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Abstract. For any poset P , its incidence matrix n and its cover matrix C are the P × P (0, 1)

matrices such that n(x, y) = 1 if any only if x is less than y in P and C(x, y) = 1 if any only if x is

covered by y in P. It is shown that n and C are conjugate to each other in the incidence algebra of

P over a field of characteristic 0 provided P is the nested interval order. In particular, when P is

the Bruhat order of a dihedral group, which consists of a special family of nested intervals, n and C

turn out to be conjugate in the incidence algebra over every field. Moreover, n and C are proved to

be conjugate in the incidence algebra over every field when P is the weak order of a dihedral group.

Many relevant problems and observations are also presented in this note.
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1. Poset and Its Incidence Algebra. A (finite) partially ordered set, also
known as a (finite) poset [32, p. 97], is a finite set P together with a binary relation
≤P , which is often denoted ≤ if there is no confusion, such that:

• For all x ∈ P, x ≤ x; (reflexivity)
• If x ≤ y and y ≤ x, then x = y; (antisymmetry)
• If x ≤ y and y ≤ z, then x ≤ z. (transitivity)

We use the obvious notation x < y to mean x ≤ y and x 6= y. Similarly, x ≥ y and
x > y stand for y ≤ x and y < x, respectively. For any x, y ∈ P , the interval [x, y] =
[x, y]P is the set (subposet) {z ∈ P : x ≤ z ≤ y}. We say that y covers x provided
|[x, y]| = 2 and denote this by x l y. For any x ∈ P, let x↑P = {y ∈ P : y > x}. A
linear extension of a poset is a listing of its elements as x1, . . . , xr such that if xi ≤ xj

then i ≤ j. It is well-known that each poset admits a linear extension.

As the uniquely determined minimal transitive reduction of the poset P, its Hasse
diagram is the digraph Γ(P ) with P as the vertex set and there is an arc from y to
x if and only if x l y. We say that a poset P has the unique path property, or is a
upp poset, if for any two elements x ≤ y from P there exists a unique (directed) path
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in Γ(P ) from y to x; in other words, P is a upp poset if each interval [x, y] of P is a
chain containing |[x, y]| elements. We mention that the underlying graph of the Hasse
diagram of a upp poset might have cycles.

An ideal P ′ of a poset P is a subposet of P such that x ∈ P ′ implies x↑ ⊆ P ′.
The subposet induced by the complement of an ideal is a filter. A simplicial complex
K is a set of sets such that A ∈ K and B ⊆ A implies B ∈ K. Under the set inclusion
relationship, each simplicial complex is naturally a poset. A relative simplicial complex
is an ideal of a simplicial complex.

The incidence algebra IncF (P ) [6, 24] of a (locally finite) poset P over a field
F (in many contexts we can assume F to be merely a commutative ring having a
multiplicative unit) is the algebra of functions (matrices) f : P × P → F such that
f(x, y) = 0 unless x ≤ y in P with pointwise addition and convolution (matrix
multiplication) (fg)(x, y) =

∑
x≤z≤y f(x, z)g(z, y). The reduced incidence algebra

is the subalgebra of the incidence algebra consisting of those elements of IncF (P )
which take constant values on isomorphic intervals. The strict incidence algebra of P

consists of those elements of IncF (P ) which are nilpotent, i.e., those elements which
take value 0 on the diagonal {(x, x) : x ∈ P}. Note that IncF (P ) naturally acts on
FP (viewed as space of column vectors) from the left as linear operators and IncF (P )
is a subalgebra of the corresponding full matrix algebra. The incidence algebras of
posets are important computational devices for many enumeration problem on posets
and their algebraic properties have been intensively studied [32]. In particular, Stanley
[30, 34] shows that the poset P can be uniquely recovered from IncF (P ). We adhere
to the convention that P represents a (finite) poset and F a field throughout the
paper.

Recall that the Kronecker delta, denoted δ, is a function of two variables, which
is 1 if they are equal, and 0 otherwise. If the two variables are restricted to be from
a poset P, we call it the Kronecker delta function (identity matrix) on P and use the
notation δP to signify this. It is noteworthy that the function δP is the multiplicative
unit of IncF (P ). For any two elements x < y from the poset P and any number h

from the given field F, the transvection Txy(h) is the matrix obtained from the identity
matrix δP by putting h in the (x, y)-position. Observe that Txy(h)−1 = Txy(−h) and
Txy(h) ∈ IncF (P ).

2. Incidence Matrix and Cover Matrix. We are interested in two special but
basic matrices lying in both the reduced incidence algebra and the strict incidence
algebra of P, the incidence function (matrix) nP and the cover function (matrix) CP ,
which encode full information about the poset P and are the indicator function of <
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and that of l, respectively, and can be described more explicitly as follows:

nP (x, y) =
{

1, if x < y;
0, otherwise;

CP (x, y) =
{

1, if xl y;
0, otherwise.

In some sense, nP is a global view of P and CP is a local view of P. Note that nP −CP

is a (0, 1)-matrix and hence CP is more sparse than np. We also remark that Γ(P )
has C>P as an adjacency matrix.

Both nP and CP come into play in various important situations. The zeta function
(integral operator) of P is ζP = nP +δP , which is the indicator function of the partial
order ≤P . The key to the Möbius Inversion Theorem is the determination of the
Möbius function (differential operator) of P , µP = ζ−1

P , which is, considering that
nP is nilpotent, δP − nP + n2

P − n3
P + n4

P − · · · . Let dP be the dimension of the
kernel of nP . This parameter dP turns out to be a lower bound of the number of
incomparable adjacent pairs in any linear extension of P [14] and an upper bound of
the width of P [13, 26] and for almost all posets in the uniform random poset model
it is exactly the width of P [10]. The operator CP may be regarded as an instance
of the finite Radon transform in general [16, 31] and becomes the usual boundary
operator for relative simplicial homology when P is a relative simplicial complex. It
might be interesting to see if there is some connection between nP and CP to offer a
bridge between different research topics.

