Lecture 16. Karush-Kuhn-Tucker Conditions

16.1 Active constraints in inequality constrained problems

We now consider general optimization problems with inequality constraints

$$
\begin{array}{rll}
\min _{x \in \mathbb{R}^{n}} & f(x) \\
\text { subject to } & g_{i}(x)=0 \quad 1 \leq i \leq m \\
& h_{j}(x) \leq 0 \quad 1 \leq j \leq \ell
\end{array}
$$

First, we study the optimality condition.

Example

$$
\begin{aligned}
\min & x_{1}+x_{2} \\
\text { subject to } & x_{1}^{2}+x_{2}^{2} \leq 2
\end{aligned}
$$

The feasible set of the above problem and the level sets of the objective function can be sketched as follows.

- Is $\binom{\sqrt{2}}{0}$ optimal? No.

It satisfies $x_{1}^{2}+x_{2}^{2}=2$ and is a regular point, but it does not satisfy the Lagrange multiplier condition. So it is even not optimal in the set $\left\{\left(x_{1}, x_{2}\right)^{\top} \mid x_{1}^{2}+x_{2}^{2}=2\right\}$, which is a subset of the feasible set.

- Is $\binom{1}{1}$ optimal? Possible.

At least it is optimal in the set $\left\{\left(x_{1}, x_{2}\right)^{\top} \mid x_{1}^{2}+x_{2}^{2}=2\right\}$ because it is regular and has Lagrange multipliers.

- Is $\binom{-1}{-1}$ optimal? Possible for the same reason as $\binom{1}{1}$.
- Is $\binom{0}{0}$ optimal? No.

It satisfies $x_{1}^{2}+x_{2}^{2}<2$. Then, there exists $\varepsilon>0$, such that for any $\binom{x_{1}}{x_{2}} \in \mathcal{B}(\mathbf{0}, \varepsilon), x_{1}^{2}+x_{2}^{2} \leq 2$. If it is optimal, then it must be a local minimum in $\mathcal{B}(\mathbf{0}, \varepsilon)$. However, $\nabla f(0,0) \neq \mathbf{0}$, which shows that it is not a local minimum.

From this example, we can find that different constraints provide different requirements. We have the following definition to distinguish them.

Definition (Active and inactive constraints)

Given $x_{0} \in \Omega$, if a constraint $h_{j}(x) \leq 0$ is tight at x_{0}, namely, $h_{j}\left(x_{0}\right)=0$, then it is called an active constraint, otherwise it is called an inactive constraint.
Denote by $J\left(x_{0}\right) \triangleq\left\{j \mid h_{j}\left(x_{0}\right)=0\right\}$ the set of indices of active constraints at x_{0}

16.2 Karush-Kuhn-Tucker conditions

If x^{*} is an optimal solution to

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } & g_{i}(x)=0,1 \leq i \leq m \\
& h_{i}(x) \leq 0,1 \leq i \leq \ell
\end{aligned}
$$

then x^{*} is also optimal to

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } & g_{i}(x)=0,1 \leq i \leq m \\
& h_{i}(x)=0,1 \leq i \leq \ell
\end{aligned}
$$

If x^{*} is a regular point, then there exists λ^{*}, μ^{*}, such that

$$
\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right)+\sum_{j \in J\left(x^{*}\right)} \mu_{j}^{*} \nabla h_{j}\left(x^{*}\right)=0
$$

If $j \notin J\left(x^{*}\right)$ (inactive), we set $\mu_{j}^{*}=0$. Then we can rewrite above statement as follows. There exists $\lambda^{*} \in \mathbb{R}^{m}, \mu^{*} \in \mathbb{R}^{k}$, such that

$$
\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right)+\sum_{j=1}^{\ell} \mu_{j}^{*} \nabla h_{j}\left(x^{*}\right)=0
$$

and for any $j, \mu_{j}^{*} h_{j}\left(x^{*}\right)=0$.
Consider the above example, there are two solutions $\binom{-1}{-1}$ and $\binom{1}{1}$ having such multipliers. However, only $\binom{-1}{-1}$ is optimal. We would like to rule out $\binom{1}{1}$.

