
Recall that, if we define the Lagrangian as follows

L(x, λ, μ) = f(x) + λTg(x) + μTh(x)

where g(x) = (g1(x), … , gm(x))T and h(x) = (h1(x), … , hk(x))T, then the

domain of L is given by

x ∈ D ≜ dom f ∩ dom g1 ∩ ⋯ ∩ dom gm ∩ dom h1 ∩ ⋯ ∩ dom hk, λ ∈ Rm, μ ∈ Rk
≥0 ,

and the KKT condition can be expressed as

∇x,λL(x∗, λ∗, μ∗) = 0, ∇μL(x∗, λ∗, μ∗) ≤ 0, (μ∗)T∇μL(x∗, λ∗, μ∗) = 0

for some KKT multipliers λ∗ ∈ Rm and μ∗ ∈ Rk
≥0.

In the part of equality constrained convex optimization, we also mentioned that

∇L = 0 does not imply that L achieves its minimum value, since L is not convex in

general. If Lagrange multipliers λ∗ exists, (x∗, λ∗) is a saddle point of L in a sense.

For inequality constrained optimization problems, the situation becomes more

complicated. Since ∇μL may not be 0 in the KKT condition, (x∗, λ∗, μ∗) is possibly

not a stationary point. But it is still a minimax point.

Note that if x is feasible, then gi(x) = 0 for all i and hj(x) ≤ 0 for all j. So we have

L(x, λ, μ) ≤ f(x) for all λ ∈ Rm and μ ∈ Rk
≥0. Moreover, we have

L(x, 0, 0) = f(x). Thus

f(x) = max
λ∈Rm, μ∈Rk

≥0

L(x, λ, μ) .

For infeasible x, there exists gi(x) ≠ 0 or hj(x) > 0. Then we known

maxλ∈Rm, μ∈Rk
≥0
L(x, λ, μ) → ∞ as λigi(x) or μjhj(x) goes to infinity. Overall, if x∗

is a minimum point of f(x) over the domain D ⊆ Rn, we conclude that

f(x∗) = min
x∈D

max
λ∈Rm, μ∈Rk

≥0

L(x, λ, μ) .

Lecture 19. Lagrange Duality

19.1 Lagrange dual function and Lagrange dual problem



This equality holds even when we consider general (not necessarily convex)

optimization problems.

Here, the order in which we maximize and minimize in this equation is essential

and generally cannot be swapped. What happens if we swap the order in which we

maximize and minimize? In this lecture, we study the optimization problem after

swapping the order.

We first introduce some examples.

Definition (Lagrange dual)

Given an optimization problem and its Lagragian function L(x, λ, μ), the

Lagrange dual function is defined by

ϕ(λ, μ) = inf
x∈D

L(x, λ, μ) ,

and the Lagrange dual problem is given by

Sometimes we write min, max instead of inf, sup for convenience.

sup ϕ(λ, μ)

subject to μ ≥ 0 .

Example 1

Primal optimization problem:

Lagrangian function:

L(x, λ, μ) = L(x1, x2, μ) = x2
1 + x2

2 + μ(x1 + x2 + 1)

Dual function:

ϕ(μ) = min
x1,x2

x2
1 + x2

2 + μ(x1 + x2 + 1) = −
1

2
μ2 + μ

Dual problem:

min x2
1 + x2

2

subject to  x1 + x2 ≤ −1



The optimal solution is μ∗ = 1 with optimal value ϕ∗ = 1
2 .

max ϕ(μ) = −
1

2
μ2 + μ

subject to  μ ≥ 0

Example 2

Primal optimization problem:

Lagrangian function:

L(x, λ, μ) = L(x1, x2, μ1, μ2) = x1 + x2 + μ1((x1 − 1)2 + x2
2 − 1) + μ2((x1 + 1)

Dual function:

ϕ(μ1, μ2) = min
x1,x2

L(x, λ, μ) =

Dual problem:

Let μ1 = μ2 → ∞, then the optimal value is ϕ∗ = sup ϕ(μ1, μ2) = 0.

min x1 + x2

subject to  (x1 − 1)2 + x2
2 ≤ 1

(x1 + 1)2 + x2
2 ≤ 1

⎧⎪⎨⎪⎩−∞ if μ1 + μ2 ≤

−2(μ1 − μ2)2 + 2(μ1 − μ2) − 1

2(μ1 + μ2)
otherw

sup ϕ(μ1, μ2)

subject to  μ1, μ2 ≥ 0

Example 3

Primal optimization problem:

Dual function:

max cTx

subject to  Ax1 = b1

Ax2 ≤ b2

ϕ(λ, μ) = inf
x

(λTA1 + μTA2 − cT)x − λTb1 − μTb2

= {−∞ if λTA1 + μTA2 ≠ cT

−λTb1 − μTb2 otherwise



The Lagrange dual problem of a linear program is exactly the same as the dual

problem introduced before.

