Lecture 19. Lagrange Duality

19.1 Lagrange dual function and Lagrange dual problem

Recall that, if we define the Lagrangian as follows
L(z, A, p) = f(@) + ATg(z) + p'h(z)

where g(z) = (g1(x),-..,gm(x))T and h(z) = (hi(x), ..., hi(x))T, then the
domain of £ is given by

€D =domfNdomg; N---Ndomg, Ndomh; N---Ndomhy, AER™, peRE,

and the KKT condition can be expressed as
VeaLl(x* A, u*) =0, V,L(z* A", p1*) <0, (u)'V,L(x*A,u*)=0
for some KKT multipliers A* € R™ and p* € R’go.

In the part of equality constrained convex optimization, we also mentioned that
VL = 0 does not imply that £ achieves its minimum value, since £ is not convex in
general. If Lagrange multipliers A* exists, (x*, A*) is a saddle point of L in a sense.
For inequality constrained optimization problems, the situation becomes more
complicated. Since V, £ may not be 0 in the KKT condition, (z*, A*, u*) is possibly
not a stationary point. But it is still a minimax point.

Note that if « is feasible, then g;(x) = 0 for all ¢ and h;(2) < 0 for all j. So we have
L(x, A\ p) < f(x)forall A € R™ and p € R’;O. Moreover, we have
L(x,0,0) = f(x). Thus

f(®)=_max L(z,A p).
AeR™, peRt

For infeasible x, there exists g;(x) # 0 or hj(x) > 0. Then we known
maxycgm, uert, £(2, A, p) = 00 as Aigi(e) or p;h;(x) goes to infinity. Overall, if =*

is a minimum point of f(x) over the domain D C R", we conclude that

f(2*) =min max Lz, p).
z€D XeR™, peRk,



This equality holds even when we consider general (not necessarily convex)
optimization problems.

Here, the order in which we maximize and minimize in this equation is essential
and generally cannot be swapped. What happens if we swap the order in which we
maximize and minimize? In this lecture, we study the optimization problem after
swapping the order.

Definition (Lagrange dual)

Given an optimization problem and its Lagragian function L(z, A, u), the
Lagrange dual function is defined by

6(A, 1) = inf L(z,A,p),
xeD

and the Lagrange dual problem is given by

sup  $(A, p)
subjectto pu > 0.

Sometimes we write min, max instead of inf, sup for convenience.

We first introduce some examples.

Example 1
Primal optimization problem:

min :c% = a:%
subject to x7 +x9 < —1

Lagrangian function:
L(z, A\, p) = L(T1,Ta, ) = T2 + 25 + p(xy + 22 + 1)

Dual function:

. 1
$(n) = min 21 + 25 + p(er + 2y + 1) = —5p* + 4

T1,Z2

Dual problem:



1

max  ¢(u) = —5H’ +p

subjectto pu >0

The optimal solution is p* = 1 with optimal value ¢* = 3.

Example 2

Primal optimization problem:

min x1 + 9
subject to  (z1 — 1)% 4+ z3 <
+ x5 <

1
2
($1+1)2 g_l

Lagrangian function:
L(z, A, p) = L(z1, T2, p1, p2) = 1 + 22 + p1((z1 — 1)* + 23 — 1) + po((z1 + 1)
Dual function:

—00 if 1 + po <

B(p1, p2) gllxlg L(z, A, p) (M1 = p2)” +2(p1 — po) otherw

2(p1 + p2)

Dual problem:

sup  ¢(p1, p2)
subject to  p,pue >0

Let u; = ps — oo, then the optimal value is ¢* = sup ¢(p1, p2) = 0.

Example 3

Primal optimization problem:

max c'x
subject to Ax; = b
Az, < by

Dual function:

dA, ) =inf ATA; +p" Ay —cNxe—A"b; — p'by

) =0 if ATAl I [,LTAg 7é CT
—ATb; — uby otherwise



Dual problem: sup ¢(A, i), which is equivalent to
p>0
min ATb; + pu'b,
subjectto ATA; +pTAy=c'
p=>0

The Lagrange dual problem of a linear program is exactly the same as the dual
problem introduced before.

Example 4

Primal optimization problem:

min e &
$1€R,$2>0
. it
subjectto — <0
)

Domain: D = {(z1,z5)" | zo > 0}
Dual function:

x
z? 0 if,uZO,Whenxl—M)oand—;—)oo
b(n) = inf e +pt — 2}
70 v2 —00 otherwise, when x; — oo and 9 — 0
Dual problem:
sup  ¢(p)

subjectto u >0

An interesting fact is that dual functions are always concave, thus dual problems ars

always convex, regardless of whether the primal problem is convex or not.

