Lecture 16. Karush-Kuhn-Tucker Conditions

16.1 Active constraints in inequality constrained problems

We now consider general optimization problems with inequality constraints

$$egin{array}{ll} \min_{x\in\mathbb{R}^n} & f(x) \ & ext{subject to} & g_i(x)=0 & 1\leq i\leq m\,, \ & h_j(x)\leq 0 & 1\leq j\leq \ell\,. \end{array}$$

First, we study the optimality condition.

Example

$$egin{array}{ll} & \min & x_1+x_2 \ & ext{subject to} & x_1^2+x_2^2 \leq 2 \end{array}$$

The feasible set of the above problem and the level sets of the objective function can be sketched as follows.

• Is
$$\binom{\sqrt{2}}{0}$$
 optimal? *No*.

It satisfies $x_1^2 + x_2^2 = 2$ and is a regular point, but it does not satisfy the Lagrange multiplier condition. So it is even not optimal in the set $\{(x_1,x_2)^\mathsf{T} \mid x_1^2 + x_2^2 = 2\}$, which is a subset of the feasible set.

• Is $\binom{1}{1}$ optimal? *Possible*.

At least it is optimal in the set $\{(x_1, x_2)^\mathsf{T} \mid x_1^2 + x_2^2 = 2\}$ because it is regular and has Lagrange multipliers.

• Is
$$\begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
 optimal? *Possible* for the same reason as $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

• Is
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 optimal? *No*.

It satisfies $x_1^2+x_2^2<2$. Then, there exists $\varepsilon>0$, such that for any $\binom{x_1}{x_2}\in\mathcal{B}(\mathbf{0},\varepsilon), \, x_1^2+x_2^2\leq 2$. If it is optimal, then it must be a local minimum in $\mathcal{B}(\mathbf{0},\varepsilon)$. However, $\nabla f(0,0)\neq \mathbf{0}$, which shows that it is not a local minimum.

From this example, we can find that different constraints provide different requirements. We have the following definition to distinguish them.

Definition (Active and inactive constraints)

Given $x_0 \in \Omega$, if a constraint $h_j(x) \leq 0$ is tight at x_0 , namely, $h_j(x_0) = 0$, then it is called an *active constraint*, otherwise it is called an *inactive constraint*. Denote by $J(x_0) \triangleq \{j \mid h_j(x_0) = 0\}$ the set of indices of active constraints at x_0

16.2 Karush-Kuhn-Tucker conditions

If x^* is an optimal solution to

$$egin{array}{ll} \min & f(x) \ \mathrm{subject\ to} & g_i(x) = 0, 1 \leq i \leq m \ & h_i(x) \leq 0, 1 \leq i \leq \ell, \end{array}$$

then x^* is also optimal to

$$egin{array}{ll} \min & f(x) \ \mathrm{subject\ to} & g_i(x) = 0, 1 \leq i \leq m \ & h_i(x) = 0, 1 \leq i \leq \ell. \end{array}$$

If x^* is a regular point, then there exists λ^*, μ^* , such that

$$abla f(x^*) + \sum_{i=1}^m \lambda_i^*
abla g_i(x^*) + \sum_{j \in J(x^*)} \mu_j^*
abla h_j(x^*) = 0.$$

If $j \notin J(x^*)$ (inactive), we set $\mu_j^* = 0$. Then we can rewrite above statement as follows. There exists $\lambda^* \in \mathbb{R}^m$, $\mu^* \in \mathbb{R}^k$, such that

$$abla f(x^*) + \sum_{i=1}^m \lambda_i^*
abla g_i(x^*) + \sum_{j=1}^\ell \mu_j^*
abla h_j(x^*) = 0$$

and for any j, $\mu_j^* h_j(x^*) = 0$.

Consider the above example, there are two solutions $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ having such multipliers. However, only $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$ is optimal. We would like to rule out $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Note that $f(x_1,x_2)=x_1+x_2$ and $h(x_1,x_2)=x_1^2+x^2-2$. So $\nabla f=\begin{pmatrix}1\\1\end{pmatrix}$ and $\nabla h=\begin{pmatrix}2x_1\\2x_2\end{pmatrix}$. Then

• for
$$\binom{1}{1}$$
, $\nabla f - \frac{1}{2} \nabla h = 0$.

• for
$$\begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
, $\nabla f + \frac{1}{2} \nabla h = 0$.

We may force $\mu \geq 0$ to rule out $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$.

Intuitively, the requirement $\mu \geq 0$ is reasonable, since we hope $f(x) \geq f(x^*)$ and $h(x) \leq 0$ in the feasible set, namely, we hope $\nabla h(x^*)$ point outside the feasible set and $\nabla f(x^*)$ point inside it.

