
Consider an optimization problem

We can reformulate the Lagrange condition in a compact form. We define the

Lagrangian function as

L(x, λ) = f(x) + λTg(x) = f(x) + λ1g1(x) + ⋯ + λmgm(x) .

The Lagrange condition shows that if x∗ is regular and local minimum, then there

exists λ∗ such that

∇f(x∗) + (λ∗)Tg′(x∗) = ∇f(x∗) + λ∗
1∇g1(x∗) + ⋯ + λ∗

m∇gm(x∗) = 0 .

Given the definition of Lagrangian, we can rewrite it as

∇xL(x∗, λ∗) = 0 .

Note that

∇λL(x, λ) = (
∂L

∂λ1
, … ,

∂L

∂λm

)
T

= (g1(x), … , gm(x))
T

= 0 ,

if x is feasible. So we can simplify the Lagrange condition as ∇L(x∗, λ∗) = 0.

Conversely, for convex optimization problems, the Lagrange condition (combining

with the feasibility) is sufficient for optimal solutions, which is exactly

∇xL(x∗, λ∗) = 0 and ∇λL(x∗, λ∗) = 0. Thus, we have the following sufficient and

necessary condition for convex optimizations.

Lecture 15. Newton’s Method with Equality

Constraints

15.1 Lagrangian function

min
x∈Rn

f(x)

subject to  gi(x) = 0 , ∀ i = 1, 2, … ,m .

Theorem (Lagrange condition, expressed by Lagrangian)



Note that L is not convex in general (see e.g., f(x) = x2, g(x) = x − 5, and thus

L(x,λ) = x2 + λ(x − 5)), although L is a convex function of x for any fixed λ. So

∇L(x∗, λ∗) = 0 does not imply (x∗, λ∗) is a minimum point of L.

In fact, it is a saddle point in a sense. For feasible x, i.e., g1(x) = ⋯ = gm(x) = 0, it

is easy to see that f(x) = L(x, λ). For infeasible x, there exists gi(x) ≠ 0, so we

have maxλ L(x, λ) → ∞. Therefore, we conclude that

L(x∗, λ∗) = min
x

max
λ

L(x, λ) .

Moreover, for convex optimization problems, the other direction also holds, namely,

we have the following proposition.

For any point x∗ ∈ Rn, it is optimal for the convex optimization problem if and

only if there exists λ∗ ∈ Rm such that

∇L(x∗, λ∗) = 0 .

Theorem

For the Lagrangian L(x, λ) of a convex optimization problem, if

∇L(x∗, λ∗) = 0, then

f(x∗) = L(x∗, λ∗) = max
λ

min
x

L(x, λ) .

Proof

For the first equality, note that if ∇L(x∗, λ∗) = 0, g1(x∗) = ⋯ = gm(x∗) = 0.

Thus f(x∗) = L(x∗, λ∗).

Now we define 
~
L(λ) = minx L(x, λ). Our goal is to show that

L(x∗, λ∗) = maxλ
~
L(λ).

We first show that there exists 
~
λ such that L(x∗, λ∗) =

~
L(

~
λ). In particular, we

show that L(x∗, λ∗) =
~
L(λ∗). Note that 

~
L(λ∗) = minx L(x, λ∗). Since λ∗ is

fixed, L(x, λ∗) is a convex function of x. By the first order condition for

convexity, L(x, λ∗) achieves the minimum value if and only if ∇xL(x, λ∗) = 0

. Since ∇x∗L(x∗, λ∗) = 0, we have 
~
L(λ∗) = L(x∗, λ∗).

Next, we show that for all λ ∈ Rm, 
~
L(λ) ≤ L(x∗, λ∗). Denote by Ω the feasible

set {x ∣ g1(x) = g2(x) = ⋯ = gm(x) = 0}. Then for all x ∈ Ω and all λ,



Later, we will revisit this theorem in the context of general convex optimization

with inequality constraints.

We now consider how to solve convex optimization problems with equality

constraints. Recall the problems with no constraints, where we approximate the

objective function by a quadratic function and minimize the quadratic function. We

would like to apply the same idea. So the first step is to minimize quadratic

functions with equality constraints.

Given Q ∈ Rn×n ⪰ 0, A ∈ Rm×n, w ∈ Rn and b ∈ Rm, consider the following

quadratic problem with equality constrains

We can solve this problem by the Lagrange multiplier method. The Lagrangian

function is

L(x, λ) =
1

2
xTQx + wTx + λT(Ax − b) ,

and the Lagrange condition is

{ .

