Lecture 17. Projected Gradient Descent

17.1 Projection operator and projected gradient descent

To solve the inequality constrained problems, we introduce the projected gradient descent.

Recall the iteration step in the gradient descent method, $x_{k+1}=x_{k}-\eta \nabla f\left(x_{k}\right)$. Now we need to minimize $f(x)$ over a feasible set Ω. If $x_{k}-\eta \nabla f\left(x_{k}\right)$ is feasible, then we can run the gradient descent iteration. If $x_{k}-\eta \nabla f\left(x_{k}\right)$ is infeasible, a simple idea is to project it onto Ω. This method is called the projected gradient descent.

Definition (Projection)

The projection of a point onto a set is the point in the set with minimum distance to the given point. Namely, the projection operator is defined by

$$
\mathcal{P}_{\Omega}(\boldsymbol{y})=\underset{\boldsymbol{x} \in \Omega}{\arg \min }\|\boldsymbol{x}-\boldsymbol{y}\|
$$

The the projected gradient descent step can be given by

$$
\boldsymbol{x}_{k+1}=\mathcal{P}_{\Omega}\left(\boldsymbol{x}_{k}-\eta \nabla f\left(\boldsymbol{x}_{k}\right)\right)
$$

Let

$$
\boldsymbol{g}(\boldsymbol{x})=\frac{1}{\eta}\left(\boldsymbol{x}-\mathcal{P}_{\Omega}(\boldsymbol{x}-\eta \nabla f(\boldsymbol{x}))\right)
$$

the iteration step can be expressed as

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\eta \boldsymbol{g}\left(\boldsymbol{x}_{k}\right) .
$$

Recall that, in Lecture 4, we show the following lemma.

Lemma

Let C be a nonempty, closed and convex set. Given \boldsymbol{x} and $\boldsymbol{y}=\mathcal{P}_{C}(\boldsymbol{x})$, for any $\boldsymbol{z} \in C$, it holds that $\langle\boldsymbol{x}-\boldsymbol{y}, \boldsymbol{z}-\boldsymbol{y}\rangle \leq 0$.

Conversely, if there exists $\boldsymbol{y} \in C$ such that $\langle\boldsymbol{x}-\boldsymbol{y}, \boldsymbol{z}-\boldsymbol{y}\rangle \leq 0$, we have $\boldsymbol{y}=\mathcal{P}_{C}(\boldsymbol{x})$. Otherwise, let $\boldsymbol{w}=\mathcal{P}_{C}(\boldsymbol{x})$. Then we have

$$
\langle\boldsymbol{x}-\boldsymbol{w}, \boldsymbol{y}-\boldsymbol{w}\rangle \leq 0 .
$$

However, we also have $\langle\boldsymbol{x}-\boldsymbol{y}, \boldsymbol{w}-\boldsymbol{y}\rangle \leq 0$, which implies that

$$
\langle\boldsymbol{x}-\boldsymbol{w}, \boldsymbol{w}-\boldsymbol{y}\rangle=\langle\boldsymbol{x}-\boldsymbol{y}, \boldsymbol{w}-\boldsymbol{y}\rangle+\langle\boldsymbol{y}-\boldsymbol{w}, \boldsymbol{w}-\boldsymbol{y}\rangle<0
$$

if $\boldsymbol{y} \neq \boldsymbol{w}$. Contradiction.
Thus, $\boldsymbol{y}=\mathcal{P}_{C}(\boldsymbol{x})$ if and only if $\langle\boldsymbol{x}-\boldsymbol{y}, \boldsymbol{z}-\boldsymbol{y}\rangle$ for any $\boldsymbol{z} \in C$.
Applying this lemma, we can show that $\boldsymbol{g}(\boldsymbol{x})$ plays a similar role as $\nabla f(\boldsymbol{x})$ in the gradient descent.

Lemma

For any $\boldsymbol{x} \in \Omega$,

$$
\langle\nabla f(\boldsymbol{x}), \boldsymbol{g}(\boldsymbol{x})\rangle \geq 0
$$

The inequality holds if and only if $\boldsymbol{g}(\boldsymbol{x})=\mathbf{0}$.