Now we can introduce the Karush-Kuhn-Tucker conditions.

Theorem (Karush-Kuhn-Tucker conditions)

Suppose x^* is a local minimum point of an inequality constrained problem

$$egin{array}{ll} \min & f(x) \ ext{subject to} & g_i(x) = 0, 1 \leq i \leq m \ & h_i(x) = 0, 1 \leq i \leq \ell. \end{array}$$

If x^* is regular for all equality constraints and active inequality constraints, then there exists Lagrange / KKT multipliers $\lambda_1^*,\ldots,\lambda_m^*,\mu_1^*,\ldots,\mu_\ell^*$ such that

$$1.~
abla f(x^*) + \sum\limits_{i=1}^m \lambda_i^*
abla g_i(x^*) + \sum\limits_{j=1}^\ell \mu_j^*
abla h_j(x^*) = \mathbf{0}.$$

- 2. $\mu_j^* h_j(x^*) = 0$, for all $j = 1, ..., \ell$.
- 3. $\mu_j^* \geq 0$ for all $j = 1, \dots, \ell$.
- 4. $g_i(x^*) = 0$ for all $i = 1, \ldots, m$, and $h_j(x^*) \leq 0$ for all $j = 1, \ldots, \ell$.

We can use KKT conditions to solve optimization problems.

Example 1

$$egin{array}{ll} \min & x_1^2+x_2^2 \ \mathrm{subject\ to} & x_1+x_2=1 \ & x_2 \leq lpha \end{array}$$

If $\begin{pmatrix} x_1^* \\ x_2^* \end{pmatrix}$ is optimal, then there are KKT multipliers such that

$$\left\{egin{aligned} 2x_1^* + \lambda &= 0 \ 2x_2^* + \lambda + \mu &= 0 \ \mu &\geq 0 \ \mu(x_2^* - lpha) &= 0 \ x_1^* + x_2^* &= 1 \ x_2^* &\leq lpha \end{aligned}
ight.$$

which implies that

$$2x_1^* + 2x_2^* + 2\lambda + \mu = 0$$

and further gives that $2\lambda + \mu = -2$. So we have

$$egin{cases} x_1^* = rac{1}{2} + rac{\mu}{4} \ x_2^* = rac{1}{2} - rac{\mu}{4} \end{cases}.$$

• Case 1. $\alpha > \frac{1}{2}$. From the constraint of x_2 we have $x_2^* = \frac{1}{2} - \frac{\mu}{4} \le \alpha$, which is always true as long as $\mu \ge 0$. Since $\mu(x_2^* - \alpha) = 0$, we have $\mu = 0$, which gives that

$$egin{cases} x_1^*=rac{1}{2}\ x_2^*=rac{1}{2} \end{cases}$$

• Case 2. $\alpha=\frac{1}{2}$. $x_2^*=\frac{1}{2}-\frac{\mu}{4}\leq \alpha$ is always true as long as $\mu\geq 0$. Then $\mu=0$ or $x_2^*=\alpha=\frac{1}{2}$ since $\mu(x_2^*-\alpha)=0$. Both of them imply that

$$egin{cases} x_1^*=rac{1}{2}\ x_2^*=rac{1}{2} \end{cases}$$

• Case 3. $\alpha<\frac{1}{2}$. $x_2^*=\frac{1}{2}-\frac{\mu}{4}\leq\alpha\implies\mu\geq 2-4\alpha>0\implies x_2^*=\alpha$ since $\mu(x_2^*-\alpha)=0$. Then

$$\begin{cases} x_1^* = 1 - \alpha \\ x_2^* = \alpha \end{cases}$$

Example 2

$$egin{array}{ll} & \min & (x_1-2)^2+(x_2-1)^2 \ & ext{subject to} & h_1(x)=x_1^2-x_2\leq 0 \ & h_2(x)=x_1+x_2-2\leq 0 \end{array}$$

The KKT condition is

$$\left\{egin{aligned} 2(x_1-2)+2\mu_1x_1+\mu_2&=0\ 2(x_2-1)-\mu_1+\mu_2&=0\ \mu_1h_1(x)&=0\ \mu_2h_2(x)&=0\ h_1(x),h_2(x)&\leq 0\ \mu_1,\mu_2&\geq 0 \end{aligned}
ight.$$

• Case 1. Both h_1 and h_2 are inactive. Then $\mu_1 = \mu_2 = 0$. So the solution is

$$egin{cases} x_1 = 2 \ x_2 = 1 \end{cases}$$

However, the solution is infeasible.