We know that x∗ is a global minimum if and only (x∗, λ∗) is a solution to the

above system of equations for some λ∗. The above system of equations can be

expressed in the following matrix form:

( )( ) = ( )

KKT system

,

f(x) = L(x, λ). So for all λ ∈ Rm,

~
L(λ) = min

x
L(x, λ) ≤ min

x∈Ω
L(x, λ) = min

x∈Ω
f(x) = f(x∗) = L(x∗, λ∗) .

15.2 Karush-Kuhn-Tucker System

min
x∈Rn

1

2
xTQx + wTx

subject to Ax = b .

∇xL(x, λ) = Qx + w + ATλ = 0

∇λL(x, λ) = Ax − b = 0

Q AT

A 0

x

λ

−w

b




which is called the KKT system and the coefficient matrix ( ) is called the

KKT matrix.

If we further assume Q is invertible (nonsingular), we can solve the KKT system by

Gaussian elimination. Because Q ⪰ 0, it is equivalent to Q ≻ 0.

Left multiplying AQ−1 to the first row and subtracting the second row, we obtain

that

( )( ) = −b − AQ−1w .

So

λ = −(AQ−1AT)
−1

(b + AQ−1w) .

Plugging it into the first row of the original KKT system

Qx + ATλ = −w ,

we have

x = −Q−1w + Q−1AT(AQ−1AT)
−1

(b + AQ−1w) .

Q AT

A 0

Block Gaussian elimination

0 AQ−1AT
x

λ

Remark

Both Q−1 and (AQ−1AT)−1
 must exist in the above calculation. If we assume

Q ≻ 0 and rank(A) = m (A has full row rank), then both of them exist.

First, Q ≻ 0 implies that Q is invertible. Next, if AQ−1AT is not invertible,

there exists v ∈ Rm ≠ 0 such that (AQ−1AT)v = 0. If we left multiple vT to

both sides, we can get

vT (AQ−1AT)v = (ATv)TQ−1(ATv) = 0 .

Since rank(A) = m, its rows are linear independent. So ATv ≠ 0, and

(ATv)TQ−1(ATv) = 0 contradicts to the fact that Q−1 ≻ 0.

The hypothesis of rank(A) = m is reasonable. Otherwise either the problem is

infeasible (e.g., constraints are x1 + x2 = 2 and 2x1 + 2x2 = 3), or there are

redundant constraints (e.g., constraints are x1 + x2 = 2 and 2x1 + 2x2 = 4).



Let f(x) = 1
2 xTQx + wTx where Q ⪰ 0. If there is no constraints, when does f

attains it minimum value? The gradient is Qx + w. So there exists an optimal

solution if and only if the equation Qx + w = 0 has solutions, namely, w is in the

row space of Q. Recall the lemma im(AT) = ker(A)⊥. It is further equivalent to

w ⊥ ker(Q), i.e.,

∀ v ∈ R
n , Qv = 0 ⟹ ⟨w, v⟩ = 0 .

There are two cases:

Now let K be the KKT matrix. Clearly the KKT system is solvable if and only if

( ) ⊥ ker(K).

We first prove the following useful proposition.

But the assumption of Q ≻ 0 is strong. Actually, we only need the KKT matrix

to be invertible.

Nonsingularity of KKT matrices

1. if Q is invertible / nonsingular, there exists a unique solution x;

2. if Q is not invertible, there are infinite many solutions.

−w

b

Lemma

Suppose Q ⪰ 0, then for any vector x, Qx = 0 if and only if xTQx = 0.

Proof

Necessity: Trivial.

Sufficiency: Since Q ⪰ 0, we can do eigendecomposition to Q.

Q = UΛU T = [ξ1u1, … , ξnun] ⋅ =
n

∑
i=1

ξiuiu
T

i ,

where ξi ≥ 0 is the i-th eigenvalue and ui is the i-th eigenvector of Q.

⎛⎜⎝uT

1

uT

2

…

uT

n

⎞⎟⎠



Now we can show that ker(K) = {(v, 0)T ∣ v ∈ ker(Q) ∩ ker(A)}. Note that if

v ∈ ker(Q) ∩ ker(A), then

( )( ) = ( ) = 0 .

Conversely, we claim that if

( )( ) = 0 ,

then u ∈ ker(Q) ∩ ker(A) and v = 0. This linear equation system is equivalent to

Qu + ATv = 0 and Au = 0. Note that by left multiplying uT, we obtain that

uTQu = uT(−ATv) = −(Au)Tv = 0

So Qu = 0 by the above lemma. Moreover, ATv = −Qu = 0, contradicts

rank(A) = m if v ≠ 0.

Then we focus on the case where K is invertible / nonsingular.

