Lecture 16. Karush-Kuhn-Tucker Conditions

16.1 Active constraints in inequality constrained
problems

We now consider general optimization problems with inequality constraints

min  f(z)
subject to gi(x) =0 1<i<m,
hi(z) <0 1<j<{.

First, we study the optimality condition.

Example

min x; + o
subject to  x? 4+ z3 < 2

The feasible set of the above problem and the level sets of the objective
function can be sketched as follows.

Is (\?) optimal? No.

It satisfies z2 + x2 = 2 and is a regular point, but it does not satisfy the
Lagrange multiplier condition. So it is even not optimal in the set
{(z1,22)" | 22 + 2% = 2}, which is a subset of the feasible set.



1
Is (1) optimal? Possible.

At least it is optimal in the set {(z1,2z2)" | 22 + 2 = 2} because it is
regular and has Lagrange multipliers.

—1 1
Is ( 1) optimal? Possible for the same reason as (1)

Is (g) optimal? No.

It satisfies 2 + x2 < 2. Then, there exists ¢ > 0, such that for any

<zl> € B(0,¢), 22 + z2 < 2. If it is optimal, then it must be a local
miriimum in B(0, ). However, V f(0,0) # 0, which shows that it is not a
local minimum.

From this example, we can find that different constraints provide different
requirements. We have the following definition to distinguish them.

Definition (Active and inactive constraints)

Given z € (), if a constraint h;(x) < 0 is tight at z(, namely, h;(z() = 0, then
it is called an active constraint, otherwise it is called an inactive constraint.
Denote by J(zq) = {j | h;j(zo) = 0} the set of indices of active constraints at z,

16.2 Karush-Kuhn-Tucker conditions

If z* is an optimal solution to

min  f(z)
subject to  g;(z) =0,1<i<m
hi(x) <0,1 <3</,
then z* is also optimal to
min f(z)
subject to  gi(z) =0,1 <i<m
hi(z) = 0,1 <i <4

If x* is a regular point, then there exists A\*, u*, such that

Vi) + > AVgi(z) + ) ujVhi*) =0.
i=1 jeJ (=)



If j ¢ J(z*) (inactive), we set u; = 0. Then we can rewrite above statement as
follows. There exists A* € R™, u* € R¥, such that

m l
VHE") + ) AVgi(z*) + Y piVhi(z*) =0
i=1 j=1

and for any j, uh;(z*) = 0.

-1 1
Consider the above example, there are two solutions ( 1) and (1) having such

1
multipliers. However, only 1) is optimal. We would like to rule out (1 .

1
Note that f(z1,zs) = ¢1 + 2 and h(z1,22) =22+ 22 —2.So Vf = (1) and

2
Vh = ( e . Then
2582

for G) Vf-3Vh=0.

-1 1
for ) , Vf+5Vh=0.
—1
We may force u > 0 to rule out < 1).
Intuitively, the requirement p > 0 is reasonable, since we hope f(z) > f(z*) and

h(z) < 0 in the feasible set, namely, we hope Vh(z*) point outside the feasible set
and V f(z*) point inside it.
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Now we can introduce the Karush-Kuhn-Tucker conditions.
Theorem (Karush-Kuhn-Tucker conditions)

Suppose z* is a local minimum point of an inequality constrained problem

min f(z)
subject to  g;(z) =0,1 <i<m
hi(z) =0,1 <i<{.

If z* is regular for all equality constraints and active inequality constraints,
then there exists Lagrange / KKT multipliers Aj,

ce ey Apys M7, - - -5 iy such that
m {
Vf(z*) + Zl)\ngi(x*) + Zl,u;thj(:n*) =0.

= j=

pihj(z*) =0, forall j=1,..., 4
p; > 0forallj=1,...,~

gi(z*) =0foralli=1,...,m,and h;(z*) <Oforall j=1,...,~

We can use KKT conditions to solve optimization problems.

