
So far we only consider minimizing differentiable functions. If the objective

function is not differentiable, clearly neither the gradient descent nor the Newton's

method works. In this lecture, we focus on how to solve the optimization problem

for much more families of convex functions. We will generalize a method of

gradient descent named the proximal gradient descent for nondifferentiable

functions.

Recall the gradient descent iteration xk+1 = xk − η ∇f(xk), where we let xk+1 be

the minimum point of

f̂(x) = f(xk) + ⟨∇f(xk), x − xk⟩ +
1
2η

∥x − xk∥2 .

Now we assume f(x) is not differentiable, but f(x) can be divided into two parts:

f(x) = g(x) + h(x)

where g(x) is convex and differentiable, and h(x) is convex but not necessarily

differentiable. Then we define

ĝ(x) = g(xk) + ⟨∇g(xk), x − xk⟩ +
1
2η

∥x − xk∥2

to approximate g(x) and let

xk+1 = arg min
x

 ĝ(x) + h(x)

to approximate the minimum point of f(x) = g(x) + h(x).

Note that

Lecture 13. Proximal Gradient Descent

13.1 Proximal operator and proximal gradient descent

⟨∇g(xk), x − xk⟩ +
1
2η

∥x − xk∥2 =
1
2η

⟨x − xk + η ∇g(xk), x − xk + η ∇g(xk)⟩ −
η

2
∥∇

=
1
2η

∥x − (xk − η ∇g(xk))∥2 −
η

2
∥∇g(xk)∥2

where
η

2 ∥∇g(xk)∥2 is a constant not depending on x (assuming that xk and η are

fixed). So we obtain

xk+1 = arg min
x

 ĝ(x) + h(x) = arg min
x

1
2η

∥x − (xk − η ∇g(xk))∥2 + h(x) .

Here xk − η ∇g(xk) is the gradient descent iteration if we would like to optimize

only g(x). So roughly speaking, after adding h(x), we hope xk+1 locate near the

local minimum of g, and not make h large.

Now we define the proximal operator as follows.

Then we can rewrite the proximal gradient descent method as

Definition (Proximal operator)

Given y ∈ Rn, let

proxh(y) = arg min
x∈Rn

1
2

∥x − y∥2 + h(x) .

xk+1 = arg min
x

1
2η

∥x − (xk − η ∇g(xk))∥2 + h(x)

= arg min
x

1
2

∥x − (xk − η ∇g(xk))∥2 + η h(x)

= proxηh(xk − η ∇g(xk)) .

Tip

Another viewpoint of the proximal operator is a discretization of the gradient

flow. Recall the gradient flow

d
dt

X(t) = −∇f(X(t)) .

The forward discretization (the forward Euler method) is the gradient descent,

where

xk+1 = xk − η ∇f(xk) .

Similarly, we can also try to discretize it in a backward form (the backward

Euler method):

xk+1 = xk − η ∇f(xk+1) .

The key is that we need to decompose f(x) = g(x) + h(x) properly. Clearly we can

set g(x) ≡ 0 and h(x) ≡ f(x). But this decomposition is meaningless since wo do

not know how to compute the proximal operator at all.

Fortunately for some important problems we have a "good" decomposition. For

example, we consider the problem of linear progression avoiding overfitting.

Suppose we have a data set {(x1, y1), … , (xm, ym)} where xi ∈ Rn and yi ∈ R and

we assume that yi = βTxi for some β ∈ Rn.

Let

X = ∈ Rm×n and y = ∈ Rm .

We can compute coefficients β∗ by solving the following optimization problem

(least square method)

β∗ = arg min
β∈Rn

1
2

∥y − Xβ∥2

However, there are usually some redundant coefficients that may cause overfitting.

So we hope to add some constraints, such as, the number of nonzero entries in β∗

is at most k. Unfortunately this problem is not a convex optimization after adding

this constraint (why?). We still need to approximate it. One idea is to use the

However, the iteration becomes difficult since we need to find the point xk+1

satisfying above equations. Actually, this is what the proximal operator is

doing. Let

xk+1 = proxηf(xk) = arg min
x

1
2

∥x − xk∥2 + ηf(x) .

Then we have xk+1 − xk + η ∇f(xk+1) = 0, since

LHS = ∇(1
2

∥x − xk∥2 + ηf(x))
x=xk+1

= 0 .∣13.2 LASSO

⎛⎜⎝xT
1

xT

2

⋮

xT
m

⎞⎟⎠ ⎛⎜⎝y1

y2

⋮
ym

⎞⎟⎠

following approximation

β∗ = arg min
β∈Rn

1
2

∥y − Xβ∥2
2 + λ∥β∥1

where λ > 0 is a parameter. This method is called LASSO (least absolute shrinkage

and selection operator).

The objective function f(β) = 1
2 ∥y − Xβ∥2

2 + λ∥β∥1 has a clear decomposition:

g(β) = 1
2 ∥y − Xβ∥2

2 and h(β) = λ∥β∥1. The advantage is that the proximal

operator is easy to compute with respect to this h.

Given γ ∈ Rn, the proximal mapping is

Note that in this optimization, all entries in β are independent, so we can solve this

optimization by solving the following optimization for each entry:

proxh(γ) = arg min
β∈Rn

1
2

∥β − γ∥2 + λ∥β∥1

= arg min
β∈Rn

1
2
((β1 − γ1)2 + ⋯ + (βn − γn)2) + λ(|β1| + ⋯ + |βn|) .