Then we have

xTQx =
n

∑
i=1

ξi(u
T

i x)2 = 0,

which means either ξi = 0 or uT

i
x = 0. Hence,

Qx =
n

∑
i=1

ui(ξi(u
T

i x)) = 0 .

Q AT

A 0

v

0

−Qv

Av

Q AT

A 0

u

v

Theorem

KKT matrix is invertible (nonsingular) is equivalent to each one of the

followings:

1. ker(A) ∩ ker(Q) = {0}, or

2. if Ax = 0 and x ≠ 0, then xTQx > 0, or

3. ∀F ∈ Rn×(n−m), if im(F) ≜ {Fv : v ∈ Rn−m} = ker(A), then F TQF ≻ 0.

Proof



Now we consider how to solve general convex optimization with equality

constraints.

Recall Newton's method. Given xk, we do Taylor Expansion of f(x) at xk:

f(x) ≈
~
f(x) ≜ f(xk) + ∇f(xk)T(x − xk) +

1

2
(x − xk)T∇2f(xk)(x − xk)

Let d = x − xk. We have

~
f(x) = f(xk) + ∇f(xk)Td +

1

2
dT∇2f(xk)d

"invertible ⟹  1". If there exists x ≠ 0 such that x ∈ ker(Q) ∩ ker(A),

we have

( ) ⋅ ( ) = 0 ,

which means the KKT matrix is not invertible.

Q AT

A 0

x

0

"1 ⟹  2". If Ax = 0 and x ≠ 0, then x ∈ ker(A) ∖{0}. So Qx ≠ 0. Thus

xTQx ≠ 0 by the above lemma.

"2 ⟹  invertible". By the above lemma, item 2 is equivalent to if Ax = 0

and x ≠ 0 then Qx ≠ 0. So ker(A) ∩ ker(Q) = {0}. Thus ker(K) = {0},

which implies that K is invertible.

"2 ⟹  3". If im(F) = ker(A), for all x ≠ 0, AFx = 0. Note that

dim im(F) = dim rank(A) = n − m. So rank(F) = n − m. Thus Fx ≠ 0 by

linear independence. If Fx ≠ 0 then (Fx)TQ(Fx) = xT(F TQF)x > 0. So

F TQF ≻ 0.

"3 ⟹  2". If im(F) = ker(A), for all x ≠ 0 that Ax = 0, there exists

y ≠ 0 such that x = Fy. Since F TQF ≻ 0, xTQx = yTF TQFy > 0.

15.3 Newton’s method

If there is no constraints, we use xk+1 = arg min
~
f(x) to approximate the

minimum point of f.

If there are constraints Ax − b = 0, we may use xk+1 = arg min
Ax−b=0

~
f(x) to

approximate the minimum point of f under constraints Ax − b = 0.



and the constraints become Ad = 0 since

0 = A(xk + d) − b = Axk + Ad − b .

If xk is a feasible solution, we have Axk − b = 0, hence Ad = 0.

Now for d, the problem becomes

arg min
Ad=0

~
f(x) = f(xk) + ∇f(xk)Td +

1

2
dT∇2f(xk)d

and finally

xk+1 = arg min
Ax−b=0

~
f(x) = xk + arg min

Ad=0

f(xk) + ∇f(xk)Td +
1

2
dT∇2f(xk)d .

The KKT system for optimizing d is

( )( ) = ( )

Note that we use dT∇2f(xk)d ≤ δ as stopping criteria instead of ∥∇f(xk)∥ < δ. This

is because, when the algorithm should terminate, its gradient is not zero (it needs

to follow the Lagrange condition).

Next, let us see some examples of using Newton's method.

∇2f(xk) AT

A 0

d

λ

−∇f(xk)

0

Example 1

Start from ( ). The KKT system at this point is

= .

min f(x1,x2) = x2
1 + x2

2

s. t. x1 + x2 = 1

1

0

⎛⎜⎝2 0 1

0 2 1

1 1 0

⎞⎟⎠ ⎛⎜⎝d1

d2

λ

⎞⎟⎠ ⎛⎜⎝−2

0

0

⎞⎟⎠



Its solution is (d1, d2,λ) = (− 1
2 , 1

2 , −1). The next point x1 is exactly the

optimal solution ( 1
2 , 1

2 ).

Example 2

Start from ( ). The KKT system at this point is

= .

Its solution is (d1, d2,λ) = (−b, b
2 , 0). The next point x1 is also exactly the

optimal solution (0, b
2 ).

In this example, although ∇2f is not invertible, the KKT matrix is still

invertible.