Example 1



min x% + m%
subject to x4+ x5 =1
T2 < &

If (ml) is optimal, then there are KKT multipliers such that
&z

([ 227 +A=0
225+ A+ pu =0
p=0
p(zy —a) =0
i +xy=1

*
Ty < «

which implies that

207 + 225 +22A+pu=0

and further gives that 2\ + u = —2. So we have

* __
Ty =
*
Ty =

Case 1. a > 5. From the constraint of z, we have zj = + — & < o,

_|_

= N
INTR NS

which is always true as long as p > 0. Since u(x3 — a) = 0, we have

pu = 0, which gives that
z] =
Ty =

Case 2. a = 3. x5 = 3 — 4 < ais always true as long as p > 0. Then
since u(xz; — a) = 0. Both of them imply that

p=0o0rz; =a=
R pp—
Ty =
L p—
Ty =

Case3.a<%.x§:%—%§a — p>2—-4a >0 — z} = asince
p(zy —a) = 0. Then

N[ |

| ||

o= N



Example 2

min (z; — 2)% + (zo — 1)?
subject to  hy(z) =z — 2, <0
hy(z) = 21 + 23 —2<0

The KKT condition is

(2(z1 — 2) +2p121 +p2 =0
2(z2—1) —p1+p2=0
prhi(z) =0
poho(z) =0
hi(z),ha(z) <0

. p1, o > 0

i, N

Case 1. Both h; and hs are inactive. Then u; = py = 0. So the solution is

s —
Ty — 1
However, the solution is infeasible.

Case 2. h; is inactive and h, is active. Then

p2 =1
p1=0 3
— r1 = &
{231 + Ty — 2=0 ! i
Ty — 5
However, the solution is infeasible.
Case 3. h1 is active and h» is inactive. Then
> 0
2 — 2y =0 =
_0 — 1 >1
H2 = 9 > 1

However, the solution is infeasible.
Case 4. Both h; and hs are active. Then we have the following two
solutions

{a:%—:cgzo {wlzlo {:131:—2
— T
r1+x9 =2 o =1 2 =



For the first solution,

{:L‘lzl {—2+2u1+M2:0 m1 =
— —
Ty =1 —p1+p2 =0 Ly =

The solution satisfies the KKT condition.

wlho wolro

For the second solution

14
{$1:—2 . {—8—4u1+u2:0 =y
Ty =4 6 —p1+pus=0

The solution is invalid.

(st Cose 2.

KKT condition is possibly unsolved but a critical optimal point exists.

Example 4 (Linear program)

min —c'x

subjectto Ax <b
x>0



The KKT condition is

(—c+ATpy —py =0
pi,p2 >0

¢ p{(Az—-b)=0
pix =0

L Ax <b,xz >0

Recall LP duality and complementary slackness:

min yTb
. T T
subjectto y A>c
y=>0

and

{(y*)T(Aw* —b)=0
(Ay* —c)Tz* =0

for primal optimal solution «* and y*. It is easy to see that
p=y, pe=Ay -c

are KKT multipliers of x*.

As we mentioned before, if we define the Lagrangian as follows
L(z, A p) = f(2) + A'g(x) + p"h(z)

where g(z) = (91(x),-..,gm(2))" and h(z) = (hi(x),...,hi(x))T, then the
domain of L is given by

xcD=2domfNdomgiN---Ndomgy, Ndomh;N---Ndomhy,, X ER™, uERZZO,
and the KKT condition can be expressed as
Verl(z*, A, u*) =0, V,L(z*A*,pu*) <0, (u*)"V.L(x* A pu*)=0

for some KKT multipliers A* € R™ and p* € RY,.

16.3 Necessity and sufficiency of KKT conditions

Now we prove the necessity of KKT conditions. Cleary if * is an optimal solution
then it must be a local minimum. Consider the following set



Q= {z|gi(x)=0foralli, hj(z) =0forall j € J(z*), and h;(z) < 0 forall j ¢ J(z*)}

It is a subset of the feasible set €2, and thus «* must be a local minimum on €. If
we assume that h; is continuous for all j, then there exists ¢ > 0 such that for all
x € B(x*,¢), hj(z) <0 for all j. So locally we have

QN B(x*,e) = {x| gi(x) = 0 forall i, and hj(x) = 0 for all j € J(x*).