Note that $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$ and $h\left(x_{1}, x_{2}\right)=x_{1}^{2}+x^{2}-2$. So $\nabla f=\binom{1}{1}$ and $\nabla h=\binom{2 x_{1}}{2 x_{2}}$. Then

- for $\binom{1}{1}, \nabla f-\frac{1}{2} \nabla h=0$.
- for $\binom{-1}{-1}, \nabla f+\frac{1}{2} \nabla h=0$.

We may force $\mu \geq 0$ to rule out $\binom{-1}{-1}$.
Intuitively, the requirement $\mu \geq 0$ is reasonable, since we hope $f(x) \geq f\left(x^{*}\right)$ and $h(x) \leq 0$ in the feasible set, namely, we hope $\nabla h\left(x^{*}\right)$ point outside the feasible set and $\nabla f\left(x^{*}\right)$ point inside it.

Now we can introduce the Karush-Kuhn-Tucker conditions.

Theorem (Karush-Kuhn-Tucker conditions)

Suppose x^{*} is a local minimum point of an inequality constrained problem

$$
\begin{aligned}
\min & f(x) \\
\text { subject to } & g_{i}(x)=0,1 \leq i \leq m \\
& h_{i}(x)=0,1 \leq i \leq \ell
\end{aligned}
$$

If x^{*} is regular for all equality constraints and active inequality constraints, then there exists Lagrange / KKT multipliers $\lambda_{1}^{*}, \ldots, \lambda_{m}^{*}, \mu_{1}^{*}, \ldots, \mu_{\ell}^{*}$ such that

1. $\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right)+\sum_{j=1}^{\ell} \mu_{j}^{*} \nabla h_{j}\left(x^{*}\right)=\mathbf{0}$.
2. $\mu_{j}^{*} h_{j}\left(x^{*}\right)=0$, for all $j=1, \ldots, \ell$.
3. $\mu_{j}^{*} \geq 0$ for all $j=1, \ldots, \ell$.
4. $g_{i}\left(x^{*}\right)=0$ for all $i=1, \ldots, m$, and $h_{j}\left(x^{*}\right) \leq 0$ for all $j=1, \ldots, \ell$.

We can use KKT conditions to solve optimization problems.

Example 1

$$
\begin{aligned}
\min & x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & x_{1}+x_{2}=1 \\
& x_{2} \leq \alpha
\end{aligned}
$$

If $\binom{x_{1}^{*}}{x_{2}^{*}}$ is optimal, then there are KKT multipliers such that

$$
\left\{\begin{array}{c}
2 x_{1}^{*}+\lambda=0 \\
2 x_{2}^{*}+\lambda+\mu=0 \\
\mu \geq 0 \\
\mu\left(x_{2}^{*}-\alpha\right)=0 \\
x_{1}^{*}+x_{2}^{*}=1 \\
x_{2}^{*} \leq \alpha
\end{array}\right.
$$

which implies that

$$
2 x_{1}^{*}+2 x_{2}^{*}+2 \lambda+\mu=0
$$

and further gives that $2 \lambda+\mu=-2$. So we have

$$
\left\{\begin{array}{l}
x_{1}^{*}=\frac{1}{2}+\frac{\mu}{4} \\
x_{2}^{*}=\frac{1}{2}-\frac{\mu}{4}
\end{array}\right.
$$

- Case 1. $\alpha>\frac{1}{2}$. From the constraint of x_{2} we have $x_{2}^{*}=\frac{1}{2}-\frac{\mu}{4} \leq \alpha$, which is always true as long as $\mu \geq 0$. Since $\mu\left(x_{2}^{*}-\alpha\right)=0$, we have $\mu=0$, which gives that

$$
\left\{\begin{array}{l}
x_{1}^{*}=\frac{1}{2} \\
x_{2}^{*}=\frac{1}{2}
\end{array}\right.
$$

- Case 2. $\alpha=\frac{1}{2} . x_{2}^{*}=\frac{1}{2}-\frac{\mu}{4} \leq \alpha$ is always true as long as $\mu \geq 0$. Then $\mu=0$ or $x_{2}^{*}=\alpha=\frac{1}{2}$ since $\mu\left(x_{2}^{*}-\alpha\right)=0$. Both of them imply that

$$
\left\{\begin{array}{l}
x_{1}^{*}=\frac{1}{2} \\
x_{2}^{*}=\frac{1}{2}
\end{array}\right.
$$