• Case 2. h_1 is inactive and h_2 is active. Then

$$\left\{egin{aligned} \mu_1 &= 0 \ x_1 + x_2 - 2 &= 0 \end{aligned}
ight. \implies \left\{egin{aligned} \mu_2 &= 1 \ x_1 &= rac{3}{2} \ x_2 &= rac{1}{2} \end{aligned}
ight.$$

However, the solution is infeasible.

• Case 3. h_1 is active and h_2 is inactive. Then

$$\left\{egin{aligned} x_1^2 - x_2 &= 0 \ \mu_2 &= 0 \end{aligned}
ight. \implies \left\{egin{aligned} \mu_1 > 0 \ x_1 > 1 \ x_2 > 1 \end{aligned}
ight.$$

However, the solution is infeasible.

• Case 4. Both h_1 and h_2 are active. Then we have the following two solutions

$$egin{cases} x_1^2-x_2=0 \ x_1+x_2=2 \end{cases} \Longrightarrow egin{cases} x_1=1 \ x_2=1 \end{cases} ext{or} egin{cases} x_1=-2 \ x_2=4 \end{cases}$$

For the first solution,

$$egin{cases} x_1=1 \ x_2=1 \end{cases} \Longrightarrow egin{cases} -2+2\mu_1+\mu_2=0 \ -\mu_1+\mu_2=0 \end{cases} \Longrightarrow egin{cases} \mu_1=rac{2}{3} \ \mu_2=rac{2}{3} \end{cases}$$

The solution satisfies the KKT condition.

For the second solution

$$\begin{cases} x_1 = -2 \\ x_2 = 4 \end{cases} \implies \begin{cases} -8 - 4\mu_1 + \mu_2 = 0 \\ 6 - \mu_1 + \mu_2 = 0 \end{cases} \implies \begin{cases} \mu_1 = -\frac{14}{3} \\ \mu_2 = -\frac{32}{3} \end{cases}$$

The solution is invalid.

Remark

KKT condition is possibly unsolved but a critical optimal point exists.

Example 4 (Linear program)

$$egin{array}{ll} \min & -oldsymbol{c}^{\mathsf{T}}oldsymbol{x} \ \mathrm{subject\ to} & oldsymbol{A}oldsymbol{x} \leq oldsymbol{b} \ oldsymbol{x} > oldsymbol{0} \end{array}$$

The KKT condition is

$$egin{cases} -oldsymbol{c} + oldsymbol{A}^{\mathsf{T}}oldsymbol{\mu}_1 - oldsymbol{\mu}_2 = oldsymbol{0} \ oldsymbol{\mu}_1^{\mathsf{T}}(oldsymbol{A}oldsymbol{x} - oldsymbol{b}) = oldsymbol{0} \ oldsymbol{\mu}_2^{\mathsf{T}}oldsymbol{x} = oldsymbol{0} \ oldsymbol{\mu}_2^{\mathsf{T}}oldsymbol{x} = oldsymbol{0} \ oldsymbol{A}oldsymbol{x} \leq oldsymbol{b}, oldsymbol{x} \geq oldsymbol{0} \end{cases}$$

Recall LP duality and complementary slackness:

$$egin{array}{ll} \min & oldsymbol{y}^\mathsf{T} oldsymbol{b} \ \mathrm{subject\ to} & oldsymbol{y}^\mathsf{T} oldsymbol{A} \geq oldsymbol{c}^\mathsf{T} \ oldsymbol{y} \geq oldsymbol{0} \end{array}$$

and

$$\begin{cases} (\boldsymbol{y}^*)^{\mathsf{T}} (\boldsymbol{A} \boldsymbol{x}^* - \boldsymbol{b}) = 0 \\ (\boldsymbol{A} \boldsymbol{y}^* - \boldsymbol{c})^{\mathsf{T}} \boldsymbol{x}^* = 0 \end{cases}$$

for primal optimal solution x^* and y^* . It is easy to see that

$$oldsymbol{\mu}_1 = oldsymbol{y}^*, \qquad oldsymbol{\mu}_2 = oldsymbol{A}oldsymbol{y}^* - oldsymbol{c}$$

are KKT multipliers of x^* .