Hence, * should be a local minimum on the is set. There are only equality
constraints. Lagrange condition applies. So there exists KKT multipliers AJ,..., A;

m

m 4
and 7, ..., pu; such that Vf(z*) + > AjVg;(z*) + >° pu;Vh;(z*) = 0 and
i=1 =1

pihj(z*) = 0forall j=1,...,£ The remaining part is to show that p} > 0.

Proof of y; > 0 for all j € J(z*)

We prove this by contradiction. Assume there exists an active k € J(z*) and
pr, < 0. Then, we consider the set containing all other active constraints

Q={z|gi(z)=0,i=1,---,m; hj(z) =0,j £k, j € J(z*)}.
If z* is regular, T = T,-Q is a linear space, where

; 1< <
N

Vh;, k#je (@)

By regularity of z*, Vhy(z*) & span{Vgi(z*), Vh;(z*)} wherei =1,2,...,m
and j € J(z*), j # k. So there exists v € T such that Vhy(z*)"v # 0, otherwise
above fact does not hold. Without loss of generality, assume Vh(z*)Tv < 0.
Now we consider the Lagrange condition

Vi) + ) AiVai(z*)+ Y ujVhj(z*) =0.
1=1 JjeJ(z*)

Multiplying by v, we have

(Vf(x*) + zm: AiVgi(z*) + Z ,u;thj(m*))Tv =0.

jeJ(zv)
Note that Vg;(z*)Tv = 0 and Vhy(z*) v = 0 if j # k. Then,
V@) v+ u;Vh(z*)Tv=0 = Vf(z*)Tv<0.

Since v € T, then there exists y : (—e, ) — Q such that (0) = z* and



v'(0) = v. Then,
{f/(7(t))|t—0 = VF((0) Ty (0) = VF(z*)Tv < 0
hi(Y(t)) =0 = Vhi(7(0)) T(0) = Vh(2z*)Tv < 0

which leads to

deg >0, V0 < e <&, f(7(€)) < f(7(0)) = f(=")
{ 6)) < hi(~(0)) = hx(z") .
360 > 07 Vo< g < 507 (7(5)) <0 for aan g J({E*)

g
380 >0, V0 <8< 8o, hr(y(

Now we obtain that for 2’ € y(min{eg, do,&o}),

hi(a') < hp(z*) <
fla') < f(=z7)
z' €0
hj(z") < 0for any j ¢ J(z*)

which contradicts to that z* is optimal. Thus we conclude x; > 0.

KKT condition is a necessary condition for optimization problems. For convex

optimization problems, as we showed for equality constrained problems, it is also
sufficient.

Theorem

For a convex optimization problem

min f(z)
zER™
subject to gz(m) =0,1<:<m
hj(z) <0,1 <5</

If z* is feasible and there exist KKT multipliers A\*, u* such that KKT condition
holds, then x* is an optimal solution.

Proof

It suffices to show that for any feasible z, V f(z*)T(z — 2*) > 0 since

f(z) > f(=*) + Vf(z*) (z — 2).
m L
By KKT condition, Vf(z*) = > —AiVgi(z*) + > —u;Vhj(z*).
=1

i=1
We claim that Vg;(z*)T(z — z*) = 0 for all ¢ and Vh;(z*)T(z — z*) < 0 for all



j. Note that

Vi, g; is affine, so g;(z) = gi(z*) =0 = Vgi(a:*)T(ac —z*) =0;
Vjég J(CC*), /JJ; = 0;
Vje J(z*), hj(z*) =0,hi(z) <0 = th(m*)T(:v —z*) < hj(z) — hj(z*) <

Hence, we conclude that V f(z*)T(z — z*) > 0.