Proof

Since $\boldsymbol{x} \in \Omega$, we have

$$
\left\langle\boldsymbol{x}-\mathcal{P}_{\Omega}(\boldsymbol{x}-\eta \nabla f(\boldsymbol{x})), \boldsymbol{x}-\eta \nabla f(\boldsymbol{x})-\mathcal{P}_{\Omega}(\boldsymbol{x}-\eta \nabla f(\boldsymbol{x}))\right\rangle \leq 0,
$$

which gives that

$$
\langle\eta \boldsymbol{g}(\boldsymbol{x}), \eta \boldsymbol{g}(\boldsymbol{x})-\eta \nabla f(\boldsymbol{x})\rangle=\eta^{2}\langle\boldsymbol{g}(\boldsymbol{x}), \boldsymbol{g}(\boldsymbol{x})-\nabla f(\boldsymbol{x})\rangle \leq 0 .
$$

Thus,

$$
\langle\nabla f(\boldsymbol{x}), \boldsymbol{g}(\boldsymbol{x})\rangle \geq\langle\boldsymbol{g}(\boldsymbol{x}), \boldsymbol{g}(\boldsymbol{x})\rangle .
$$

So we know that $-\boldsymbol{g}(\boldsymbol{x})$ is a desceding direction. Now we show that if $\boldsymbol{g}(\boldsymbol{x})=\mathbf{0}$ then \boldsymbol{x} is a minimum point.

Lemma

\boldsymbol{x}^{*} is a minimum point of f over Ω, iff $\boldsymbol{g}(\boldsymbol{x})=\mathbf{0}$, namely,
$\boldsymbol{x}^{*}=\mathcal{P}_{\Omega}\left(\boldsymbol{x}^{*}-\eta \nabla f\left(\boldsymbol{x}^{*}\right)\right)$.

Proof

Applying the above lemma, we have $\boldsymbol{x}^{*}=\mathcal{P}_{\Omega}\left(\boldsymbol{x}^{*}-\nabla f\left(\boldsymbol{x}^{*}\right)\right)$ if and only if

$$
\left\langle\boldsymbol{x}^{*}-\eta \nabla f\left(\boldsymbol{x}^{*}\right)-\boldsymbol{x}^{*}, \boldsymbol{z}-\boldsymbol{x}^{*}\right\rangle \leq 0
$$

for all $\boldsymbol{z} \in \Omega$, which is further equivalent to

$$
\left\langle\nabla f\left(\boldsymbol{x}^{*}\right), \boldsymbol{z}-\boldsymbol{x}^{*}\right\rangle \geq 0 .
$$

We conclude this lemma by the first-order optimality conditions of convex functions.

Hence, in the projected gradient descent, we can stop when $\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)$ is small, or equivalently when $\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}$ is small.

17.2 Examples of projection operator

Projected gradient descent is useful when the projection operator can be computed efficiently. Here we give some examples.

Example 1 (Box constraints)

$$
\Omega=\left\{x \mid a_{i} \leq x_{i} \leq b_{i}, \quad i=1, \cdots, n\right\}
$$

It is easy to see that

$$
\left[\mathcal{P}_{\Omega}(y)\right]_{i}=\min \left\{b_{i}, \max \left\{a_{i}, y_{i}\right\}\right\}=\left\{\begin{array}{lr}
a_{i} & y_{i}<a_{i} \\
y_{i} & a_{i} \leq y_{i} \leq b_{i} \\
b_{i} & y_{i}>b_{i}
\end{array}\right.
$$

Example 2 (L^{2} constraints, ridge regression)

$$
\Omega=\left\{x \mid\|x\|_{2} \leq t\right\}
$$

The projection operator $\mathcal{P}_{\Omega}(y)$ is to compute

$$
\begin{aligned}
\min & \|x-y\|^{2} \\
\text { subject to } & \|x\|_{2}^{2} \leq t^{2}
\end{aligned}
$$

By KKT condition, there exists $\mu \geq 0$ such that

$$
2(x-y)+2 \mu x=0 \quad \text { and } \quad \mu\left(\|x\|^{2}-t\right)=0
$$

Then we have $y=(1+\mu) x$.
Hence, $\mathcal{P}_{\Omega}(y)=\min \left\{1, \frac{t}{\|y\|_{2}}\right\} y$.

Example 3 (L^{1} constraints, LASSO)

$$
\Omega=\left\{x:\|x\|_{1} \leq t\right\}
$$

Unfortunately, there is no closed form for the projection operator $\mathcal{P}_{\Omega}(y)$. But we can compute it efficiently.
By symmetry, we only need to consider the case where $y_{i} \geq 0$ for all i. Now $\mathcal{P}_{\Omega}(y)$ is equivalent to the following optimization problem:

$$
\begin{aligned}
\min & \|x-y\|^{2} \\
\text { subject to } & \sum_{i} x_{i} \leq t \\
& x_{i} \geq 0, \forall i
\end{aligned}
$$

By KKT condition, assume there exist KKT multipliers μ_{0}, \cdots, μ_{n} such that

$$
\left\{\begin{array}{l}
2\left(x_{i}-y_{i}\right)+\mu_{0}-\mu_{i}=0, \forall i \\
\mu_{0}\left(\sum x_{i}-t\right)=0 \\
\mu_{i} x_{i}=0 \\
\mu_{i} \geq 0 \\
\sum x_{i} \leq t, x_{i} \geq 0
\end{array}\right.
$$