3. Stanley’s Problem. In the following, we say that two elements A and B of
IncF (P ) are conjugate if there is α ∈ IncF (P ) such that A = αBα−1 and we say
that A and B are similar if when viewing them as matrices over the complex field
we can find a complex matrix α, which is not necessarily a member of IncC(P ), such
that A = αBα−1. Surely, the statement that A and B are similar just means that
they have the same Jordan canonical form over C or the same Jordan invariants (the
sizes of its Jordan blocks over C for the same eigenvalue). For a nilpotent matrix, say
a cover matrix or an incidence matrix, its Jordan invariant is necessarily the sizes of
its Jordan blocks for eigenvalue 0. We say that A and B are equivalent (in IncF (P ))
if there are nonsingular matrices α1 and α2 (in IncF (P )) such that A = α1Bα2.

Example 3.1 (Xinmao Wang). Let

A =




0 1 0
0 1 1
0 0 0


 , B =




0 1 0
0 0 0
0 0 1


 and C =




1 0 0
0 0 1
0 0 0


 .

It is easy to check that both B and C are the Jordan canonical forms of A in the
full complex matrix algebra but there is no upper triangular matrix α such that
αAα−1 ∈ {B,C}. Note that the set of n×n upper triangular matrices can be identified
with the incidence algebra of the linear order on n elements.
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The next example is basic to our studies. It not only suggests possible directions
of generalizations, but also acts as a key preliminary fact for Corollaries 6.2 and 6.4.

Example 3.2. Let P be a linear order, namely a poset of dimension 1, on n

elements, say 1 < 2 < · · · < n. Then,

CP =




0 1
0 1

. . . . . .
0 1

0




n×n

and nP =




0 1 1 · · · 1
0 1 · · · 1

. . . . . .
...

0 1
0




n×n

.

The matrix CP is clearly the Jordan canonical form of nP (also see Example 4.1).
Moreover, for 1 ≤ i < j ≤ n− 2, it holds

(
n− 1− i

n− 1− j

)
=

j+1∑

t=i+1

(
n− 1− t

n− 1− (j + 1)

)
,

and so we find that

T (2)−1 · · ·T (n− 2)−1T (n− 1)−1nP T (n− 1)T (n− 2) · · ·T (2) = CP

where

(3.1) T (j) =
j−1∏

i=1

Tij(
(

n− 1− i

n− 1− j

)
), j = 2, . . . , n− 1.

This means that nP and CP are even conjugate in IncF (P ) for any field F .

Prompted by the theory of Jordan canonical form in the full matrix algebra
over an algebraically closed field, Stanley asks if there is any reasonable criterion for
determining when two elements of the incidence algebra of a poset are conjugate [32,
p. 159, Exercise 29 (e)]. Marenich [17, 18] finds some interesting results in her effort
to tackling the problem of Stanley and she proposes to view λδP ′ + CP ′ , where P ′

is a subposet of P, as a “Jordan block” for IncF (P ). Once this problem of Stanley
has come up, it is natural to push on to a broader formulation and also ask if two
matrices from IncF (P ) are similar or equivalent or have the same Smith normal form
etc. Weyr’s Theorem [29] says that the two nilpotent matrices nP and CP have the
same Jordan invariants if and only if rankC(nk

P ) = rankC(Ck
P ) for every k. So, it is

interesting to test for which ` we have rank(nk
P ) = rank(Ck

P ) for every k ≤ `. We refer
to [2, 3, 4, 11, 13, 19, 23, 25, 26, 27, 28] for some work on Jordan canonical forms
determined by combinatorial patterns and refer to [12, 22] for some work on ranks of
matrix powers determined by combinatorial patterns.



Incidence Matrix and Cover Matrix of a Poset 5

The remainder of the paper is devoted to Stanley’s problem and its variants
restricted on the two special matrices nP and CP . We first collect an assortment
of observations in Section 4 for the purpose of inviting readers develop them further
into potential theories. In Section 5, we report how the appearance of the hierarchy
structure helps to bridge the incidence matrix and the cover matrix. Especially, we
provide a sufficient condition for the incidence matrix and the cover matrix to have the
same row space (Theorem 5.6) and we take Example 3.2 one step further to nested
interval orders (Theorem 5.2). There is already a nice theory on determining the
Jordan canonical form of the tensor product of two matrices in the full matrix algebra;
see [21] and the references therein. In the spirit of this line of work, we establish in
Section 6 two simple lemmas (Lemmas 6.1 and 6.3) on some constructions similar to
tensor products and further use them to show that nP and CP are conjugate to each
other over any field when P is either the Bruhat order or the weak order of a dihedral
group.

4. Examples. For any nilpotent complex matrix A and any analytic function
f(x) such that f(0) = 0 and df(x)

dx |x=0 6= 0, it is clear that A and f(A) have the same
Jordan canonical form. This suggests to investigate those posets P for which nP is a
function of CP and hence also those P for which nP and CP commute.

Example 4.1 (Sergey Savchenko). If P has the unique path property, then
nP = CP + C2

P + · · · = CP (δP − CP )−1. Since CP is nilpotent, it follows that nP and
CP are similar in the full complex matrix algebra.

Example 4.2. Let P be a poset whose intervals are always Boolean algebras
(it is called a simplicial poset if it also contains a smallest element [32, p. 135]), say
being a relative simplicial complex. Viewed as matrices over integers, it is easy to see
that

nP = CP +
C2

P

2 ↓ +
C3

P

3 ↓ + · · · = exp(CP )− δP .

This tells us that nP and CP have the same Jordan canonical form.