As we mentioned before, if we define the Lagrangian as follows

$$\mathcal{L}(oldsymbol{x},oldsymbol{\lambda},oldsymbol{\mu}) = f(oldsymbol{x}) + oldsymbol{\lambda}^{\mathsf{T}}oldsymbol{g}(oldsymbol{x}) + oldsymbol{\mu}^{\mathsf{T}}oldsymbol{h}(oldsymbol{x})$$

where $g(x) = (g_1(x), \dots, g_m(x))^T$ and $h(x) = (h_1(x), \dots, h_\ell(x))^T$, then the domain of \mathcal{L} is given by

 $oldsymbol{x} \in D riangleq \mathrm{dom}\, f \cap \mathrm{dom}\, g_1 \cap \dots \cap \mathrm{dom}\, g_m \cap \mathrm{dom}\, h_1 \cap \dots \cap \mathrm{dom}\, h_\ell, \quad oldsymbol{\lambda} \in \mathbb{R}^m, \quad oldsymbol{\mu} \in \mathbb{R}^\ell_{\geq 0}\,,$

and the KKT condition can be expressed as

$$abla_{oldsymbol{x},oldsymbol{\lambda}} \mathcal{L}(oldsymbol{x}^*,oldsymbol{\lambda}^*,oldsymbol{\mu}^*) = oldsymbol{0}, \quad
abla_{oldsymbol{\mu}} \mathcal{L}(oldsymbol{x}^*,oldsymbol{\lambda}^*,oldsymbol{\mu}^*) \leq oldsymbol{0}, \quad (oldsymbol{\mu}^*)^\mathsf{T}
abla_{oldsymbol{\mu}} \mathcal{L}(oldsymbol{x}^*,oldsymbol{\lambda}^*,oldsymbol{\mu}^*) = 0$$

for some KKT multipliers $oldsymbol{\lambda}^* \in \mathbb{R}^m$ and $oldsymbol{\mu}^* \in \mathbb{R}^\ell_{>0}.$

16.3 Necessity and sufficiency of KKT conditions

Now we prove the necessity of KKT conditions. Cleary if x^* is an optimal solution then it must be a local minimum. Consider the following set

$$ilde{\Omega} riangleq \{m{x} \mid g_i(m{x}) = 0 ext{ for all } i, h_j(m{x}) = 0 ext{ for all } j \in J(m{x}^*), ext{ and } h_j(m{x}) < 0 ext{ for all } j
otin J(m{x}^*) \}$$
 .

It is a subset of the feasible set Ω , and thus \boldsymbol{x}^* must be a local minimum on $\tilde{\Omega}$. If we assume that h_j is continuous for all j, then there exists $\varepsilon > 0$ such that for all $\boldsymbol{x} \in \mathcal{B}(\boldsymbol{x}^*, \varepsilon)$, $h_j(\boldsymbol{x}) < 0$ for all j. So locally we have

$$ilde{\Omega}\cap\mathcal{B}(oldsymbol{x}^*,arepsilon)=\{oldsymbol{x}\mid g_i(oldsymbol{x})=0 ext{ for all }i, ext{ and }h_j(oldsymbol{x})=0 ext{ for all }j\in J(oldsymbol{x}^*)\,.$$

Hence, \boldsymbol{x}^* should be a local minimum on the is set. There are only equality constraints. Lagrange condition applies. So there exists KKT multipliers $\lambda_1^*,\ldots,\lambda_m^*$ and $\mu_1^*,\ldots,\mu_\ell^*$ such that $\nabla f(x^*)+\sum\limits_{i=1}^m\lambda_i^*\nabla g_i(x^*)+\sum\limits_{j=1}^\ell\mu_j^*\nabla h_j(x^*)=\mathbf{0}$ and $\mu_j^*h_j(x^*)=0$ for all $j=1,\ldots,\ell$. The remaining part is to show that $\mu_j^*\geq 0$.

Proof of $\mu_j^* \geq 0$ for all $j \in J(x^*)$

We prove this by contradiction. Assume there exists an active $k \in J(x^*)$ and $\mu_k^* < 0$. Then, we consider the set containing all other active constraints

$$\widehat{\Omega}=\{x\mid g_i(x)=0, i=1,\cdots,m;\, h_j(x)=0, j
eq k, j\in J(x^*)\}.$$

If x^* is regular, $T = T_{x^*}\widehat{\Omega}$ is a linear space, where

$$T = \ker egin{pmatrix}
abla g_i, & 1 \leq i \leq m \
abla h_j, & k
eq j \in J(x^*) \end{pmatrix}$$

By regularity of x^* , $\nabla h_k(x^*) \notin \operatorname{span}\{\nabla g_i(x^*), \nabla h_j(x^*)\}$ where $i=1,2,\ldots,m$ and $j\in J(x^*), j\neq k$. So there exists $v\in T$ such that $\nabla h_k(x^*)^\mathsf{T} v\neq 0$, otherwise above fact does not hold. Without loss of generality, assume $\nabla h_k(x^*)^\mathsf{T} v<0$. Now we consider the Lagrange condition

$$abla f(x^*) + \sum_{i=1}^m \lambda_i^*
abla g_i(x^*) + \sum_{j \in J(x^*)} \mu_j^*
abla h_j(x^*) = 0.$$