Theorem

For any (not necessarily convex) optimization problem, its Lagrange dual
function is concave.

Proof



For any fixed @, L(x, A, p) is an affine function of A and u, so

¢(A, p) = inf L(z, A, p)

is a pointwise minimum of a family of affine functions, which implies that

—¢(A, p) is a convex function.

19.2 Weak and strong duality

What is the relationship between the optimal value of the primal and the optimal

value of the dual?
Let D be the domain set, f* be the optimal value of the primal problem, and ¢* be

the optimal value of the dual problem. Then we have the following weak duality

theorem.

Theorem (Weak duality)

Proof

As we showed before,

ff=1inf sup Lz, pu).
xeD
AeR™, ueR¥

For any fixed Ao € R™, po € R%, we have

(Ao, o) = inf L(x, Ao, o) < inf  sup Lz, A, p) = f*.
xeD xeD ACR™, HGREO

Thus,
¢*= sup P(A,p) < f.

AER™, peRk

In fact, the weak duality theorem is a particular case of the following min-max

inequality.

Theorem (Min-max inequality)



Let X,Y be two sets. For F': X x Y — R, it holds that

inf sup F(z,y) > sup inf F(z,y).
zeX yey yey zeX

The min-max inequality has various examples, such as the limit superior and the
limit inferior of a sequence. Given a sequence {a,}, we have limsup a,, > liminf a,,
where

limsup an, = lim sup am, = inf sup am
n—00 n—00 m>n n—00 m>n

and

Nt en = g, L om = U0 ) am-
Now we define the duality gap as f*— ¢*, which is always nonnegative. If f*= ¢*,
then we say strong duality holds.
Unlike the duality for linear programs, strong duality does not always hold. See
e.g., Example 4 above, where f* =1 and ¢* = 0. A natural question is, under
which condition the strong duality holds?

Our first result is that for convex optimization problems, KKT condition implies
strong duality.

Theorem

For any convex optimization problem, if a feasible solution * has KKT
multipliers A* and p*, then strong duality holds. In particular, (A*, u*) is an
optimal solution to the dual problem.

Proof

For convex problems, if #* has KKT multipliers, then f* = f(x*). By weak
duality, we have

fl@®) = £* > ¢* = sup $(A, p) = $(A", p*).

p>0
So it suffices to show that ¢(A*, u*) = f(x*).
Note that £(z*, A*, u*) = f(*) since g;(z*) = 0 and p}h;(x*) = 0. We fix
A*, p* and let L(z) = L(z, A*, p*). Then ¢(A*, p*) = min, L(x). Because



E(w) is a convex function of « and Vf(w*) =V L(x*, A", u*) =0, we

conclude that #* = argmin £(z). Thus,

B, ) = min L(w) = L(@") = L(@", A", p) = f(2").

From this proof, we find that for * € Q,A* € R™, u* € R, f(x*) = ¢(A*, u*)
if and only if #* is an optimal solution to the primal problem, (A*, u*) is an
optimal solution to the dual problem, and strong duality holds, because

f@*) = f* = ¢" = ¢(A%, 1").

This fact holds for any optimization problem (not necessarily convex).

Conversely, if the primal and the dual have finite optimal solutions, and strong
duality holds, then KKT condition is satisfied.
Theorem

For any optimization problem, if the primal has a (finite) optimal solution x*,
the dual has a (finite) optimal solution (A*, u*), and the strong duality holds
(or equivalently there exists * € Q, A* € R™, u* € R’;O such that

f(x*) = ¢(A*, u*)), then (A*, p*) are KKT multipliers of x*.

Proof
Note that z* is feasible, so g;(«*) = 0 for all 4, and h;(2*) < 0 for all j. Thus,

f*=f(x*) > L(x*, X", pu*) > inf L(x, ", pu*).

The first inequality is due to u* > 0. By strong duality,

It yields that
fr=f(x*)=L(z*, A", np*) =inf L(z, A", pn*).

We conclude that KKT conditions are satisfied, since



L(xz*, A*, p*) =inf, L(z, A", pu*) = V. L(x*, A*,u*) = 0;
f(x*) = L(z*, A, u*) = pjhi(z*) = 0 for all j;
(A*, u*) is feasible for the dual = p* > 0.

Here, the existence of finite optimal solutions is essential. Only strong duality is not
sufficient. Otherwise, see e.g., Example 2 above, where * does not have KKT

multipliers.