Example 4.3. Suppose that nP and CP are conjugate in IncF (P ). Let P ′ be an
ideal of P. Writing the matrix representation of elements of IncF (P ) in such a way
that the lines corresponding to elements of P \ P ′ appear before the other lines, we
can assume that T−1nP T = Cp where

T =
[

T11 T12

0 T22

]
,nP =

[
nP\P ′ n12

0 nP ′

]
,CP =

[
CP\P ′ C12

0 CP ′

]
.

It then follows that nP ′ and CP ′ are conjugate in IncF (P ′) and nP\P ′ and CP\P ′ are
conjugate in IncF (P \P ′). Similar reasoning shows that if CP and nP are equivalent
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in IncF (P ) then nP ′ and CP ′ are equivalent in IncF (P ′) and nP\P ′ and CP\P ′ are
equivalent in IncF (P \ P ′).

Example 4.4 (Ziqing Xiang). Let P be a poset whose Hasse diagram is weakly
connected. If fCP = nP f for some f ∈ IncF (P ), then f has a constant main diagonal.
Indeed, it is enough to prove f(x, x) = f(y, y) on the condition that xl y. But this
is a result of fCP (x, y) = nP f(x, y).

Example 4.5. Dress and Wu [8] show that nP and CP are conjugate in IncF (P )
when P is a relative simplicial complex and F is a field of characteristic 2. To see this,
by Example 4.3, we can now assume that P is a simplicial complex. Fix a linear order
≺ on ∪S∈P S. For any S = {x1 ≺ x2 ≺ · · · ≺ xt} ∈ P , set E(S) = {x2, x4, . . . , x2b t

2 c}.
Specify Ω ∈ IncF (P ) by letting Ω(R, S) = 1 if E(S) ⊆ R ⊆ S and Ω(R, S) = 0
otherwise. It is not difficult to check that

(4.1) ΩCP Ω−1 = nP .

Note that for each ordering of ∪S∈P S the above construction gives a solution Ω to Eq.
(4.1). To investigate if there is any other solution to Eq. (4.1), we are led to another
problem of Stanley [32, p. 159, Exercise 29 (e)], namely determining the dimension
of the centralizer algebra of CP in IncF (P ).

Example 4.6. Let P be a simplicial complex of dimension at least 2. Then,
we can suppose that P contains a 2-dimensional face {1, 2, 3} and hence the three
1-dimensional faces {1, 2}, {2, 3}, and {3, 1}. Over F2 we have

nP (·, {1, 2}) + nP (·, {2, 3}) + nP (·, {3, 1}) = nP (·, {1})

while

CP (·, {1, 2}) + CP (·, {2, 3}) + CP (·, {3, 1}) 6= CP (·, {1}).

This means that nP and CP have different row spaces over F2.

Example 4.7. Let P be the poset with the Hasse diagram as shown in Fig. 4.1.
Note that P is a poset of dimension 2. Simple calculation leads to

rankZ(nP ) = rankF2(nP ) = 5 > 4 = rankZ(CP ) = rankF2(CP ).

A poset P is graded if there is a rank function ρ from P to integers such that if y

covers x then ρ(y) = ρ(x) + 1. This graded poset P is homogenous provided for any
n ≤ k ≤ `, any x ∈ ρ−1(n) and y ∈ ρ−1(`) satisfying x ≤ y, the set [x, y]∩ ρ−1(k) has
a size tn,k,`, which is totally determined by n, k, ` and is independent of the choice
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JĴ
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À

J
J

JĴ



À

J
J

JĴ




À

J
J

JĴ

q1 q2 q3

q 4 q 5

q6 q7 q8
Fig. 4.1. Hasse diagram of the poset P in Example 4.7.

of x and y. Homogenous posets include the lattices of linear (affine) subspaces of a
finite vector space and the posets of relative simplicial complexes.

Example 4.8. Let P be a homogenous poset as defined above for which tn,n+1,` 6=
0 for all n < `. Suppose that {ρ(x) : x ∈ P} = {0, 1, 2, . . . , m}. Put Ta = {(i, j) :
0 ≤ i ≤ j ≤ m, j − i = a} and T = ∪m

a=0Ta. Let g be a map from T to F satisfying
g−1(0) ⊇ T0 and g−1(0)∩ T1 = ∅. Let f ∈ IncF (P ) be a function such that f(x, y) =
g(ρ(x), ρ(y)) for any x ≤P y. Note that when g takes constant value 1, f is nothing
but nP . Marenich [18, Theorem 6] finds that f is always conjugate to CP in IncF (P ),
namely there exists an invertible element α ∈ IncF (P ) such that

(4.2) αf = CP α.

To solve Eq. (4.2), Marenich suggests to consider a function h from T to F satisfying
h−1(0) ∩ T0 = ∅ and

(4.3)
`−1∑

k=n

h(n, k)g(k, `)tn,k,l = tn,n+1,`h(n + 1, `), 0 ≤ n < ` ≤ m.

If such a function h exists, we choose α ∈ IncF (P ) by requiring α(x, y) = h(ρ(x), ρ(y))
for any x ≤P y and it is easy to see that α is invertible and satisfies Eq. (4.2). We
follow Marenich to indicate briefly why the required h exists. Setting ` = n + 1 in
Eq. (4.3), we see that by taking any nonzero initial value for h(0, 0), h(i, i) can be
determined recursively to be h(0, 0)

∏i−1
t=0 g(t, t + 1) 6= 0. Suppose the values of h on

∪s−1
a=0Ta have been determined by Eq. (4.3) for ` − n ≤ a and by any valuation of

h(0, 0), . . . , h(0, s− 1). Appealing to (4.3) for `− n = s + 1 and noticing tn,n+1,` 6= 0,

we see that h(n + 1, `) is determined by h(n, ` − 1) and those known values of h on
∪s−1

a=0Ta. This says that Eq. (4.3) is solvable and the solution is determined uniquely
by the value of h(0, i), i = 0, . . . , m, and as long as h(0, 0) is chosen to be nonzero we
will have h−1(0) ∩ T0 = ∅.

