
We now consider general optimization problems with inequality constraints

First, we study the optimality condition.

Lecture 16. Karush-Kuhn-Tucker Conditions

16.1 Active constraints in inequality constrained

problems

min
x∈Rn

f(x)

subject to  gi(x) = 0 1 ≤ i ≤ m ,
hj(x) ≤ 0 1 ≤ j ≤ ℓ .

Example

The feasible set of the above problem and the level sets of the objective

function can be sketched as follows.

min x1 + x2

subject to  x2
1 + x2

2 ≤ 2

Is ( ) optimal? No.

It satisfies x2
1 + x2

2 = 2 and is a regular point, but it does not satisfy the

Lagrange multiplier condition. So it is even not optimal in the set

{(x1, x2)T ∣ x2
1 + x2

2 = 2}, which is a subset of the feasible set.
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From this example, we can find that different constraints provide different

requirements. We have the following definition to distinguish them.

If x∗ is an optimal solution to

then x∗ is also optimal to

If x∗ is a regular point, then there exists λ∗, μ∗, such that

∇f(x∗) +
m

∑
i=1

λ∗
i ∇gi(x∗) + ∑

j∈J(x∗)

μ∗
j ∇hj(x∗) = 0.

Is ( ) optimal? Possible.

At least it is optimal in the set {(x1, x2)T ∣ x2
1 + x2

2 = 2} because it is

regular and has Lagrange multipliers.
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Is ( ) optimal? Possible for the same reason as ( ).
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Is ( ) optimal? No.

It satisfies x2
1 + x2

2 < 2. Then, there exists ε > 0, such that for any

( ) ∈ B(0, ε), x2
1 + x2

2 ≤ 2. If it is optimal, then it must be a local

minimum in B(0, ε). However, ∇f(0, 0) ≠ 0, which shows that it is not a

local minimum.
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Definition (Active and inactive constraints)

Given x0 ∈ Ω, if a constraint hj(x) ≤ 0 is tight at x0, namely, hj(x0) = 0, then

it is called an active constraint, otherwise it is called an inactive constraint.

Denote by J(x0) ≜ {j ∣ hj(x0) = 0} the set of indices of active constraints at x0

.

16.2 Karush-Kuhn-Tucker conditions

min f(x)

subject to  gi(x) = 0, 1 ≤ i ≤ m

hi(x) ≤ 0, 1 ≤ i ≤ ℓ,

min f(x)

subject to  gi(x) = 0, 1 ≤ i ≤ m

hi(x) = 0, 1 ≤ i ≤ ℓ.



If j ∉ J(x∗) (inactive), we set μ∗
j = 0. Then we can rewrite above statement as

follows. There exists λ∗ ∈ Rm, μ∗ ∈ Rk, such that

∇f(x∗) +
m

∑
i=1

λ∗
i ∇gi(x∗) +

ℓ

∑
j=1

μ∗
j ∇hj(x∗) = 0

and for any j, μ∗
j hj(x∗) = 0.

Consider the above example, there are two solutions ( ) and ( ) having such

multipliers. However, only ( ) is optimal. We would like to rule out ( ).

Note that f(x1, x2) = x1 + x2 and h(x1, x2) = x2
1 + x2 − 2. So ∇f = ( ) and

∇h = ( ). Then

Intuitively, the requirement μ ≥ 0 is reasonable, since we hope f(x) ≥ f(x∗) and

h(x) ≤ 0 in the feasible set, namely, we hope ∇h(x∗) point outside the feasible set

and ∇f(x∗) point inside it.
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for ( ), ∇f − 1
2 ∇h = 0.
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for ( ), ∇f + 1
2 ∇h = 0.

We may force μ ≥ 0 to rule out ( ).
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Now we can introduce the Karush-Kuhn-Tucker conditions.

We can use KKT conditions to solve optimization problems.

