
To solve the inequality constrained problems, we introduce the projected gradient

descent.

Recall the iteration step in the gradient descent method, xk+1 = xk − η∇f(xk).

Now we need to minimize f(x) over a feasible set Ω. If xk − η∇f(xk) is feasible,

then we can run the gradient descent iteration. If xk − η∇f(xk) is infeasible, a

simple idea is to project it onto Ω. This method is called the projected gradient

descent.

The the projected gradient descent step can be given by

xk+1 = PΩ(xk − η ∇f(xk)) .

Let

g(x) =
1

η
(x − PΩ(x − η ∇f(x))) ,

Lecture 17. Projected Gradient Descent

17.1 Projection operator and projected gradient descent

Definition (Projection)

The projection of a point onto a set is the point in the set with minimum

distance to the given point. Namely, the projection operator is defined by

PΩ(y) = arg min
x∈Ω

∥x − y∥ .



the iteration step can be expressed as

xk+1 = xk − η g(xk) .

Recall that, in Lecture 4, we show the following lemma.

Conversely, if there exists y ∈ C such that ⟨x − y, z − y⟩ ≤ 0, we have y = PC(x).

Otherwise, let w = PC(x). Then we have

⟨x − w, y − w⟩ ≤ 0 .

However, we also have ⟨x − y, w − y⟩ ≤ 0, which implies that

⟨x − w, w − y⟩ = ⟨x − y, w − y⟩+ ⟨y − w, w − y⟩ < 0

if y ≠ w. Contradiction.

Thus, y = PC(x) if and only if ⟨x − y, z − y⟩ for any z ∈ C.

Applying this lemma, we can show that g(x) plays a similar role as ∇f(x) in the

gradient descent.

Lemma

Let C be a nonempty, closed and convex set. Given x and y = PC(x), for any

z ∈ C, it holds that ⟨x − y, z − y⟩ ≤ 0.

Lemma



So we know that −g(x) is a desceding direction. Now we show that if g(x) = 0

then x is a minimum point.

For any x ∈ Ω,

⟨∇f(x), g(x)⟩ ≥ 0 .

The inequality holds if and only if g(x) = 0.

Proof

Since x ∈ Ω, we have

⟨x − PΩ(x − η ∇f(x)), x − η ∇f(x) − PΩ(x − η ∇f(x))⟩ ≤ 0 ,

which gives that

⟨η g(x), η g(x) − η ∇f(x)⟩ = η2 ⟨g(x), g(x) − ∇f(x)⟩ ≤ 0 .

Thus,

⟨∇f(x), g(x)⟩ ≥ ⟨g(x), g(x)⟩ .

Lemma

x∗ is a minimum point of f over Ω, iff g(x) = 0, namely,

x∗ = PΩ(x∗ − η ∇f(x∗)).

Proof

Applying the above lemma, we have x∗ = PΩ(x
∗ − ∇f(x

∗)) if and only if

⟨x∗ − η ∇f(x
∗) − x

∗, z − x
∗⟩ ≤ 0

for all z ∈ Ω, which is further equivalent to

⟨∇f(x
∗), z − x

∗⟩ ≥ 0 .

We conclude this lemma by the first-order optimality conditions of convex

functions.



Hence, in the projected gradient descent, we can stop when g(xk) is small, or

equivalently when xk+1 − xk is small.

Projected gradient descent is useful when the projection operator can be computed

efficiently. Here we give some examples.

17.2 Examples of projection operator

Example 1 (Box constraints)

Ω = {x ∣ ai ≤ xi ≤ bi, i = 1, ⋯ , n}

It is easy to see that

[PΩ(y)]i = min {bi, max{ai, yi}} =
⎧⎪⎨⎪⎩ai yi < ai

yi ai ≤ yi ≤ bi

bi yi > bi

Example 2 (L2 constraints, ridge regression)

Ω = {x ∣ ∥x∥2 ≤ t}



The projection operator PΩ(y) is to compute

By KKT condition, there exists μ ≥ 0 such that

2(x − y) + 2μx = 0 and μ(∥x∥2 − t) = 0

Then we have y = (1 + μ)x.

Hence, PΩ(y) = min{1, t
∥y∥2

} y.

min ∥x − y∥2

subject to ∥x∥2
2 ≤ t2

Example 3 (L1 constraints, LASSO)

Ω = {x : ∥x∥1 ≤ t}



Unfortunately, there is no closed form for the projection operator PΩ(y). But

we can compute it efficiently.

By symmetry, we only need to consider the case where yi ≥ 0 for all i. Now

PΩ(y) is equivalent to the following optimization problem:

By KKT condition, assume there exist KKT multipliers μ0, ⋯ , μn such that

min ∥x − y∥2

subject to ∑
i

xi ≤ t

xi ≥ 0, ∀ i .

⎧⎪⎨⎪⎩2(xi − yi) + μ0 − μi = 0, ∀i

μ0(∑xi − t) = 0

μixi = 0

μi ≥ 0

∑xi ≤ t, xi ≥ 0

Case 1. ∥y∥1 ≤ t, then μ0 = μi = 0. Hence x = y.

Case 2. ∥y∥1 > t, then

∑ 2(xi − yi) + μ0 − μ1 = 2(∑xi − ∑ yi) + nμ0 − ∑μi = 0, hence

μ0 > 0. Since μ0(∑xi − t) = 0, we have ∑xi = t.

If μi = 0, by 2(xi − yi) + μ0 − μi = 0, we have xi = yi − 1
2 μ0.



To analyze the convergence of the projected gradient descent, we show that it is a

special case of the proximal gradient descent.

Let IΩ be the indicator function of Ω, defined by

IΩ(x) = { .

Clearly IΩ is a convex function if and only if Ω is a convex set.

Then we can show that the proximal operator for IΩ is simply the projection onto

Ω:

Since

min
x∈Ω

f(x) ⟺ min
x

f(x) + IΩx ,

and for any η > 0,

xk+1 = PΩ(xk − η ∇f(xk)) = proxIΩ
(xk − η ∇f(xk)) = proxηIΩ

(xk − η ∇f(xk)) ,

we find that the projected gradient descent for minx∈Ω f(x) is the same as

proximal gradient descent for minx f(x) + IΩ(x).

By extending the results on Lecture 13 of to

Now we have

xi =

and ∑xi = t.

We may use the binary search to find μ0, where the lower bound is 0 and

the upper bound is max yi.

If μi > 0, by μixi = 0, we have xi = 0.

⎧
⎨⎩

yi −
1

2
μ0  if yi ≥

1

2
μ0

0 otherwise

17.3 Comparison with proximal gradient descent

0 x ∈ Ω
∞ x ∉ Ω

proxIΩ
(y) = arg min

x

1

2
∥x − y∥2 + IΩ(x)

= arg min
x∈Ω

∥x − y∥2

= PΩ(y) .



φ(x) = f(x) + IΩ(x) : Rn → R ∪ {+∞}, the convergence analysis for proximal

gradient descent applies also to projected gradient descent.

Theorem

Let Ω be a nonempty convex set, and f be an L-smooth convex function over

Ω. Suppose x∗ is a minimum of f over Ω. Then the sequence {xk} produced

by projected gradient descent with constant step size η ∈ (0, 1/L] satisfies

f(xk+1) ≤ f(xk) and

f(xk) − f(x
∗) ≤

∥x∗ − x0∥2

2ηk
.

Furthermore, if f is also μ-strongly convex, then

∥xk+1 − x
∗∥2 ≤ (1 − μη)k∥x

∗ − x0∥2 .