Given an n × n matrix A, its digraph Γ(A) has vertex set {v1, v2, . . . , vn} and
there is an arc from vi to vj if and only if A(i, j) 6= 0. A k-path of a digraph D is
a subset of V (D) which can be partitioned into k (possibly empty) sets X1, . . . , Xk
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such that each Xi is the set of vertices of a path of D. The largest number of vertices
in a k-path of D is the k-path number of D and is denoted by pk(D).

Example 4.9. For any nonnegative matrix A belonging to the strict incidence
algebra of P, the Rothblum Index Theorem [11, 25] implies that the size of the largest
Jordan block of A is equal to p1(Γ(A)). For any poset P, it is clear that a longest path
in Γ(nP ) must also be a longest path in Γ(CP ) and hence we know that the largest
Jordan blocks of nP and CP have equal size.

Example 4.10. For any generic nilpotent matrix A of order n, its Jordan in-
variants are p1(Γ(A)), p2(Γ(A)) − p1(Γ(A)), p3(Γ(A)) − p2(Γ(A)), . . . , ps(Γ(A)) −
ps−1(Γ(A)), where s = n − rank(A) [4, 13, 27]. This suggests to investigate those
posets P for which the equality pi(Γ(nP )) = pi(Γ(CP )) holds for every positive inte-
ger i.

For any f ∈ IncF (P ) and U, V ⊆ P , we adopt the notation f(U, V ) for the U ×V

matrix that is the restriction of f on U × V . We often write fU for f(U,U).

Example 4.11. Let P, Q and R be three posets such that both P and Q have R

as an ideal. Suppose that

nP =
[
nP\R n(P \R, R)

0 nR

]
, CP =

[
CP\R C(P \R, R)

0 CR

]
;

nQ =
[
nQ\R n(Q \R, R)

0 nR

]
, CQ =

[
CQ\R C(Q \R, R)

0 CR

]
.

The wedge sum of P and Q based on R, denoted P ∨R Q, is the poset which is the
disjoint union of P \R, Q \R and R and has the partial order to be specified by

nP∨RQ =



nP\R 0 n(P \R, R)

0 nQ\R n(Q \R, R)
0 0 nR


 ,

CP∨RQ =




CP\R 0 C(P \R, R)
0 CQ\R C(Q \R, R)
0 0 CR


 .

Suppose that nR and CR are conjugate in IncF (R) and this conjugacy can be lifted to
both Q and R, that is to say, there exists α, α−1 ∈ IncF (R) such that αnRα−1 = CR

and two extensions

αP =
[

β γ

0 α

]
∈ IncF (P ), αQ =

[
ε ζ

0 α

]
∈ IncF (Q)
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such that αPnP α−1
P = CP , αQnQα−1

Q = CQ. Let

θ =




β 0 γ

0 ε ζ

0 0 α


 ∈ IncF (P ∨R Q).

It is straightforward to check that θnP∨RQθ−1 = CP∨RQ and so nP∨RQ is conjugate
to CP∨RQ in IncF (P ∨R Q). Note that similar result holds when both P and Q have
R as a common filter.

When referring to a Coxeter group, we will have in mind the group and a specific
set of Coxeter generators tacitly understood. The Bruhat orders and the weak orders
of Coxeter groups, as well as some other posets associated with Coxeter groups, are of
much interest in algebraic combinatorics [1]. Coxeter groups are classified into several
types [1, Appendix A1]. For instance, the symmetry group of an n-simplex is of type
An, the symmetry group of an n-cube is of type Bn and the symmetry group of the
regular m-gon is of type I2(m). Accordingly, it is natural to talk about the type of a
Bruhat order or a weak order.

Example 4.12. We examine several Bruhat orders and weak orders P and find
that nP and CP have the same Jordan invariants in all these cases. In the following
two tables, we report the common Jordan invariant for each of these posets. The third
columns of the tables indicate the place where a Hasse diagram of the corresponding
poset can be located; if an empty cell is found, it means that the calculation of the
relevant Hasse diagram is based on our own programming work but the diagram
is too large to include in this note. When recording the Jordan invariant of the
incidence/cover matrix of a poset, we employ the standard notation smi

i to mean
that there are mi Jordan blocks of size si and the supscript mi will be omitted when
mi = 1. It is clear that

∑
i misi is just the size of the considered poset.

Type of Bruhat order Jordan invariant Hasse diagram

B2 5, 13 [1, Fig. 2.1]
B3 10, 82, 62, 42, 2 Fig. 4.2
A2 4, 12 [1, Fig. 2.3]
A3 7, 5, 42, 3, 1 [1, Fig. 2.4]
A4 11, 9, 84, 73, 55, 42, 32, 22, 14

A5 16, 142, 134, 125, 114, 1012, 92,

816, 76, 618, 52, 415, 34, 28, 16

S
(3)
6 10, 6, 4 [1, Fig. 2.7]

E6 modulo D5 17, 9, 1 [1, Fig. 2.8]
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Type of weak order Jordan invariant Hasse diagram

I2(4) 5, 3 [1, Fig. 3.1]
A3 7, 52, 32, 1 [1, Fig. 3.2]
H3 16, 142, 122, 102, 82, 62, 4 [1, Fig. 3.3]

Fig. 4.2. Hasse diagram of the Bruhat order for the symmetry group of the 3-cube.