- Case 3. $\alpha<\frac{1}{2} \cdot x_{2}^{*}=\frac{1}{2}-\frac{\mu}{4} \leq \alpha \Longrightarrow \mu \geq 2-4 \alpha>0 \Longrightarrow x_{2}^{*}=\alpha$ since $\mu\left(x_{2}^{*}-\alpha\right)=0$. Then

$$
\left\{\begin{array}{c}
x_{1}^{*}=1-\alpha \\
x_{2}^{*}=\alpha
\end{array}\right.
$$

Example 2

$$
\begin{aligned}
\min & \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} \\
\text { subject to } & h_{1}(x)=x_{1}^{2}-x_{2} \leq 0 \\
& h_{2}(x)=x_{1}+x_{2}-2 \leq 0
\end{aligned}
$$

The KKT condition is

$$
\left\{\begin{array}{c}
2\left(x_{1}-2\right)+2 \mu_{1} x_{1}+\mu_{2}=0 \\
2\left(x_{2}-1\right)-\mu_{1}+\mu_{2}=0 \\
\mu_{1} h_{1}(x)=0 \\
\mu_{2} h_{2}(x)=0 \\
h_{1}(x), h_{2}(x) \leq 0 \\
\mu_{1}, \mu_{2} \geq 0
\end{array}\right.
$$

- Case 1. Both h_{1} and h_{2} are inactive. Then $\mu_{1}=\mu_{2}=0$. So the solution is

$$
\left\{\begin{array}{l}
x_{1}=2 \\
x_{2}=1
\end{array}\right.
$$

However, the solution is infeasible.

- Case 2. h_{1} is inactive and h_{2} is active. Then

$$
\left\{\begin{array} { c }
{ \mu _ { 1 } = 0 } \\
{ x _ { 1 } + x _ { 2 } - 2 = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{c}
\mu_{2}=1 \\
x_{1}=\frac{3}{2} \\
x_{2}=\frac{1}{2}
\end{array}\right.\right.
$$

However, the solution is infeasible.

- Case 3. h_{1} is active and h_{2} is inactive. Then

$$
\left\{\begin{array} { c }
{ x _ { 1 } ^ { 2 } - x _ { 2 } = 0 } \\
{ \mu _ { 2 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\mu_{1}>0 \\
x_{1}>1 \\
x_{2}>1
\end{array}\right.\right.
$$

However, the solution is infeasible.

- Case 4. Both h_{1} and h_{2} are active. Then we have the following two solutions

$$
\left\{\begin{array} { l }
{ x _ { 1 } ^ { 2 } - x _ { 2 } = 0 } \\
{ x _ { 1 } + x _ { 2 } = 2 }
\end{array} \Longrightarrow \left\{\begin{array} { l }
{ x _ { 1 } = 1 } \\
{ x _ { 2 } = 1 }
\end{array} \text { or } \left\{\begin{array}{c}
x_{1}=-2 \\
x_{2}=4
\end{array}\right.\right.\right.
$$

For the first solution,

$$
\left\{\begin{array} { l }
{ x _ { 1 } = 1 } \\
{ x _ { 2 } = 1 }
\end{array} \Longrightarrow \left\{\begin{array} { c }
{ - 2 + 2 \mu _ { 1 } + \mu _ { 2 } = 0 } \\
{ - \mu _ { 1 } + \mu _ { 2 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\mu_{1}=\frac{2}{3} \\
\mu_{2}=\frac{2}{3}
\end{array}\right.\right.\right.
$$

The solution satisfies the KKT condition.
For the second solution

$$
\left\{\begin{array} { c }
{ x _ { 1 } = - 2 } \\
{ x _ { 2 } = 4 }
\end{array} \Longrightarrow \left\{\begin{array} { c }
{ - 8 - 4 \mu _ { 1 } + \mu _ { 2 } = 0 } \\
{ 6 - \mu _ { 1 } + \mu _ { 2 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\mu_{1}=-\frac{14}{3} \\
\mu_{2}=-\frac{32}{3}
\end{array}\right.\right.\right.
$$

The solution is invalid.