Theorem (Karush-Kuhn-Tucker conditions)

Suppose x∗ is a local minimum point of an inequality constrained problem

If x∗ is regular for all equality constraints and active inequality constraints,

then there exists Lagrange / KKT multipliers λ∗
1, … , λ∗

m, μ∗
1, … , μ∗

ℓ  such that

min f(x)
subject to  gi(x) = 0, 1 ≤ i ≤ m

hi(x) = 0, 1 ≤ i ≤ ℓ.

1. ∇f(x∗) +
m

∑
i=1

λ∗
i ∇gi(x∗) +

ℓ

∑
j=1

μ∗
j ∇hj(x∗) = 0.

2. μ∗
j hj(x∗) = 0, for all j = 1, … , ℓ.

3. μ∗
j ≥ 0 for all j = 1, … , ℓ.

4. gi(x∗) = 0 for all i = 1, … , m, and hj(x∗) ≤ 0 for all j = 1, … , ℓ.

Example 1



If ( ) is optimal, then there are KKT multipliers such that

which implies that

2x∗
1 + 2x∗

2 + 2λ + μ = 0

and further gives that 2λ + μ = −2. So we have

{ .

min x2
1 + x2

2

subject to  x1 + x2 = 1

x2 ≤ α

x∗
1

x∗
2

⎧⎪⎨⎪⎩ 2x∗
1 + λ = 0

2x∗
2 + λ + μ = 0

μ ≥ 0

μ(x∗
2 − α) = 0

x∗
1 + x∗

2 = 1

x∗
2 ≤ α

x∗
1 = 1

2 + μ

4

x∗
2 = 1

2
− μ

4

Case 1. α > 1
2

. From the constraint of x2 we have x∗
2 = 1

2
− μ

4
≤ α,

which is always true as long as μ ≥ 0. Since μ(x∗
2 − α) = 0, we have

μ = 0, which gives that

{
x∗

1 = 1
2

x∗
2 = 1

2

Case 2. α = 1
2 . x∗

2 = 1
2 − μ

4 ≤ α is always true as long as μ ≥ 0. Then

μ = 0 or x∗
2 = α = 1

2  since μ(x∗
2 − α) = 0. Both of them imply that

{
x∗

1 = 1
2

x∗
2 = 1

2

Case 3. α < 1
2 . x∗

2 = 1
2 − μ

4 ≤ α ⟹ μ ≥ 2 − 4α > 0 ⟹ x∗
2 = α since

μ(x∗
2 − α) = 0. Then

{
x∗

1 = 1 − α

x∗
2 = α



Example 2

The KKT condition is

min (x1 − 2)2 + (x2 − 1)2

subject to  h1(x) = x2
1 − x2 ≤ 0

h2(x) = x1 + x2 − 2 ≤ 0

⎧⎪⎨⎪⎩2(x1 − 2) + 2μ1x1 + μ2 = 0

2(x2 − 1) − μ1 + μ2 = 0

μ1h1(x) = 0

μ2h2(x) = 0

h1(x), h2(x) ≤ 0

μ1, μ2 ≥ 0

Case 1. Both h1 and h2 are inactive. Then μ1 = μ2 = 0. So the solution is

{

However, the solution is infeasible.

x1 = 2

x2 = 1

Case 2. h1 is inactive and h2 is active. Then

{ ⟹

However, the solution is infeasible.

μ1 = 0

x1 + x2 − 2 = 0

⎧⎪⎨⎪⎩μ2 = 1

x1 = 3
2

x2 = 1
2

Case 3. h1 is active and h2 is inactive. Then

{ ⟹

However, the solution is infeasible.

x2
1 − x2 = 0

μ2 = 0

⎧⎪⎨⎪⎩μ1 > 0

x1 > 1

x2 > 1

Case 4. Both h1 and h2 are active. Then we have the following two

solutions

{ ⟹ {  or {x2
1 − x2 = 0

x1 + x2 = 2

x1 = 1

x2 = 1

x1 = −2

x2 = 4



For the first solution,

{ ⟹ { ⟹ {

The solution satisfies the KKT condition.