Remark 4.13. The group of type An is the usual symmetry group Sn+1. The
group of type Bn, sometimes called a hyperoctahedral group with parameter n, can
be expressed as the wreath product S2 o Sn of S2 with Sn and is thus identified with
the group of signed permutation matrices of degree n. One can notice the central
symmetry of Fig. 4.2, which comes from the sign flipping involution on the set of
signed permutation matrices. Note that a diagram depicted in [1, Fig. 2.2] is also
asserted to be the Hasse diagram of the Bruhat order of type B3. It seems that one edge
is missing in [1, Fig. 2.2] and this destroys the above-mentioned central symmetry.
Anyway, even for the poset P with [1, Fig. 2.2] as its Hasse diagram, nP and CP

have the same Jordan invariant and this invariant coincides with the one arising from
Fig. 4.2.

5. Hierarchy. A hierarchy, also referred to as a laminar family, is a set sys-
tem (hypergraph) H such that A ∩ B ∈ {∅, A, B} for any A,B ∈ H. This concept is
naturally related to tree-like structures and is hence important in phylogenetic com-
binatorics [7] and algorithmic graph theory [33]. This section aims to highlight some
role of hierarchy in connecting the incidence matrix and the cover matrix.

Let Q be a poset. A poset P is an interval poset for Q provided to each element
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v of P we can assign a nonempty interval Iv = [av, bv]Q of Q such that v <P w if
and only if av ≤Q bv <Q aw ≤Q bw. It is worth noting that IncF (P ) naturally acts
on FP = IncF (Q). Also notice that when talking about an interval poset P for Q

we often regard that an interval representation I of P has been given and so each
element of P is already identified with an interval of Q. From the next simple result
we can tell that neither the poset in Example 4.6 nor that in Example 4.7 can be an
interval poset for some upp poset.

Theorem 5.1. If P is the interval poset for a upp poset, then nP and CP have
the same row space and rankZ(nP ) = rankZ(CP ).

An interval order [9] is the interval poset for a linear order. If the interval order
can be realized as a set of intervals of unit length on the real line, it is called a unit
interval order or a semiorder.

A family of intervals of a poset is nested if it is a hierarchy. The interval poset P is
a nested interval poset if it has an interval representation I such that {Iv : v ∈ P} can
be chosen to be nested. Especially, a nested interval poset for a linear order is called
a nested interval order. It is known that nested interval graphs, i.e., incomparability
graphs of nested interval orders, have very interesting combinatorial properties [5, 20].
The next result, which generalizes Example 3.2, is the chief goal of this note.

Theorem 5.2. Let P be a nested interval order and let F be a field of character-
istic 0. Then nP and CP are conjugate in IncF (P ) and hence have the same Jordan
canonical form when F is even an algebraically closed field.

Example 5.3. Take m ≥ 3. It is known [1, p. 28] that the Bruhat order Q of
the dihedral group of order 2m (the Coxeter group of type I2(m)) is isomorphic to
the nested interval poset for the real line consisting of the following intervals:

[1, 1], [2, 2], [2, 2], [3, 3], [3, 3], . . . , [m,m], [m,m], [m + 1,m + 1].

Therefore, Theorem 5.2 applies to say that nQ and CQ are conjugate to each other
in IncF (Q) for any field F of characteristic 0. We remind the reader that I2(3) =
A2, I2(4) = B2 and I2(6) = G2 [1, Appendix A1].

In the remaining part of this section, we will propose some former definitions
so that we can establish Theorems 5.1 and 5.2. We will also give some pertinent
examples and discussions.

Define an equivalence relation ∼ on a poset P such that x ∼ y if and only if
x↑ = y↑. We use the notation 〈x〉 = 〈x〉P for the equivalence class {y ∈ P : x ∼ y}.
We define the quotient poset of P , denoted by P , as the one with the ∼-equivalence
classes of P as elements and 〈x〉 >P 〈y〉 if and only if 〈x〉∩y↑ 6= ∅. A poset P is green
if the set system {y↑P : y ∈ P, x <P y} is a hierarchy for every x ∈ P .
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Example 5.4. If P is a green poset, then its quotient poset P and any interval
poset for it are also green.

Example 5.5. A upp poset is clearly green and hence so is any interval poset
for a upp poset.

Theorem 5.6. Let P be a green poset. Then there is α ∈ IncF (P ) such that
αCP = nP and det α = 1.

Proof. Let x1, . . . , xr be a linear extension of P. For any t ∈ {0, 1, . . . , r}, let Ct

be the P × P matrix such that Ct(xi, ·) = CP (xi, ·) for i ≤ t and Ct(xi, ·) = nP (xi, ·)
for i > t. Note that Cr = CP and C0 = nP . So, it suffices to show that there exists
αt ∈ IncF (P ) satisfying αtCt = Ct−1 and detαt = 1 for any t ∈ {1, 2, . . . , r}.

By assumption, there are t1, . . . , tn > t such that xt1 , . . . , xtn
are all elements of

P which cover xt. Since {y↑P : y ∈ P, x <P y} is a hierarchy, we can further assume
that there is m such that x↑t1 , . . . , x

↑
tm

are pairwise disjoint and for any i > m, there
exists j ≤ m such that x↑ti

⊆ x↑tj
. It now follows that αt = Txtxt1

(1) · · ·Txtxtm
(1) is

what we wanted, completing the proof.

Proof of Theorem 5.1. Combining Example 5.5 with Theorem 5.6 yields the
result.

Let P be an interval order. From Theorem 5.1 we derive rank(nP ) = rank(CP )
and hence nP and CP have the same number of Jordan blocks. We do not know of
any example yet for which rank(n2

P ) 6= rank(C2
P ). But the following example says that

it is possible to occur rank(n3
P ) 6= rank(C3

P ).

Fig. 5.1. The relative distribution of the family of intervals in Example 5.7.