An interesting fact is that dual functions are always concave, thus dual problems ars

always convex, regardless of whether the primal problem is convex or not.

Dual problem: sup
μ≥0

ϕ(λ, μ), which is equivalent to

min λTb1 + μTb2

subject to  λTA1 + μTA2 = cT

μ ≥ 0

Example 4

Primal optimization problem:

Domain: D = {(x1, x2)T ∣ x2 > 0}

Dual function:

ϕ(μ) = inf
x2>0

e−x1 + μ
x2

1

x2
=

Dual problem:

min
x1∈R,x2>0

e−x1

subject to 
x2

1

x2
≤ 0

⎧⎪⎨⎪⎩0 if μ ≥ 0,  when x1 → ∞ and 
x2

x2
1

→ ∞

−∞ otherwise,  when x1 → ∞ and x2 → 0

sup ϕ(μ)

subject to  μ ≥ 0

Theorem

For any (not necessarily convex) optimization problem, its Lagrange dual

function is concave.

Proof



What is the relationship between the optimal value of the primal and the optimal

value of the dual?

Let D be the domain set, f ∗ be the optimal value of the primal problem, and ϕ∗ be

the optimal value of the dual problem. Then we have the following weak duality

theorem.

In fact, the weak duality theorem is a particular case of the following min-max

inequality.

For any fixed x, L(x, λ, μ) is an affine function of λ and μ, so

ϕ(λ, μ) = inf
x∈D

L(x, λ, μ)

is a pointwise minimum of a family of affine functions, which implies that

−ϕ(λ, μ) is a convex function.

19.2 Weak and strong duality

Theorem (Weak duality)

f ∗ ≥ ϕ∗ .

Proof

As we showed before,

f ∗ = inf
x∈D

sup
λ∈Rm, μ∈Rk

≥0

L(x, λ, μ) .

For any fixed λ0 ∈ Rm, μ0 ∈ Rk
≥0, we have

ϕ(λ0, μ0) = inf
x∈D

L(x, λ0, μ0) ≤ inf
x∈D

sup
λ∈Rm, μ∈Rk

≥0

L(x, λ, μ) = f ∗ .

Thus,

ϕ∗ = sup
λ∈Rm, μ∈Rk

≥0

ϕ(λ, μ) ≤ f ∗ .

Theorem (Min-max inequality)



The min-max inequality has various examples, such as the limit superior and the

limit inferior of a sequence. Given a sequence {an}, we have lim sup an ≥ lim inf an,

where

lim sup
n→∞

an = lim
n→∞

sup
m≥n

am = inf
n→∞

sup
m≥n

am

and

lim inf
n→∞

an = lim
n→∞

inf
m≥n

am = sup
n→∞

inf
m≥n

am .

Now we define the duality gap as f ∗− ϕ∗, which is always nonnegative. If f ∗ = ϕ∗,

then we say strong duality holds.

Unlike the duality for linear programs, strong duality does not always hold. See

e.g., Example 4 above, where f ∗ = 1 and ϕ∗ = 0. A natural question is, under

which condition the strong duality holds?

Our first result is that for convex optimization problems, KKT condition implies

strong duality.

Let X, Y  be two sets. For F : X × Y → R, it holds that

inf
x∈X

sup
y∈Y

F(x, y) ≥ sup
y∈Y

inf
x∈X

F(x, y) .

Theorem

For any convex optimization problem, if a feasible solution x∗ has KKT

multipliers λ∗ and μ∗, then strong duality holds. In particular, (λ∗, μ∗) is an

optimal solution to the dual problem.

Proof

For convex problems, if x∗ has KKT multipliers, then f ∗ = f(x∗). By weak

duality, we have

f(x∗) = f ∗ ≥ ϕ∗ = sup
μ≥0

ϕ(λ, μ) ≥ ϕ(λ∗, μ∗) .

So it suffices to show that ϕ(λ∗, μ∗) = f(x∗).

Note that L(x∗, λ∗, μ∗) = f(x∗) since gi(x∗) = 0 and μ∗
j hj(x∗) = 0. We fix

λ∗, μ∗ and let L̂(x) = L(x, λ∗, μ∗). Then ϕ(λ∗, μ∗) = minx L̂(x). Because



Conversely, if the primal and the dual have finite optimal solutions, and strong

duality holds, then KKT condition is satisfied.