Remark
KKT condition is possibly unsolved but a critical optimal point exists.

Example 4 (Linear program)

$$
\begin{aligned}
\min & -\boldsymbol{c}^{\top} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{aligned}
$$

The KKT condition is

$$
\left\{\begin{array}{c}
-\boldsymbol{c}+\boldsymbol{A}^{\top} \boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}=\mathbf{0} \\
\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2} \geq \mathbf{0} \\
\boldsymbol{\mu}_{1}^{\top}(\boldsymbol{A x}-\boldsymbol{b})=0 \\
\boldsymbol{\mu}_{2}^{\top} \boldsymbol{x}=0 \\
\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}
\end{array}\right.
$$

Recall LP duality and complementary slackness:

$$
\begin{aligned}
\min & \boldsymbol{y}^{\top} \boldsymbol{b} \\
\text { subject to } & \boldsymbol{y}^{\top} \boldsymbol{A} \geq \boldsymbol{c}^{\top} \\
& \boldsymbol{y} \geq \mathbf{0}
\end{aligned}
$$

and

$$
\left\{\begin{array}{c}
\left(\boldsymbol{y}^{*}\right)^{\top}\left(\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right)=0 \\
\left(\boldsymbol{A} \boldsymbol{y}^{*}-\boldsymbol{c}\right)^{\top} \boldsymbol{x}^{*}=0
\end{array}\right.
$$

for primal optimal solution \boldsymbol{x}^{*} and \boldsymbol{y}^{*}. It is easy to see that

$$
\boldsymbol{\mu}_{1}=\boldsymbol{y}^{*}, \quad \boldsymbol{\mu}_{2}=\boldsymbol{A} \boldsymbol{y}^{*}-\boldsymbol{c}
$$

are KKT multipliers of \boldsymbol{x}^{*}.

As we mentioned before, if we define the Lagrangian as follows

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\boldsymbol{x})+\boldsymbol{\lambda}^{\top} \boldsymbol{g}(\boldsymbol{x})+\boldsymbol{\mu}^{\top} \boldsymbol{h}(\boldsymbol{x})
$$

where $\boldsymbol{g}(\boldsymbol{x})=\left(g_{1}(\boldsymbol{x}), \ldots, g_{m}(\boldsymbol{x})\right)^{\top}$ and $\boldsymbol{h}(\boldsymbol{x})=\left(h_{1}(\boldsymbol{x}), \ldots, h_{\ell}(\boldsymbol{x})\right)^{\top}$, then the domain of \mathcal{L} is given by
$\boldsymbol{x} \in D \triangleq \operatorname{dom} f \cap \operatorname{dom} g_{1} \cap \cdots \cap \operatorname{dom} g_{m} \cap \operatorname{dom} h_{1} \cap \cdots \cap \operatorname{dom} h_{\ell}, \quad \boldsymbol{\lambda} \in \mathbb{R}^{m}, \quad \boldsymbol{\mu} \in \mathbb{R}_{\geq 0}^{\ell}$, and the ККТ condition can be expressed as

$$
\nabla_{\boldsymbol{x}, \boldsymbol{\lambda}} \mathcal{L}\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right)=\mathbf{0}, \quad \nabla_{\boldsymbol{\mu}} \mathcal{L}\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right) \leq \mathbf{0}, \quad\left(\boldsymbol{\mu}^{*}\right)^{\top} \nabla_{\boldsymbol{\mu}} \mathcal{L}\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right)=0
$$

for some KKT multipliers $\boldsymbol{\lambda}^{*} \in \mathbb{R}^{m}$ and $\boldsymbol{\mu}^{*} \in \mathbb{R}_{\geq 0}^{\ell}$.