Example 5.7. Consider the following family of intervals of the real line R:
I1 = [1, 2], I2 = [1, 4], I3 = [1, 4], I4 = [1, 6], I5 = [3, 8], I6 = [5, 10], I7 = [7, 12], I8 =
[9, 14], I9 = [11, 14], I10 = [11, 16], I11 = [13, 16], I12 = [15, 18], I13 = [17, 20], I14 =
[17, 22], I15 = [19, 24], I16 = [21, 26], I17 = [23, 28], I18 = [25, 30], I19 = [27, 30], I20 =
[27, 32], I21 = [29, 34], I22 = [31, 36], I23 = [33, 36], I24 = [35, 36]. We depict these
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intervals in Fig. 5.1. Denote the corresponding interval poset by P , which can be
shown to be a semiorder. A calculation by computer tells us that

(5.1)
{

(rankZ(nP ), rankZ(n2
P ), . . . , rankZ(n7

P )) = (17, 13, 9, 6, 4, 2, 0),
(rankZ(CP ), rankZ(C2

P ), . . . , rankZ(C7
P )) = (17, 13, 10, 7, 4, 2, 0).

Hence, the Jordan invariants of nP and CP are (7, 7, 4, 3, 1, 1, 1) and (7, 7, 5, 2, 1, 1, 1),
respectively. Additionally, a computer enumeration shows that the cover matrix and
the incidence matrix of any proper subposet of P have the same Jordan canonical
form. Finally, let us point out that, a greedy search finds that I1 < I5 < I8 < I12 <

I15 < I18 < I22 is a longest chain in P and hence Example 4.9 anticipates the fact
that 7 is the size of the largest Jordan block in both nP and CP .

Fig. 5.2. The relative distribution of the family of intervals in Example 5.8.

We read from Eq. (5.1) that rank(ni
P ) ≤ rank(Ci

P ) for all positive integers i. Let
us give another example to illustrate that this is not true in general.

Example 5.8. Consider the new poset P consisting of the following intervals in
the real line: I1 = [1, 2], I2 = [1, 4], I3 = [3, 6], I4 = [5, 8], I5 = [7, 10], I6 = [7, 12],
I7 = [9, 10], I8 = [9, 12], I9 = [11, 14], I10 = [13, 16], I11 = [15, 18], I12 = [17, 18]. See
Fig. 5.2. It is easily verified that

{
(rankZ(nP ), rankZ(n2

P ), . . . , rankZ(n5
P )) = (8, 5, 3, 1, 0),

(rankZ(CP ), rankZ(C2
P ), . . . , rankZ(C5

P )) = (8, 5, 2, 1, 0),

and the Jordan invariants of nP and CP are (5, 4, 2, 1) and (5, 3, 3, 1), respectively.
By a computer enumeration we find that for any proper subposet of P its incidence
matrix and cover matrix are similar to each other. It may be worth noting that P

cannot be any semiorder, as can be certified by the intersection pattern of the intervals
I6, I4, I7 and I9 – they correspond to a so-called 1+3 in the poset.

Example 5.9. Let P be any semiorder with at most 11 elements. A computer
enumeration shows that rankZ(nk

P ) = rankZ(Ck
P ) for all positive integer k and hence

nP and CP have the same Jordan canonical form over C. It seems interesting to
understand which kind of obstruction appeared in an interval order P can cause
different Jordan invariants of CP and nP .
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Let P be a poset and let L : x1, x2, . . . , xr, be a linear extension of P . We observe
that any ordering of P such that the elements of xi come earlier than those of xj

whenever i < j is necessarily a linear extension of P. We say that the linear extension
L of P is blue if for any u,w ∈ P satisfying |[u,w]P | > 2, u ∈ xi and w ∈ xj , we can
find a k such that

(5.2) v <P w for all v ∈ xk

and

(5.3) i = max{t : xt <P xk}.
Note that in this case it surely holds

(5.4) xi lP xk.

A blue poset is a poset whose quotient poset admits a blue linear extension.

The following lemma contains the main thrust of this note. Like Example 4.8,
it recognizes certain condition under which a set of elements will fall into the same
conjugacy class of IncF (P ). The proof of the lemma makes repeated use of the so-
called elementary combination similarity [2, Fig. 7] which sends an element A ∈
IncF (P ) to TAT−1 for some transvection T ∈ IncF (P ).

Lemma 5.10. Let P be a blue poset. Let B be the set of functions τ in the strict
incidence algebra of P such that the following hold: (i) τ(u, v) = τ(u′, v) whenever
u ∼ u′ and v /∈ 〈u〉; (ii)

∑
v′∈〈v〉 τ(u, v′) 6= 0 for every u, v ∈ P satisfying 〈u〉lP 〈v〉.

Take f ∈ B and let g be the element in IncF (P ) that agrees with f on {(x, y) ∈
P × P : |[x, y]P | ≤ 2} and vanishes on {(x, y) ∈ P × P : |[x, y]P | ≥ 3}. Then there
is α ∈ IncF (P ) such that g = αfα−1.

Proof. Let Bf be the set of elements of B which are conjugate to f in IncF (P )
and are equal to f when restricted on {(x, y) ∈ P × P : |[x, y]| ≤ 2}. Take a blue
linear extension of P , say x1, . . . , xr.

Suppose the lemma were false. Then for any τ ∈ Bf we have two well-defined
parameters,

Cτ = min{j : ∃w ∈ xj ,∃u ∈ P, τ(u,w) 6= 0, |[u,w]P | > 2}
and then

Rτ = max{i : ∃u ∈ xi,∃w ∈ xCτ
, τ(u,w) 6= 0, |[u,w]P | > 2}.