L̂(x) is a convex function of x and ∇L̂(x∗) = ∇xL(x∗, λ∗, μ∗) = 0, we

conclude that x∗ = arg min L̂(x). Thus,

ϕ(λ∗, μ∗) = min
x

L̂(x) = L̂(x∗) = L(x∗, λ∗, μ∗) = f(x∗) .

Remark

From this proof, we find that for x∗ ∈ Ω, λ∗ ∈ Rm, μ∗ ∈ Rk, f(x∗) = ϕ(λ∗, μ∗)

if and only if x∗ is an optimal solution to the primal problem, (λ∗, μ∗) is an

optimal solution to the dual problem, and strong duality holds, because

f(x∗) ≥ f ∗ ≥ ϕ∗ ≥ ϕ(λ∗, μ∗) .

This fact holds for any optimization problem (not necessarily convex).

Theorem

For any optimization problem, if the primal has a (finite) optimal solution x∗,

the dual has a (finite) optimal solution (λ∗, μ∗), and the strong duality holds

(or equivalently there exists x∗ ∈ Ω, λ∗ ∈ Rm, μ∗ ∈ Rk
≥0 such that

f(x∗) = ϕ(λ∗, μ∗)), then (λ∗, μ∗) are KKT multipliers of x∗.

Proof

Note that x∗ is feasible, so gi(x∗) = 0 for all i, and hj(x∗) ≤ 0 for all j. Thus,

f ∗ = f(x∗) ≥ L(x∗, λ∗, μ∗) ≥ inf
x

L(x, λ∗, μ∗).

The first inequality is due to μ∗ ≥ 0. By strong duality,

f ∗ = ϕ∗ = ϕ(λ∗, μ∗) = inf
x

L(x, λ∗, μ∗) .

It yields that

f ∗ = f(x∗) = L(x∗, λ∗, μ∗) = inf
x

L(x, λ∗, μ∗) .

We conclude that KKT conditions are satisfied, since



Here, the existence of finite optimal solutions is essential. Only strong duality is not

sufficient. Otherwise, see e.g., Example 2 above, where x∗ does not have KKT

multipliers.

Sometimes we may find solving KKT conditions is difficult. Is there any simple

condition to certify strong duality?

Before introducing other conditions, we first give a geometric interpretation for

strong duality.

1. L(x∗, λ∗, μ∗) = infx L(x, λ∗, μ∗) ⟹ ∇xL(x∗, λ∗, μ∗) = 0;

2. f(x∗) = L(x∗, λ∗, μ∗) ⟹ μ∗
j hj(x∗) = 0 for all j;

3. (λ∗, μ∗) is feasible for the dual ⟹ μ∗ ≥ 0.

Tip (KKT conditions revisit)

In a sense, KKT conditions are equivalent to existence of optimal solutions and

strong duality. So we can rewrite KKT conditions in terms of the primal (P)

and dual (D) problems:

1. Stationary: ∇xL(x∗, λ∗, μ∗) = 0;

2. Primal feasible: x∗ is feasible for (P), namely, gi(x∗) = 0 for all i and

hj(x∗) ≤ 0 for all j;

3. Dual feasible: (λ∗, μ∗) is feasible for (D), namely, μ∗
j ≥ 0 for all j;

4. Complementary slackness: h(x∗)Tμ∗ = 0, namely, μ∗
j hj(x∗) = 0 for all

j.

Geometric interpretation of duality

Example

Consider the following optimization

To analyze this problem, we can draw an “epigraph” of

min x4 − 50x2 + 100x

subject to x ≥ −
5

2
.



Now we give the Slater’s condition for convex optimizations.

f(x) = x4 − 50x2 + 100x with respect to h(x) = − 5
2 − x. Namely, let

C ≜ {(p, t) ∣ ∃ x, h(x) ≤ p, f(x) ≤ t} .

Then f ∗ is the point where C intersects f-axis.

What is ϕ∗? The Lagrangian is

L(x, μ) = f(x) + μh(x) .

Given a fixed μ and a constant φ, f + μh = φ characterizes a line intersecting

f-axis at (0, φ) with slope −μ. So by letting φ = ϕ(μ) = minx f(x) + μh(x), we

see that ϕ(μ) is the lowest intersection between f-axis and a line which

intersects the boundary of C and has slope −μ. Namely, ϕ(μ) is the

intersection between f-axis and the supporting lines to C with slope −μ. So ϕ∗

is the highest intersection between f-axis and all supporting lines to C.

19.3 Slater’s condition for convex optimization

Theorem (Slater’s condition)

If there exists x ∈ relint(D) such that gi(x) = 0 for all i and hj(x) < 0 for all j,

then strong duality holds.