16.3 Necessity and sufficiency of KKT conditions

Now we prove the necessity of KKT conditions. Cleary if \boldsymbol{x}^{*} is an optimal solution then it must be a local minimum. Consider the following set
$\tilde{\Omega} \triangleq\left\{\boldsymbol{x} \mid g_{i}(\boldsymbol{x})=0\right.$ for all $i, h_{j}(\boldsymbol{x})=0$ for all $j \in J\left(\boldsymbol{x}^{*}\right)$, and $h_{j}(\boldsymbol{x})<0$ for all $\left.j \notin J\left(\boldsymbol{x}^{*}\right)\right\}$ It is a subset of the feasible set Ω, and thus \boldsymbol{x}^{*} must be a local minimum on $\tilde{\Omega}$. If we assume that h_{j} is continuous for all j, then there exists $\varepsilon>0$ such that for all $\boldsymbol{x} \in \mathcal{B}\left(\boldsymbol{x}^{*}, \varepsilon\right), h_{j}(\boldsymbol{x})<0$ for all j. So locally we have

$$
\tilde{\Omega} \cap \mathcal{B}\left(\boldsymbol{x}^{*}, \varepsilon\right)=\left\{\boldsymbol{x} \mid g_{i}(\boldsymbol{x})=0 \text { for all } i \text {, and } h_{j}(\boldsymbol{x})=0 \text { for all } j \in J\left(\boldsymbol{x}^{*}\right) .\right.
$$

Hence, \boldsymbol{x}^{*} should be a local minimum on the is set. There are only equality constraints. Lagrange condition applies. So there exists KKT multipliers $\lambda_{1}^{*}, \ldots, \lambda_{m}^{*}$ and $\mu_{1}^{*}, \ldots, \mu_{\ell}^{*}$ such that $\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right)+\sum_{j=1}^{\ell} \mu_{j}^{*} \nabla h_{j}\left(x^{*}\right)=\mathbf{0}$ and $\mu_{j}^{*} h_{j}\left(x^{*}\right)=0$ for all $j=1, \ldots, \ell$. The remaining part is to show that $\mu_{j}^{*} \geq 0$.

Proof of $\mu_{j}^{*} \geq 0$ for all $j \in J\left(x^{*}\right)$

We prove this by contradiction. Assume there exists an active $k \in J\left(x^{*}\right)$ and $\mu_{k}^{*}<0$. Then, we consider the set containing all other active constraints

$$
\widehat{\Omega}=\left\{x \mid g_{i}(x)=0, i=1, \cdots, m ; h_{j}(x)=0, j \neq k, j \in J\left(x^{*}\right)\right\} .
$$

If x^{*} is regular, $T=T_{x^{*}} \widehat{\Omega}$ is a linear space, where

$$
T=\operatorname{ker}\left(\begin{array}{cc}
\nabla g_{i}, & 1 \leq i \leq m \\
\nabla h_{j}, & k \neq j \in J\left(x^{*}\right)
\end{array}\right)
$$

By regularity of $x^{*}, \nabla h_{k}\left(x^{*}\right) \notin \operatorname{span}\left\{\nabla g_{i}\left(x^{*}\right), \nabla h_{j}\left(x^{*}\right)\right\}$ where $i=1,2, \ldots, m$ and $j \in J\left(x^{*}\right), j \neq k$. So there exists $v \in T$ such that $\nabla h_{k}\left(x^{*}\right)^{\top} v \neq 0$, otherwise above fact does not hold. Without loss of generality, assume $\nabla h_{k}\left(x^{*}\right)^{\top} v<0$. Now we consider the Lagrange condition

$$
\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right)+\sum_{j \in J\left(x^{*}\right)} \mu_{j}^{*} \nabla h_{j}\left(x^{*}\right)=0 .
$$

Multiplying by v, we have

$$
\left(\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right)+\sum_{j \in J\left(x^{*}\right)} \mu_{j}^{*} \nabla h_{j}\left(x^{*}\right)\right)^{\top} v=0 .
$$

Note that $\nabla g_{i}\left(x^{*}\right)^{\top} v=0$ and $\nabla h_{k}\left(x^{*}\right)^{\top} v=0$ if $j \neq k$. Then,

$$
\nabla f\left(x^{*}\right)^{\top} v+\mu_{k}^{*} \nabla h_{k}\left(x^{*}\right)^{\top} v=0 \Longrightarrow \nabla f\left(x^{*}\right)^{\top} v<0
$$