We now choose η ∈ Bf with (Rη, Cη) = (i, j), where j = maxτ∈Bf
Cτ and

i = minτ∈Bf ,Cτ=j Rτ . To derive a contradiction, it suffices to show that η is conjugate
in IncF (P ) to an element h ∈ Bf with either Ch > j or Ch = j but Rh < i.
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Fix any u ∈ xi. Note that |[xi, xj ]P | > 2 and L is blue. Consequently, for each
w ∈ xj with |[u,w]P | > 2 there is an integer k = k(w) for which Eqs. (5.2), (5.3) and
(5.4) are satisfied. In view of η ∈ B and Eq. (5.4), condition (ii) for τ = η says that
the number

∑
v∈xk(w)

η(u, v) takes a nonzero value, which we denote by aw. Let

β =
∏

w∈xj
|[u,w]P |>2

∏
v∈xk(w)

Tvw(
η(u,w)

aw
) ∈ IncF (P )

and let h = βηβ−1. It is no hard to see that h ∈ Bf . Moreover, in view of Eq. (5.3)
for k = k(w), where w ∈ xj and |[u,w]P | > 2, we can check that either Ch > j or
Ch = j but Rh < i, arriving at the desired contradiction.

Remark 5.11. We follow the notation of Lemma 5.10. Let P ′ be a filter of the
given blue poset P and assume that P ′ is a union of some ∼-equivalence classes of
P. A moment’s thought on the proof of Lemma 5.10 says that we can determine the
required α to transform f to g step by step and αP ′ can be constructed totally by fP ′

and gP ′ .

Like Theorem 5.6, the next lemma furnishes further example of the combinatorial
regularity implied by the nested property.

Lemma 5.12. The nested interval order is a blue poset.

Proof. Let P be a nested interval poset for a linear order Q. Let r = |P | and
take an ordering

L : x1 = 〈y1〉, · · · , xr = 〈yr〉
of P , where yt = [at, bt], t = 1, . . . , r, such that

(5.5) y↑P

` ( y↑P
m implies ` > m.

It is clear that L gives rise to a linear extension of P . Our task is to prove that L is
blue. Suppose u ∈ xi and w ∈ xj satisfy |[u,w]P | > 2. Accordingly, we take

(5.6) k = min{t : ∃v ∈ xt, u <P v <P w}
and want to verify Eqs. (5.2) and (5.3). Eq. (5.2) is trivially true. To finish the
proof, we want to derive a contradiction under the assumption that Eq. (5.3) fails,
namely

(5.7) i < h = max{t : xt <P xk}.

On account of Eq. (5.7), we can assume without loss of generality that

(5.8) yh <P yk,
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from which it follows that

(5.9) ah ≤Q bh <Q ak.

By Eqs. (5.5) and (5.7) we can find a number n and with no loss of generality assume
that

(5.10) bi <Q an ≤Q bh.

We obtain from Eq. (5.6) that

(5.11) yi lP yk.

Henceforth, from Eq. (5.8) we see that it is impossible to happen yi <P yh and so,
considering that [ai, bi] and [ah, bh] are nested, Eq. (5.10) implies

(5.12) ah ≤Q ai.

In addition, Eqs. (5.9), (5.10) and (5.12) tell us that ah ≤Q ai ≤Q bi <Q an ≤Q

bh <Q ak. As [an, bn] and [ah, bh] are nested, we get bi <Q an ≤Q bn ≤Q bh <Q ak

and hence yi <P yn <P yk. This leads to a contradiction with Eq. (5.11), as desired.

Proof of Theorem 5.2. This follows from Lemmas 5.10 and 5.12.

Note that Examples 5.7 and 5.8 assert that the nested condition in Theorem
5.2 cannot be dropped. However, we do not find any example yet for which the
characteristic 0 condition cannot be relaxed. Another direction to pursue if to see if
the work reported by Theorem 5.2 can be generalized to nested interval posets of upp

posets. It would be desirable to combine Example 4.11 with Remark 5.11 to shed
some light on the next question.

Question 5.13. Let P be a nested interval poset for a upp poset and F a
characteristic 0 field. Are nP and CP always in the same conjugacy class of IncF (P )?
Do they at least have the same Jordan invariants when viewed as integer matrices?

6. Tensor product constructions. For four matrices A1, A2, B1 and B2, if A1

and A2 are similar and B1 and B2 are similar, then we surely know that the tensor
product A1 ⊗ B1 is similar to A2 ⊗ B2. We try to address more simple cases of the
Stanley’ problem in this section and the underlying idea can be said to be this fairly
easy observation on tensor product.

Let P be a poset. We write T (P ) and B(P ) for the set of sources and the set of
sinks in Γ(P ), respectively. We call the elements of T (P ) top elements of P and those
of B(P ) the bottom elements of P. Let M(P ) = P \ (T (P ) ∪B(P )). For any positive



Incidence Matrix and Cover Matrix of a Poset 17

integer n, the set {1, 2, . . . , n} is denoted by [n]. For any three positive integers n1, n2

and n3, the poset Pn1,n2,n3 has (T (P )× [n1]) ∪ (M(P )× [n2]) ∪ (B(P )× [n3]) as its
ground set and (u, i) <P n1,n2,n3 (v, j) if and only if u <P v. Notice that any element
from B(P ) ∩ T (P ) has n1 + n3 copies in Pn1,n2,n3 . Given any f ∈ IncF (P ), the
function fn1,n2,n3 ∈ IncF (Pn1,n2,n3) is specified by fn1,n2,n3((x, i), (y, j)) = f(x, y).

Lemma 6.1. Let f and g be two elements in the strict incidence algebra of a
poset P over a field F . If there is an α ∈ IncF (P ) such that

α(M(P ), T (P )) = 0 and α−1fα = g,

then fn1,n2,n3 and gn1,n2,n3 are conjugate in IncF (Pn1,n2,n3).