Tip (KKT conditions revisit)

In a sense, KKT conditions are equivalent to existence of optimal solutions and
strong duality. So we can rewrite KKT conditions in terms of the primal (P)
and dual (D) problems:

Stationary: V,L(xz*, A\*, u*) = 0;

Primal feasible: a* is feasible for (P), namely, g;(z*) = 0 for all ¢ and
hj(x*) < 0 for all j;

Dual feasible: (A*, u*) is feasible for (D), namely, p} > 0 for all j;
Complementary slackness: h(z*)"u* = 0, namely, u}h;(z*) = 0 for all
J.

Sometimes we may find solving KKT conditions is difficult. Is there any simple

condition to certify strong duality?

Geometric interpretation of duality

Before introducing other conditions, we first give a geometric interpretation for
strong duality.
Example
Consider the following optimization
. 4 2
min z — 50z° 4 100z

subject to « > —5-

To analyze this problem, we can draw an “epigraph” of



f(z) = z* — 502* 4 100z with respect to h(z) = —2 — z. Namely, let

C £ {(p,t) | 3z, h(z) <p, f(z) < t}.

Then f* is the point where C intersects f-axis.

What is ¢*? The Lagrangian is
L(w, 1) = f(z) + ph(z)

Given a fixed p and a constant ¢, f + uh = ¢ characterizes a line intersecting
f-axis at (0, ¢) with slope —u. So by letting ¢ = ¢(u) = min, f(x) + ph(z), we
see that ¢(u) is the lowest intersection between f-axis and a line which
intersects the boundary of C' and has slope —u. Namely, ¢(u) is the
intersection between f-axis and the supporting lines to C with slope —u. So ¢*
is the highest intersection between f-axis and all supporting lines to C.

19.3 Slater’s condition for convex optimization

Now we give the Slater’s condition for convex optimizations.

Theorem (Slater’s condition)

If there exists « € relint(D) such that g;(z) = 0 for all s and h;(z) < 0 for all j,
then strong duality holds.



Here the relint means relative interior points. A point z € D is a relative
interior point if B(z, ¢) N aff(D) C D, where aff(D) is the affine hull of D. For
any convex set D, the relative interior is equivalent to the set of non-extreme
points. We can easily see the differences between interior and relative interior.
For example,

the interior of a line segment in an at least two-dimensional space is
empty, but its relative interior is the line segment without its endpoints;
the interior of a disc in an at least three-dimensional space is empty, but
its relative interior is the same disc without its circular edge.

Before proving this theorem, we first think about when strong duality does not
hold. The geometric interpretation tells us f* is the lowest intersection of C' and f-
axis, while ¢* is the highest intersection of f-axis and all supporting hyperplanes of
C. So (0, f*) is a point on the boundary of C. Heuristically, if C is convex, there
should be a supporting hyperplane passing through (0, f*), which gives that

" = f*.

Unfortunately, this observation is not always true, because there are vertical

(orthogonal to h-axis) supporting hyperplanes. Consider the following example
(Example 4 above).

Example

min e ¥t
z1€ER, £5>0
2

. 2]
subjectto — <0
L2

The dual function is ¢(u) = 0 if u > 0 and ¢(u) = —oo otherwise. So the
optimal value to the dual problem sup -, ¢(u) is ¢* = 0, while the optimal
value to the primal is f* = 1. Strong duality does not hold.

Why does strong duality fail in this case? We can also define
C4{(p,t)" | 3z € R x Rxg, h(z) < p, f(z) < t}.

We can find that



if p =0, then z2/z5 <0, so f(z) = 1;

if p > 0, then 22 /z5 < p, so f(x) — 0 as z; — oo.

Thus, C = {(0,¢)T |t > 1} U {(p,t)T | p > 0, t > 0}. Although C is convex,
strong duality does not hold, since the unique supporting hyperplane at

(0, f*) is vertical.
>

N
So geometrically, the Slater’s condition says that if C' is convex, and C in the h < 0

*

—————

region is not empty, then strong duality holds.

We now prove the Slater’s condition. We first show that C is convex. Generally, for

a convex problem

min f(x)
subject to  g;(x)

we define

C= {(p17°° "y Pk, 41, - "7qm7t) S R ‘ dz € D, h](w) < Pj, gi(x) = 4i, f(:l}) < t} :

Lemma

C is a convex set.

Proof



Take two points (p1,q1,t1), (P2, 92,t2) € C, so there exists z1,zs € D such that

h(z1) < p1, g(z1) = q1, f(=1) < t1,
h(w2) S D2, q($2) =4q2, f(il?2) S t2 .

For any 6 € [0, 1], let y = 6z + Oz,. Then by convexity of f, h; and affinity of
gi, we have

hj(y) < Ohj(z1) + Ohj(x2) < Op1 + Op2,
9i(y) = 0g(z1) + 0g(z2) = 0q1 + Ogs,
fly) <O0f(x1) + 0f(z) < Oty + 6t

ThlS leads to 9(]?1, (I1,t1) -+ é(pz, QQ,t2) = (9p1 -+ ép2, qu —+ éqQ, 0t1 + étQ) € C

Now we are ready to prove strong duality if Slater’s condition is satisfied.