- Case 1. $\|y\|_{1} \leq t$, then $\mu_{0}=\mu_{i}=0$. Hence $x=y$.
- Case 2. $\|y\|_{1}>t$, then
$\sum 2\left(x_{i}-y_{i}\right)+\mu_{0}-\mu_{1}=2\left(\sum x_{i}-\sum y_{i}\right)+n \mu_{0}-\sum \mu_{i}=0$, hence $\mu_{0}>0$. Since $\mu_{0}\left(\sum x_{i}-t\right)=0$, we have $\sum x_{i}=t$.
- If $\mu_{i}=0$, by $2\left(x_{i}-y_{i}\right)+\mu_{0}-\mu_{i}=0$, we have $x_{i}=y_{i}-\frac{1}{2} \mu_{0}$.
- If $\mu_{i}>0$, by $\mu_{i} x_{i}=0$, we have $x_{i}=0$.

Now we have

$$
x_{i}=\left\{\begin{array}{lr}
y_{i}-\frac{1}{2} \mu_{0} & \text { if } y_{i} \geq \frac{1}{2} \mu_{0} \\
0 & \text { otherwise }
\end{array}\right.
$$

and $\sum x_{i}=t$.
We may use the binary search to find μ_{0}, where the lower bound is 0 and the upper bound is max y_{i}.

17.3 Comparison with proximal gradient descent

To analyze the convergence of the projected gradient descent, we show that it is a special case of the proximal gradient descent.

Let I_{Ω} be the indicator function of Ω, defined by

$$
I_{\Omega}(x)= \begin{cases}0 & \boldsymbol{x} \in \Omega \\ \infty & \boldsymbol{x} \notin \Omega\end{cases}
$$

Clearly I_{Ω} is a convex function if and only if Ω is a convex set.
Then we can show that the proximal operator for I_{Ω} is simply the projection onto Ω :

$$
\begin{aligned}
\operatorname{prox}_{I_{\Omega}}(\boldsymbol{y}) & =\underset{\boldsymbol{x}}{\arg \min } \frac{1}{2}\|\boldsymbol{x}-\boldsymbol{y}\|^{2}+I_{\Omega}(\boldsymbol{x}) \\
& =\underset{\boldsymbol{x} \in \Omega}{\arg \min }\|\boldsymbol{x}-\boldsymbol{y}\|^{2} \\
& =\mathcal{P}_{\Omega}(\boldsymbol{y}) .
\end{aligned}
$$

Since

$$
\min _{\boldsymbol{x} \in \Omega} f(\boldsymbol{x}) \quad \Longleftrightarrow \quad \min _{\boldsymbol{x}} f(\boldsymbol{x})+I_{\Omega} \boldsymbol{x}
$$

and for any $\eta>0$,

$$
\boldsymbol{x}_{k+1}=\mathcal{P}_{\Omega}\left(\boldsymbol{x}_{k}-\eta \nabla f\left(\boldsymbol{x}_{k}\right)\right)=\operatorname{prox}_{I_{\Omega}}\left(\boldsymbol{x}_{k}-\eta \nabla f\left(\boldsymbol{x}_{k}\right)\right)=\operatorname{prox}_{\eta I_{\Omega}}\left(\boldsymbol{x}_{k}-\eta \nabla f\left(\boldsymbol{x}_{k}\right)\right),
$$

we find that the projected gradient descent for $\min _{\boldsymbol{x} \in \Omega} f(\boldsymbol{x})$ is the same as proximal gradient descent for $\min _{\boldsymbol{x}} f(\boldsymbol{x})+I_{\Omega}(\boldsymbol{x})$.
By extending the results on Lecture 13 of to
$\varphi(\boldsymbol{x})=f(\boldsymbol{x})+I_{\Omega}(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$, the convergence analysis for proximal gradient descent applies also to projected gradient descent.

Theorem

Let Ω be a nonempty convex set, and f be an L-smooth convex function over Ω. Suppose \boldsymbol{x}^{*} is a minimum of f over Ω. Then the sequence $\left\{\boldsymbol{x}_{k}\right\}$ produced by projected gradient descent with constant step size $\eta \in(0,1 / L]$ satisfies $f\left(\boldsymbol{x}_{k+1}\right) \leq f\left(\boldsymbol{x}_{k}\right)$ and

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq \frac{\left\|\boldsymbol{x}^{*}-\boldsymbol{x}_{0}\right\|^{2}}{2 \eta k}
$$

Furthermore, if f is also μ-strongly convex, then

$$
\left\|\boldsymbol{x}_{k+1}-\boldsymbol{x}^{*}\right\|^{2} \leq(1-\mu \eta)^{k}\left\|\boldsymbol{x}^{*}-\boldsymbol{x}_{0}\right\|^{2}
$$