Multiplying by v, we have

$$\left(
abla f(x^*) + \sum_{i=1}^m \lambda_i^*
abla g_i(x^*) + \sum_{j \in J(x^*)} \mu_j^*
abla h_j(x^*)
ight)^{\!\mathsf{T}} v = 0.$$

Note that $\nabla g_i(x^*)^\mathsf{T} v = 0$ and $\nabla h_k(x^*)^\mathsf{T} v = 0$ if $j \neq k$. Then,

$$abla f(x^*)^\mathsf{T} v + \mu_k^*
abla h_k(x^*)^\mathsf{T} v = 0 \implies
abla f(x^*)^\mathsf{T} v < 0.$$

Since $v\in T$, then there exists $\gamma:(-arepsilon,arepsilon) o \widehat{\Omega}$ such that $\gamma(0)=x^*$ and

 $\gamma'(0) = v$. Then,

$$egin{cases} f'(\gamma(t))|_{t=0} =
abla f(\gamma(0))^{\mathsf{T}} \gamma'(0) =
abla f(x^*)^{\mathsf{T}} v < 0 \ h'_k(\gamma(t))|_{t=0} =
abla h_k(\gamma(0))^{\mathsf{T}} \gamma(0) =
abla h_k(x^*)^{\mathsf{T}} v < 0 \end{cases}$$

which leads to

$$egin{cases} \exists \, arepsilon_0 > 0, \, orall \, 0 < arepsilon \leq arepsilon_0, \, f(\gamma(arepsilon)) < f(\gamma(0)) = f(x^*) \ \exists \, \delta_0 > 0, \, orall \, 0 < \delta \leq \delta_0, \, h_k(\gamma(\delta)) < h_k(\gamma(0)) = h_k(x^*) \ \exists \, \xi_0 > 0, \, orall \, 0 < \xi \leq \xi_0, \, h_j(\gamma(\xi)) \leq 0 ext{ for any } j
otin \, J(x^*) \end{cases}.$$

Now we obtain that for $x' \in \gamma(\min\{\varepsilon_0, \delta_0, \xi_0\})$,

$$egin{cases} h_k(x') < h_k(x^*) \leq 0 \ f(x') < f(x^*) \ x' \in \widehat{\Omega} \ h_j(x') \leq 0 ext{ for any } j
otin J(x^*) \end{cases},$$

which contradicts to that x^* is optimal. Thus we conclude $\mu_j^* \geq 0$.

KKT condition is a necessary condition for optimization problems. For convex optimization problems, as we showed for equality constrained problems, it is also sufficient.

Theorem

For a convex optimization problem

$$egin{aligned} \min_{x \in \mathbb{R}^n} & f(x) \ ext{subject to} & g_i(x) = 0, 1 \leq i \leq m \ & h_j(x) \leq 0, 1 \leq j \leq \ell \end{aligned}$$

If x^* is feasible and there exist KKT multipliers λ^* , μ^* such that KKT condition holds, then x^* is an optimal solution.

Proof

It suffices to show that for any feasible x, $\nabla f(x^*)^\mathsf{T}(x-x^*) \geq 0$ since $f(x) \geq f(x^*) + \nabla f(x^*)^\mathsf{T}(x-x^*)$.

By KKT condition,
$$abla f(x^*) = \sum\limits_{i=1}^m -\lambda_i^*
abla g_i(x^*) + \sum\limits_{j=1}^\ell -\mu_j^*
abla h_j(x^*).$$

We claim that $\nabla g_i(x^*)^\mathsf{T}(x-x^*) = 0$ for all i and $\nabla h_j(x^*)^\mathsf{T}(x-x^*) \leq 0$ for all

j. Note that

$$\left\{ egin{aligned} orall i, \ g_i \ ext{is affine, so} \ g_i(x) = g_i(x^*) = 0 \implies
abla g_i(x^*)^\mathsf{T}(x - x^*) = 0; \ orall j
otin J(x^*), \ \mu_j^* = 0; \ orall j
otin J(x^*), \ h_j(x^*) = 0, h_j(x) \le 0 \implies
abla h_j(x^*)^\mathsf{T}(x - x^*) \le h_j(x) - h_j(x^*) \le 0. \end{aligned}
ight.$$

Hence, we conclude that $\nabla f(x^*)^{\mathsf{T}}(x-x^*) \geq 0$.