For the second solution

{ ⟹ { ⟹ {

The solution is invalid.

x1 = 1

x2 = 1

−2 + 2μ1 + μ2 = 0

−μ1 + μ2 = 0

μ1 = 2
3

μ2 = 2
3

x1 = −2

x2 = 4

−8 − 4μ1 + μ2 = 0

6 − μ1 + μ2 = 0

μ1 = − 14
3

μ2 = − 32
3

Remark

KKT condition is possibly unsolved but a critical optimal point exists.

Example 4 (Linear program)

min − cTx

subject to  Ax ≤ b

x ≥ 0



As we mentioned before, if we define the Lagrangian as follows

L(x, λ, μ) = f(x) + λTg(x) + μTh(x)

where g(x) = (g1(x), … , gm(x))T and h(x) = (h1(x), … , hℓ(x))T, then the

domain of L is given by

x ∈ D ≜ dom f ∩ dom g1 ∩ ⋯ ∩ dom gm ∩ dom h1 ∩ ⋯ ∩ dom hℓ, λ ∈ R
m, μ ∈ R

ℓ
≥0 ,

and the KKT condition can be expressed as

∇x,λL(x∗, λ∗, μ∗) = 0, ∇μL(x∗, λ∗, μ∗) ≤ 0, (μ∗)T∇μL(x∗, λ∗, μ∗) = 0

for some KKT multipliers λ∗ ∈ Rm and μ∗ ∈ Rℓ
≥0.

Now we prove the necessity of KKT conditions. Cleary if x∗ is an optimal solution

then it must be a local minimum. Consider the following set

The KKT condition is

Recall LP duality and complementary slackness:

and

{

for primal optimal solution x∗ and y∗. It is easy to see that

μ1 = y∗, μ2 = Ay∗ − c

are KKT multipliers of x∗.

⎧⎪⎨⎪⎩−c + ATμ1 − μ2 = 0

μ1, μ2 ≥ 0

μT

1 (Ax − b) = 0

μT

2 x = 0

Ax ≤ b, x ≥ 0

min yTb

subject to  yTA ≥ cT

y ≥ 0

(y∗)T(Ax∗ − b) = 0

(Ay∗ − c)Tx∗ = 0

16.3 Necessity and sufficiency of KKT conditions



~
Ω ≜ {x ∣ gi(x) = 0 for all i, hj(x) = 0 for all j ∈ J(x∗),  and hj(x) < 0 for all j ∉ J(x∗)} .

It is a subset of the feasible set Ω, and thus x∗ must be a local minimum on 
~
Ω. If

we assume that hj is continuous for all j, then there exists ε > 0 such that for all

x ∈ B(x∗, ε), hj(x) < 0 for all j. So locally we have

~
Ω ∩ B(x∗, ε) = {x ∣ gi(x) = 0 for all i, and hj(x) = 0 for all j ∈ J(x∗) .

Hence, x∗ should be a local minimum on the is set. There are only equality

constraints. Lagrange condition applies. So there exists KKT multipliers λ∗
1, … , λ∗

m

and μ∗
1, … , μ∗

ℓ  such that ∇f(x∗) +
m

∑
i=1

λ∗
i ∇gi(x∗) +

ℓ

∑
j=1

μ∗
j ∇hj(x∗) = 0 and

μ∗
j hj(x∗) = 0 for all j = 1, … , ℓ. The remaining part is to show that μ∗

j ≥ 0.

Proof of μ∗
j ≥ 0 for all j ∈ J(x∗)

We prove this by contradiction. Assume there exists an active k ∈ J(x∗) and

μ∗
k < 0. Then, we consider the set containing all other active constraints

Ω̂ = {x ∣ gi(x) = 0, i = 1, ⋯ , m; hj(x) = 0, j ≠ k, j ∈ J(x∗)}.