Before proving this theorem, we first think about when strong duality does not

hold. The geometric interpretation tells us f ∗ is the lowest intersection of C and f-

axis, while ϕ∗ is the highest intersection of f-axis and all supporting hyperplanes of

C. So (0, f ∗) is a point on the boundary of C. Heuristically, if C is convex, there

should be a supporting hyperplane passing through (0, f ∗), which gives that

ϕ∗ ≥ f ∗.

Unfortunately, this observation is not always true, because there are vertical

(orthogonal to h-axis) supporting hyperplanes. Consider the following example

(Example 4 above).

Why does strong duality fail in this case? We can also define

C ≜ {(p, t)T ∣ ∃ x ∈ R × R>0, h(x) ≤ p, f(x) ≤ t} .

We can find that

Remark

Here the relint means relative interior points. A point x ∈ D is a relative

interior point if B(x, ε) ∩ aff(D) ⊆ D, where aff(D) is the affine hull of D. For

any convex set D, the relative interior is equivalent to the set of non-extreme

points. We can easily see the differences between interior and relative interior.

For example,

the interior of a line segment in an at least two-dimensional space is

empty, but its relative interior is the line segment without its endpoints;

the interior of a disc in an at least three-dimensional space is empty, but

its relative interior is the same disc without its circular edge.

Example

The dual function is ϕ(μ) = 0 if μ ≥ 0 and ϕ(μ) = −∞ otherwise. So the

optimal value to the dual problem supμ≥0 ϕ(μ) is ϕ∗ = 0, while the optimal

value to the primal is f ∗ = 1. Strong duality does not hold.

min
x1∈R, x2>0

e−x1

subject to
x2

1

x2
≤ 0



So geometrically, the Slater’s condition says that if C is convex, and C in the h < 0

region is not empty, then strong duality holds.

We now prove the Slater’s condition. We first show that C is convex. Generally, for

a convex problem

we define

C = {(p1, ⋯ , pk, q1, ⋯ , qm, t) ∈ R
k+m+1 ∣ ∃ x ∈ D, hj(x) ≤ pj, gi(x) = qi, f(x) ≤ t} .

if p = 0, then x2
1/x2 ≤ 0, so f(x) = 1;

if p > 0, then x2
1/x2 ≤ p, so f(x) → 0 as x1 → ∞.

Thus, C = {(0, t)T ∣ t ≥ 1} ∪ {(p, t)T ∣ p > 0, t > 0}. Although C is convex,

strong duality does not hold, since the unique supporting hyperplane at

(0, f ∗) is vertical.

min f(x)

subject to gi(x) = 0, 1 ≤ i ≤ m

hj(x) ≤ 0, 1 ≤ j ≤ k

Lemma

C is a convex set.

Proof



Now we are ready to prove strong duality if Slater’s condition is satisfied.

Take two points (p1, q1, t1), (p2, q2, t2) ∈ C, so there exists x1, x2 ∈ D such that

For any θ ∈ [0, 1], let y = θx1 + θ̄x2. Then by convexity of f, hj and affinity of

gi, we have

This leads to θ(p1, q1, t1) + θ̄(p2, q2, t2) = (θp1 + θ̄p2, θq1 + θ̄q2, θt1 + θ̄t2) ∈ C.

h(x1) ≤ p1 , q(x1) = q1 , f(x1) ≤ t1 ,

h(x2) ≤ p2 , q(x2) = q2 , f(x2) ≤ t2 .

hj(y) ≤ θhj(x1) + θ̄hj(x2) ≤ θp1 + θ̄p2 ,

gi(y) = θg(x1) + θ̄g(x2) = θq1 + θ̄q2 ,

f(y) ≤ θf(x1) + θ̄f(x2) ≤ θt1 + θ̄t2 .

Proof of strong duality

If f ∗ = −∞, by weak duality, ϕ∗ ≤ f ∗, so ϕ∗ = −∞. Thus the strong duality

holds.

Now assume that f ∗ > −∞. By Slater's condition, the feasible set Ω ≠ ∅, so

f ∗ < ∞. It suffices to show that there exists a nonvertical supporting

hyperplane passing through (0, 0, f ∗).

Step 1. Prove that (0, 0, f ∗) ∈ ∂C. Note that f ∗ = inf
x∈Ω

f(x). So for all

ε > 0, there exists x ∈ D such that

gi(x) = 0 for all i , hj(x) ≤ 0 for all j , f(x) < f ∗+ ε .