(proxh(γ))
i

= arg min
βi∈R

1
2

(βi − γi)2 + λ|βi|

= arg min
βi

1
2

(βi − γi)2 + λ ⋅ {

= arg min
βi

 β2
i − 2βi ⋅ {

= Sλ(γi) ≜ ,

βi βi ≥ 0
−βi βi < 0

γi − λ βi ≥ 0
γi + λ βi < 0

⎧⎪⎨⎪⎩γi − λ γi > λ

0 |γi| ≤ λ

γi + λ γi < −λ

where Sλ is called the soft thresholding operator.

Finally, recall that g(β) = 1
2 ∥y − Xβ∥2

2, so the iteration of the proximal gradient

descent is

βk+1 = proxηh(βk − η ∇g(βk)) = Sλη(βk − η (−XT(y − Xβk))) .

This algorithm is called the ISTA (iterative soft-thresholding algorithm).

We now show the correctness and convergence of the proximal gradient descent.

Assume that g is L-smooth and set η ≤ 1/L. Sometimes we would write the

proximal gradient descent as the following form

xk+1 = xk − η Gη(xk) ,

where

Gη(x) =
x − proxηh(x − η ∇g(x))

η
.

13.3 Correctness and convergence

We first show that, Gη(xk) = 0 if and only if xk is an minimum point of f(x). A

trivial example is h ≡ 0. Then we have proxηh(x) = x and thus Gη(x) = ∇g(x). So

Gη(x) = 0 if and only if x is a minimizer of f = g. The following theorem asserts

the general cases.

The "only if" direction is easy, since we have

f̂(x) = ĝ(x) + h(x) = g(xk) + ⟨∇g(xk), x − xk⟩ +
1
2η

∥x − xk∥2 + h(x) ≥ g(x) + h(x) =

by L-smoothness of g. It yields that

f(xk+1) ≤ f̂(xk+1) = min
x

 f̂(x) ≤ f̂(xk) = f(xk) .

If f(xk) = f ∗, all inequalities are tight, so f̂(xk) = min f̂(x). However, because h

is convex and ∥x − xk∥2 is strictly convex, f̂ is also strictly convex, and thus has a

unique minimizer xk+1, which gives that xk = xk+1.

Now we would like to show that if xk = xk+1 then f(xk) = f ∗. In other words, for

all x ∈ Rn, f(x) ≥ f(xk). How can we show this? A naive idea is to show that

g(x) ≥ g(xk) and h(x) ≥ h(xk). However this idea looks too good to be true.

A reasonable method is to use convexity. Note that

g(x) ≥ g(xk) + ⟨∇g(xk), x − xk⟩. So we hope

h(x) ≥ h(xk) − ⟨∇g(xk), x − xk⟩ .

This inequality looks like the first order condition for h. Here −∇g performs like

the gradient of h. Since h is not differentiable, we would introduce the notion of

subgradients.

Theorem

In the proximal gradient descent iterations, xk+1 = xk iff f(xk) = f ∗, where

f ∗ is the minimum value of f.

Definition

Let f : Rn → R be a convex function and x ∈ Rn. We say v ∈ Rn is a

subgradient of f at x, denoted by v ∈ ∂f(x), if ∀ y ∈ Rn,

f(y) ≥ f(x) + ⟨v, y − x⟩.

If f is convex, then subgradients always exist (but may not unique). Just consider

the supporting hyperplane of the epigraph of f.

This lemma immediately implies that if xk = xk+1 = proxηh(xk − η ∇g(xk)), then

−∇g(xk) ∈ ∂h(xk). Thus

∀ x ∈ R
n, f(x) = g(x) + h(x) ≥ g(xk) + ⟨∇g(xk), x − xk⟩ + h(xk) − ⟨∇g(xk), x − xk

Lemma

If z = proxηh(y), then y−z
η

∈ ∂h(z).

Proof of the Lemma

By the definition of z, we have that for all x ∈ Rn,

1
2η

∥x − y∥2 + h(x) ≥
1
2η

∥z − y∥2 + h(z) .

Our goal is to show that for all x ∈ Rn, h(x) ≥ h(z) + 1
η
⟨y − z, x − z⟩.

For the sake of contradiction, assume that there exists w ∈ Rn such that

h(w) < h(z) + 1
η
⟨y − z, w − z⟩. Define

δ =
h(z) − h(w) + 1

η
⟨y − z , w − z⟩

∥w − z∥
> 0 .

Then h(w) = h(z) + 1
η
⟨y − z, w − z⟩ − δ∥w − z∥.

Let θ ∈ (0, 1) and x = θw + (1 − θ)z. By convexity we have

Since

∥x − y∥2 = ∥x − z∥2 + ∥z − y∥2 + 2⟨x − z, z − y⟩ ,

h(x) ≤ θh(w) + (1 − θ)h(z)

= h(z) +
θ

η
⟨y − z , w − z⟩ − θδ∥w − z∥

= h(z) +
1
η

⟨y − z , x − z⟩ − δ∥x − z∥ .

Finally, we present the results of convergence rate.

it follows that

if ∥x − z∥ is sufficiently small (< 2δη). This contradicts to the definition of z.

1
2η

∥x − y∥2 + h(x) =
1
2η

∥x − z∥2 +
1
2η

∥y − z∥2 +
1
η

⟨x − z, z − y⟩ + h(x)

≤
1
2η

∥x − z∥2 +
1
2η

∥y − z∥2 + h(z) − δ∥x − z∥

<
1
2η

∥z − y∥2 + h(z)

Theorem

Suppose g is L-smooth and we set η ≤ 1/L. Then we have

f(xT) − f ∗ ≤
∥x0 − x∗∥2

2 Tη
.

If g is further μ-strongly convex, then

∥xk+1 − x∗∥2 ≤ (1 − μη)∥xk − x∗∥2

If L-smoothness is unknown, we can use the exact/backtracking line search,

and the results to the convergence rate are also the same as the rate of

gradient descent.