If x∗ is regular, T = Tx∗Ω̂ is a linear space, where

T = ker( )

By regularity of x∗, ∇hk(x∗) ∉ span{∇gi(x∗), ∇hj(x∗)} where i = 1, 2, … , m

and j ∈ J(x∗), j ≠ k. So there exists v ∈ T  such that ∇hk(x∗)Tv ≠ 0, otherwise

above fact does not hold. Without loss of generality, assume ∇hk(x∗)Tv < 0.

Now we consider the Lagrange condition

∇f(x∗) +
m

∑
i=1

λ∗
i ∇gi(x∗) + ∑

j∈J(x∗)

μ∗
j ∇hj(x∗) = 0.

Multiplying by v, we have

(∇f(x∗) +
m

∑
i=1

λ∗
i ∇gi(x∗) + ∑

j∈J(x∗)

μ∗
j ∇hj(x∗))

T

v = 0.

Note that ∇gi(x∗)Tv = 0 and ∇hk(x∗)Tv = 0 if j ≠ k. Then,

∇f(x∗)Tv + μ∗
k∇hk(x∗)Tv = 0 ⟹ ∇f(x∗)Tv < 0.

Since v ∈ T , then there exists γ : (−ε, ε) → Ω̂ such that γ(0) = x∗ and

∇gi, 1 ≤ i ≤ m

∇hj, k ≠ j ∈ J(x∗)



KKT condition is a necessary condition for optimization problems. For convex

optimization problems, as we showed for equality constrained problems, it is also

sufficient.

γ ′(0) = v. Then,

{

which leads to

.

Now we obtain that for x′ ∈ γ(min{ε0, δ0, ξ0}),

,

which contradicts to that x∗ is optimal. Thus we conclude μ∗
j ≥ 0.

f ′(γ(t))|t=0 = ∇f(γ(0))Tγ ′(0) = ∇f(x∗)Tv < 0

h′
k(γ(t))|t=0 = ∇hk(γ(0))Tγ(0) = ∇hk(x∗)Tv < 0

⎧⎪⎨⎪⎩∃ ε0 > 0, ∀ 0 < ε ≤ ε0, f(γ(ε)) < f(γ(0)) = f(x∗)

∃ δ0 > 0, ∀ 0 < δ ≤ δ0, hk(γ(δ)) < hk(γ(0)) = hk(x∗)
∃ ξ0 > 0, ∀ 0 < ξ ≤ ξ0, hj(γ(ξ)) ≤ 0 for any j ∉ J(x∗)

⎧⎪⎨⎪⎩hk(x′) < hk(x∗) ≤ 0

f(x′) < f(x∗)

x′ ∈ Ω̂

hj(x′) ≤ 0 for any j ∉ J(x∗)

Theorem

For a convex optimization problem

If x∗ is feasible and there exist KKT multipliers λ∗, μ∗ such that KKT condition

holds, then x∗ is an optimal solution.

min
x∈Rn

f(x)

subject to  gi(x) = 0, 1 ≤ i ≤ m

hj(x) ≤ 0, 1 ≤ j ≤ ℓ

Proof

It suffices to show that for any feasible x, ∇f(x∗)T(x − x∗) ≥ 0 since

f(x) ≥ f(x∗) + ∇f(x∗)T(x − x∗).

By KKT condition, ∇f(x∗) =
m

∑
i=1

−λ∗
i ∇gi(x∗) +

ℓ

∑
j=1

−μ∗
j ∇hj(x∗).

We claim that ∇gi(x∗)T(x − x∗) = 0 for all i and ∇hj(x∗)T(x − x∗) ≤ 0 for all



j. Note that

Hence, we conclude that ∇f(x∗)T(x − x∗) ≥ 0.

⎧⎪⎨⎪⎩∀ i, gi is affine, so  gi(x) = gi(x∗) = 0 ⟹ ∇gi(x∗)T(x − x∗) = 0;

∀ j ∉ J(x∗), μ∗
j = 0;

∀ j ∈ J(x∗), hj(x∗) = 0, hj(x) ≤ 0 ⟹ ∇hj(x∗)T(x − x∗) ≤ hj(x) − hj(x∗) ≤