Thus (0, 0, f ∗+ ε) ∈ C. Moreover, for all δ > 0 , there does not exists

x ∈ Ω such that

gi(x) = 0 for all i , hj(x) ≤ 0 for all j , f(x) ≤ f ∗− δ .

which gives that (0, 0, f ∗− δ) ∉ C. Therefore, (0, 0, f ∗) ∈ ∂C.

Step 2. Show that there exists a nonvertical supporting hyperplane. Since

(0, 0, f ∗) ∈ ∂C, there exists a supporting hyperplane passing through

(0, 0, f ∗), i.e., there exists (μ, λ, ξ) ≠ 0 such that

∀ (p, q, t) ∈ C , μTp + λTq + ξt ≥ ξf ∗ .

Note that for all t > f ∗, (0, 0, t) is in C. So we have ξ ≥ 0. Similarly, for



all p ≥ 0, (p, 0, f ∗) is in C by definition, so we have μ ≥ 0.

We now claim that ξ ≠ 0. If not, μTp + λTq ≥ 0. By Slater's condition,

there exists ~x such that

gi(~x) = 0 for all i , hj(~x) < 0 for all j .

Hence there exists 
~
t such that

(h1(~x), … , hk(~x), g1(~x), … , gm(~x),
~
t) ∈ C .

Thus μTh(~x) ≥ 0, where h(x) = (h1(x), … , hk(x)). Since h(~x) < 0, it

implies that μ = 0. Now we obtain that λTg(x) ≥ 0 for all x ∈ D, where

g(x) = (g1(x), … , gm(x))T = Ax − b. We can show that it is impossible

unless λ = 0.

Suppose aff(D) = {x ∣ Ux = w} for some U and w. Without loss of

generality, we may assume the matrix ( ) has full (row) rank.

Otherwise some constraints are redundant on the domain D. Note that ~x

is a relative interior point of D. If there exists v ∈ Rn and ε > 0 such that
~x + εv ∈ D, then there exists δ > 0 such that ~x − δv ∈ D. Since g is affine,

and g(~x) = 0, we have

λTg(~x + εv) = λTg(~x) + ελTg(v) = ελTg(v) and λTg(~x − δv) = λ

If λTg(x) ≥ 0 for all x ∈ D, we can conclude that λTg(x) = 0 for all

x ∈ D. Namely, for all x ∈ D,

λTA(x − ~x) = 0 .

On the other hand, aff(D) = {x ∣ Ux = w}, so U(x − ~x) = 0 for every

x ∈ D. Using the same argument for the sufficiency of Lagrange

multipliers for convex optimization, we conclude that λTA is in the row

space of U. But this is impossible unless λ = 0, due to the full row rank

assumption of ( ).

Overall, we obtain that if ξ = 0, then μ = 0 and λ = 0, which contradicts

to (μ, λ, ξ) ≠ 0. It yields that ξ ≠ 0, and further gives that ξ > 0.

A

U

A

U

Step 3. Conclude that strong duality holds. Now let μ̂ = μ/ξ, λ̂ = λ/ξ.

For all (p, q, t) ∈ C, since μTp + λTq + ξt ≥ ξf ∗, we have

μ̂Tp + λ̂Tq + t ≥ f ∗ .



Now we show an example of solving optimization problems via duality. Consider

the problem finding the projection to the polytope.

We compute its Lagrangian function

L(x, μ) =
1

2
∥x − x0∥2 +

m

∑
i=1

μi (⟨wi, x⟩− bi)

and let ϕ(μ) = infx∈Rn L(x, μ). By Slater's condition, to solve the primal

optimization problem, it suffices to solve its dual problem

max
μ∈Rm

≥0

ϕ(μ) .

Observe that, L(x, u) is a strongly convex function. Then for μ ≥ 0, the minimizer

of L(x, μ) is attained at the point x(μ) = x0 − ∑m
i=1 μiwi. So it holds that

ϕ(μ) = ⟨μ, b⟩−
1

2
μTWμ

where

To (approximately) maximize ϕ(μ) we can apply the projected gradient descent.

Thus,

ϕ(λ̂, μ̂) = inf
x∈D

f(x) + λ̂Tg(x) + μ̂Th(x) ≥ f ∗ ,

because (h(x), g(x), f(x)) ∈ C for all x ∈ D. By weak duality ϕ∗ ≤ f ∗, we

conclude that ϕ∗ = f ∗.

19.4 An example of solving optimization via duality

min
x∈Rn

1

2
∥x − x0∥2

subject to ⟨wi, x⟩ ≤ bi, ∀ i ∈ [m].

b ≜ (⟨wi, x0⟩− bi)i∈[m] ∈ Rm ,

W ≜ (⟨wi, wj⟩)i,j∈[m] ∈ Rm×m .


