(1 − 2α) μ2

M
} and γ = αβ2δ2 μ

L2  for a constant L satisfying

∇2f(x) ⪯ LI for any x ∈ Rn, we have

Proof

We have ∥Qv∥2 = ⟨Qv,Qv⟩ = (Qv)TQv = vTQTQv ≤ λmax(QTQ)∥v∥2, since

QTQ ⪰ 0.

12.3 Damped Newton’s method

Convergence analysis



Another way to control ∥∇2f(x) − ∇2f(y)∥ is to compute the third derivative. For

simplicity, we consider a univariate function f : R → R. If |f ′′′(x)| is bounded then

f ′′(x) is Lipschitz. Previous analysis involves the bound of f ′′(x) and f ′′′(x)

separately. We now introduce another assumption of functions, in which we take

into consideration both f ′′′(x) and f ′′(x) simultaneously.

Moreover, Newton’s method is affinely invariant. Suppose T ∈ R
n×n is nonsingular,

and define f̄(y) = f(Ty). If we use Newton’s method (with the same backtracking

parameters) to minimize f̄, starting from y0 = T −1x0, then we have Tyk = xk for

all k. However, the previous convergence analysis is not affinely independent. In

contrast, the following assumption does not depend on affine changes of

coordinates.

(damped Newton phase) if ∥∇f(xk)∥ ≥ δ, then

f(xk+1) − f(xk) ≤ −γ ;

(quadratically convergent phase) if ∥∇f(xk)∥ < δ, then the backtracking line

search condition is satisfied by selecting η = 1, and

∥∇f(xk+1)∥ ≤
M 2

2μ
∥∇f(xk)∥2 .

12.4 Self-concordant functions

Definition (Self-concordant function)

A convex function f : R → R is self-concordant, if

f ′′′(x) ≤ 2f ′′(x)3/2 ,

or, equivalently, f satisfies

d

dx

1

√f ′′(x)
≤ 1

wherever f ′′(x) > 0 and satisfies f ′′′(0) = 0 elsewhere.

More generally, a multivariate convex function f : Rn → R is self-concordant, if

it is self-concordant along every line in its domain, i.e., the function

g(t) = f(x + tv) is a self-concordant function of t for all x and v. Equivalently,∣ ∣∣ ∣



The self-concordant functions include many of the logarithmic barrier functions

that play an important role in barrier method and interior point method for solving

convex optimization problems.

In fact, the coefficient 2 in the definition is not necessary, and it can be replaced by

any constant κ > 0. The standard choice κ = 2 is to guarantee that − logx is a self-

concordant function.

For strictly convex self-concordant function, we obtain bounds in terms of the

Newton decrement

λ(x) = √∇f(x)T(∇2f(x))
−1

∇f(x) .

There exists constants δ ∈ (0, 1/4] and γ > 0 (only depending on the backtracking

line search parameters α and β) such that the following holds.

f is self-concordant, if

d

dt
∇2f(x + tv)

t=0
= lim

s→0

1

s
(∇2f(x + sv) − ∇2f(x)) ⪯ 2√vT∇2f(x)v ∇2f(x)∣Example

f(x) = − logx is self-concordant, since f ′′(x) = 1
x2  and f ′′′(x) = − 2

x3 .

f(x) = x logx − logx is self-concordant.

(log-barrier for linear inequalities) f(x) = −∑m
i=1 log(bi − aT

i x) on

{x ∣ aT

i x < bi, i = 1, 2, … ,m} is self-concordant.

(log-determinant) f(X) = − log detX on Sn
++ is self-concordant.

f(x, y) = − log(y2 − xTx) on {(x, y) ∣ ∥x∥ ≤ y} is self-concordant.

If f(x) and g(x) are both self-concordant, then f + g is also self-

concordant.

Convergence analysis

(damped Newton phase) If λ(xk) ≥ δ, then

f(xk+1) − f(xk) ≤ −γ ;

(quadratically convergent phase) If λ(xk) < δ, then the backtracking line

search condition is satisfied by selecting η = 1, and

2



λ(xk+1) ≤ 2λ(xk)2 .