We may check by the criterion introduced above, since

ker(∇2f) = {s ⋅ ( ) : s ∈ R} and ker(A) = {t ⋅ ( ) : t ∈ R}, which satisfy

the previous condition of ker(A) ∩ ker(∇2f) = {0}.

min f(x1,x2) = x2
1

s. t. x1 + 2x2 = b

b

0

⎛⎜⎝2 0 1

0 0 2

1 2 0

⎞⎟⎠⎛⎜⎝d1

d2

λ

⎞⎟⎠ ⎛⎜⎝−2b

0

0

⎞⎟⎠0

1

−2

1

Example 3

Start from ( ). The KKT system at this point is

= .

Its solution is (d1, d2,λ) = (− 1
4 , 1

4 , − e
2 ). The next point x1 is ( 3

4 , 1
4 ). It is not

the optimal solution, but it is also in the right direction.

min f(x1,x2) = ex
2
1+x2

2

s. t. x1 + x2 = 1

1

0

⎛⎜⎝6e 0 1

0 2e 1

1 1 0

⎞⎟⎠⎛⎜⎝d1

d2

λ

⎞⎟⎠ ⎛⎜⎝−2e

0

0

⎞⎟⎠15.4 Correctness and convergence



We will demonstrate the correctness of Newton's method via the following two

propositions:

Now we analyzed the convergence of Newton's method with equality constraints.

In fact, we can convert equality constrained problems to problems without

1. Each time we choose a descending direction: ∇f(xk)Td ≤ 0.

2. The stopping criteria is correct: if dT∇2f(xk)d = 0 then xk is optimal.

Proposition 1

∇f(xk)Td ≤ 0.

Proof

The KKT system can be unfolded as follows:

{

Use dT to left multiple the first line, we can get

dT∇2f(xk)d + dTATλ

=0

= −dT∇f(xk) ,

which yields

dT∇f(xk) = −dT∇2f(xk)d ≤ 0 .

∇2f(xk)d + ATλ = −∇f(xk)

Ad = 0



Proposition 2

If dT∇2f(xk)d = 0 then xk is optimal.

Proof

First, dT∇2f(xk)d = 0 ⇔ ∇2f(xk)d = 0 (due to the lemma proved in Section

15.2). Then by the first equality in KKT system,

∇2f(xk)d

=0

+ ATλ = −∇f(xk) ⟹ ∇f(xk) + ATλ = 0 ⟹ xk is optimal.



constraint. For example, the following problem

is equivalent to min f(x1, 1 − x1).

In general, for an equality-constrainted problem, assume its feasible set is

Ω = {x ∣ Ax = b}. It can be rewritten as Ω = ~x + {Fz ∣ z ∈ Rn−m} for some ~x ∈ Ω

and F ∈ Rn×(n−m), since Ω is an affine set.

Then the original problem is equivalent to the following one:

min
z∈Rn−m

g(z) ≜ f (~x + Fz)

Applying Newton's method to g(z), we will get

Assuming x0 = ~x + Fz0, we have the following proposition, which shows that the

Newton’s method is affinely invariant.

min f(x1,x2)

s. t. x1 + x2 = 1

zk+1 = zk − (∇2g(zk))−1
∇g(zk)

= zk − (∇ (F T∇f(~x + Fzk)))
−1

∇g(zk)

= zk − (F T∇2f(~x + Fzk)F)
−1

∇(F T∇f(~x + Fzk))

Lemma

For all k ≥ 1, xk = ~x + Fzk .

Proof

By induction, assume xk = ~x + Fzk. Let dxk
= xk+1 − xk and dzk = zk+1 − zk.

For all v ∈ Rn, if Av = 0 then ~x + v ∈ Ω, which implies v ∈ im(F), and vice

versa. So im(F) is exactly ker(A).

Note that Adxk
= 0 by Newton's method. Thus there exists u ∈ Rn−m such that

dxk
= Fu.

Moreover, by the first equalty of KKT system, we know that

∇2f(xk)dxk + ATλ = −∇f(xk) ⇒ ∇2f(xk)Fu + ATλ = −∇f(xk) .

Left multiply F T on both sides,

F T∇2f(xk)Fu + F TATλ = −F T∇f(xk)

Since im(F) is ker(A), we have AFz = 0 for all z, which implies that AF = 0.



Therefore, the convergence of {zk} can lead to the convergence of {xk}.

Then, we have

F T∇2f(xk)Fu = −F T∇f(xk) ,

which implies that

u = −(F T∇2f(xk)F)
−1

(F T∇f(xk)) = −(∇2g(zk))
−1

∇g(zk) = dzk .

Hence, dxk = Fu = Fdzk  and

xk+1 = xk + dxk
= xk + Fdzk = ~x + Fzk+1.