Proof of strong duality

If f* = —o0, by weak duality, ¢* < f*, so ¢* = —oo. Thus the strong duality
holds.
Now assume that f* > —oo. By Slater's condition, the feasible set Q # (), so
f* < oo. It suffices to show that there exists a nonvertical supporting
hyperplane passing through (0, 0, f*).

Step 1. Prove that (0,0, f*) € 9C. Note that f* = ;25 f(z). So for all

e > 0, there exists z € D such that

gi(x) =0foralli, hj(x) <Oforallj, f(z)<f"+e.

Thus (0,0, f*+ ¢) € C. Moreover, for all § > 0, there does not exists
z € (2 such that
gi(z) =0foralli, hjx) <Oforallj, f(z)<f"—9d.
which gives that (0,0, f*— d) ¢ C. Therefore, (0,0, f*) € 0C.
Step 2. Show that there exists a nonvertical supporting hyperplane. Since

(0,0, f*) € OC, there exists a supporting hyperplane passing through
(0,0, f*), i.e., there exists (u, A, §) # 0 such that

V(p,g,t) €C, p'p+ATg+&t>Ef.

Note that for all ¢ > f*, (0,0,¢) is in C. So we have £ > 0. Similarly, for



allp > 0, (p,0, f*) is in C by definition, so we have pu > 0.
We now claim that ¢ # 0. If not, u"p + ATq > 0. By Slater's condition,
there exists Z such that

9i(Z) =0foralli, hj(Z) < 0forall j.
Hence there exists ¢ such that
((@),- . hx(#), 91(3), -, gm(E),7) € C.

Thus p"h(z) > 0, where h(z) = (hi(z),...,hi(z)). Since h(%) < 0, it
implies that u = 0. Now we obtain that ATg(z) > 0 for all z € D, where
g(z) = (g1(x),...,gm(x))T = Az — b. We can show that it is impossible
unless A = 0.

Suppose aff(D) = {x | Uz = w} for some U and w. Without loss of

A
generality, we may assume the matrix (U) has full (row) rank.

Otherwise some constraints are redundant on the domain D. Note that Z
is a relative interior point of D. If there exists v € R™ and ¢ > 0 such that
Z + ev € D, then there exists § > 0 such that £ — dv € D. Since g is affine,
and g(Z) = 0, we have

ATg(z +ev) = ATg(%) + eXTg(v) = eATg(v) and  ATg(Z — dv) = A

If ATg(z) > 0 for all z € D, we can conclude that ATg(z) = 0 for all
x € D. Namely, for all z € D,

AA(z—2)=0.

On the other hand, aff(D) = { | Uz = w}, so U(z — &) = 0 for every
x € D. Using the same argument for the sufficiency of Lagrange
multipliers for convex optimization, we conclude that AT A is in the row
space of U. But this is impossible unless A = 0, due to the full row rank

oot o)
assumption of )

Overall, we obtain that if £ = 0, then u = 0 and A = 0, which contradicts
to (u, A, &) # 0. It yields that £ # 0, and further gives that £ > 0.

Step 3. Conclude that strong duality holds. Now let iz = /¢, X=2A /€.
For all (p,q,t) € C, since u"p + ATq + & > £f*, we have

B'p+ATg+t>f".



Thus,

$(X, ) = inf f(z) + XTg(2) + B h(z) > £,

because (h(z),g(z), f(z)) € C for all z € D. By weak duality ¢* < f*, we

conclude that ¢* = f*.

19.4 An example of solving optimization via duality

Now we show an example of solving optimization problems via duality. Consider

the problem finding the projection to the polytope.
1

. 2
min - |z — |

subject to (w;, ) < b;, Vi€ [m].

We compute its Lagrangian function

1 m
e —ol” + > wi ((wi ) —by)

L(x,p) =
1=1

and let ¢(p) = infzern L(, p). By Slater's condition, to solve the primal

optimization problem, it suffices to solve its dual problem

max  ¢(u).
KERZ,

Observe that, £(z,u) is a strongly convex function. Then for p > 0, the minimizer
of L(x, p) is attained at the point @(p) = 29 — >, p;w;. So it holds that
1

$(k) = (p,b) — —p ' Wp

where
b £ ((w;, @) — bi)icim) € R™,
W é (<wz,w3>)l’]e[m} E Rmxm .

To (approximately) maximize ¢(u) we can apply the projected gradient descent.