Since $v \in T$, then there exists $\gamma:(-\varepsilon, \varepsilon) \rightarrow \widehat{\Omega}$ such that $\gamma(0)=x^{*}$ and
$\gamma^{\prime}(0)=v$. Then,

$$
\left\{\begin{array}{l}
\left.f^{\prime}(\gamma(t))\right|_{t=0}=\nabla f(\gamma(0))^{\top} \gamma^{\prime}(0)=\nabla f\left(x^{*}\right)^{\top} v<0 \\
\left.h_{k}^{\prime}(\gamma(t))\right|_{t=0}=\nabla h_{k}(\gamma(0))^{\top} \gamma(0)=\nabla h_{k}\left(x^{*}\right)^{\top} v<0
\end{array}\right.
$$

which leads to

$$
\left\{\begin{array}{l}
\exists \varepsilon_{0}>0, \forall 0<\varepsilon \leq \varepsilon_{0}, f(\gamma(\varepsilon))<f(\gamma(0))=f\left(x^{*}\right) \\
\exists \delta_{0}>0, \forall 0<\delta \leq \delta_{0}, h_{k}(\gamma(\delta))<h_{k}(\gamma(0))=h_{k}\left(x^{*}\right) . \\
\exists \xi_{0}>0, \forall 0<\xi \leq \xi_{0}, h_{j}(\gamma(\xi)) \leq 0 \text { for any } j \notin J\left(x^{*}\right)
\end{array} .\right.
$$

Now we obtain that for $x^{\prime} \in \gamma\left(\min \left\{\varepsilon_{0}, \delta_{0}, \xi_{0}\right\}\right)$,

$$
\left\{\begin{array}{l}
h_{k}\left(x^{\prime}\right)<h_{k}\left(x^{*}\right) \leq 0 \\
f\left(x^{\prime}\right)<f\left(x^{*}\right) \\
x^{\prime} \in \widehat{\Omega} \\
h_{j}\left(x^{\prime}\right) \leq 0 \text { for any } j \notin J\left(x^{*}\right)
\end{array},\right.
$$

which contradicts to that x^{*} is optimal. Thus we conclude $\mu_{j}^{*} \geq 0$.

KKT condition is a necessary condition for optimization problems. For convex optimization problems, as we showed for equality constrained problems, it is also sufficient.

Theorem

For a convex optimization problem

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}} & f(x) \\
\text { subject to } & g_{i}(x)=0,1 \leq i \leq m \\
& h_{j}(x) \leq 0,1 \leq j \leq \ell
\end{array}
$$

If x^{*} is feasible and there exist KKT multipliers λ^{*}, μ^{*} such that KKT condition holds, then x^{*} is an optimal solution.

Proof

It suffices to show that for any feasible $x, \nabla f\left(x^{*}\right)^{\top}\left(x-x^{*}\right) \geq 0$ since $f(x) \geq f\left(x^{*}\right)+\nabla f\left(x^{*}\right)^{\top}\left(x-x^{*}\right)$.
By KKT condition, $\nabla f\left(x^{*}\right)=\sum_{i=1}^{m}-\lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right)+\sum_{j=1}^{\ell}-\mu_{j}^{*} \nabla h_{j}\left(x^{*}\right)$.
We claim that $\nabla g_{i}\left(x^{*}\right)^{\top}\left(x-x^{*}\right)=0$ for all i and $\nabla h_{j}\left(x^{*}\right)^{\top}\left(x-x^{*}\right) \leq 0$ for all

$$
\left\{\begin{array}{l}
\forall i, g_{i} \text { is affine, so } g_{i}(x)=g_{i}\left(x^{*}\right)=0 \Longrightarrow \nabla g_{i}\left(x^{*}\right)^{\top}\left(x-x^{*}\right)=0 ; \\
\forall j \notin J\left(x^{*}\right), \mu_{j}^{*}=0 ; \\
\forall j \in J\left(x^{*}\right), h_{j}\left(x^{*}\right)=0, h_{j}(x) \leq 0 \Longrightarrow \nabla h_{j}\left(x^{*}\right)^{\top}\left(x-x^{*}\right) \leq h_{j}(x)-h_{j}\left(x^{*}\right) \leq
\end{array}\right.
$$

Hence, we conclude that $\nabla f\left(x^{*}\right)^{\top}\left(x-x^{*}\right) \geq 0$.