Proof. For ease of notation, put Q = Pn1,n2,n3 , fQ = fn1,n2,n3 , gQ = gn1,n2,n3 ,
α−1 = α̂, T = T (P ), B = B(P ),M = M(P ), Ti = T × i, Bi = B × i,Mi = M × i. Fix
any mappings ψ ∈ [n2][n1] and define β, β̂ ∈ IncF (Q) by setting





β̂(Bi, Bj) = δ(i, j)α̂B ;
β̂(Bi,Mj) = δ(j, ψ(i))α̂(B,M);
β̂(Bi, Tj) = α̂(B, T );
β̂(Mi,Mj) = δ(i, j)α̂M ;
β̂(Mi, Tj) = 0;
β̂(Ti, Tj) = δ(i, j)α̂T ;





β(Bi, Bj) = δ(i, j)αB ;
β(Bi,Mj) = δ(j, ψ(i))α(B,M);
β(Bi, Tj) = α(B, T );
β(Mi,Mj) = δ(i, j)αM ;
β(Mi, Tj) = 0;
β(Ti, Tj) = δ(i, j)αT .

Here are some easily-checked properties of the two functions β and β̂:

> β̂β(Bi, Bj) = δ(i, j)β̂Bi
βBj

= δ(i, j)α̂BαB

= δ(i, j)δBi ;

> β̂β(Bi,Mj) = δ(j, ψ(i))(α̂Bα(B,M) + α̂(B,M)αM )
= δ(j, ψ(i))α̂α(B,M)
= 0;

> β̂β(Bi, Tj) = α̂Bα(B, T ) + α̂(B, T )αT

= α̂α(B, T ) (by α(M, T ) = 0)
= 0;

> β̂β(Mi,Mj) = δ(i, j)α̂MαM

= δ(i, j)α̂α(M, M)
= δ(i, j)δMi

;

> β̂β(Mi, Tj) = β̂Mi
β(Mi, Tj) + β̂(Mi, Tj)βTj

= 0;
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> β̂β(Ti, Tj) = δ(i, j)α̂T αT

= δ(i, j)δTi
.

Combining the above six items enables us to get β̂β = δQ. Thus, to infer that
fQ and gQ are conjugate in IncF (Q), it remains to verify β̂fQβ = gQ. Taking into
consideration that f lies in the strict incidence algebra of P , we have

(6.1) fB = 0, fT = 0, fQ
B×[n3]

= 0, fQ
T×[n1]

= 0.

Now, the final proof is accomplished as follows:

• β̂fQβ(Bi, Bj) = β̂Bif
Q(Bi, Bj)βBj

= α̂BfBαB

= gB

= gQ(Bi, Bj);

• β̂fQβ(Bi,Mj) = β̂Bi
fQ(Bi,Mj)βMj

+
β̂(Bi,Mψ(i))fQ(Mψ(i),Mj)βMj (by Eq. (6.1))

= α̂Bf(B,M)αM + α̂(B,M)fMαM

= α̂fα(B,M) (by Eq. (6.1))
= g(B,M)
= gQ(Bi,Mj);

• β̂fQβ(Bi, Tj) = β̂Bi
fQ(Bi, Tj)βTj

+
β̂(Bi,Mψ(i))fQ(Mψ(i), Tj)βTj

(by Eq. (6.1))
= α̂Bf(B, T )αT + α̂(B,M)f(M, T )αT

= α̂fα(B, T ) (by Eq. (6.1) and α(M, T ) = 0)
= g(B, T )
= gQ(Bi, Tj);

• β̂fQβ(Mi,Mj) = β̂Mif
Q(Mi,Mj)βMj

= α̂MfMαM

= gM

= gQ(Mi,Mj);

• β̂fQβ(Mi, Tj) = β̂Mi
fQ(Mi, Tj)βTj

(by Eq. (6.1))
= α̂Mf(M, T )αT

= α̂fα(M, T ) (by Eq. (6.1) and α(M, T ) = 0)
= g(M, T )
= gQ(Mi, Tj);
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• β̂fQβ(Ti, Tj) = β̂Tif
Q(Ti, Tj)βTj

= α̂T fT αT

= gT

= gQ(Ti, Tj).

We are now ready to show that the characteristic 0 requirement for Example 5.3
is indeed unnecessary.

Corollary 6.2. Let Q be the Bruhat order of the dihedral group of order 2m

for m ≥ 3. Then nQ and CQ are conjugate to each other in IncF (Q) over any field
F.

Proof. Let P be the total order of m + 1 elements. In view of the nested interval
representation of Q given in Example 5.3, it is clear that Q is just P 1,2,1. Conse-
quently, by taking f = nP and g = CP , the result follows from Example 3.2 and
Lemma 6.1.

Corollary 6.2 is concerned with the Bruhat orders of dihedral groups. Let us
pursue the ideas of its proof and establish a similar result for weak orders instead of
Bruhat orders.

For any three positive integers n1, n2, n3, and any f ∈ IncF (P ), let Q = (T (P )×
[n1])∪(M(P )×[n2])∪(B(T )×[n3]) and let f(n1, n2, n3) be the function on Q×Q that
takes value 0 on {((x, i), (y, j)) : x, y ∈ M(P ), i 6= j} and coincides with fn1,n2,n3

elsewhere. The poset P (n1, n2, n3) is the one satisfying nP (n1,n2,n3) = nP (n1, n2, n3).
The next lemma is a slight modification of Lemma 6.1.

Lemma 6.3. Let f and g be two elements in the strict incidence algebra of a
poset P over a field F . Suppose

f(B(P ), T (P )) = g(B(P ), T (P )) = 0,

and there exists an α′ ∈ IncF (P ) such that

α′−1(B(P ),M(P ))f(M(P ), T (P )) = 0, α′(M(P ), T (P )) = 0 and α′−1fα′ = g.

Then f(n1, n2, n3) and g(n1, n2, n3) are conjugate in IncF (P (n1, n2, n3)).

Proof. Before embarking on the proof, we explain some short-hand notations to be
used for simplicity’s sake: Q = P (n1, n2, n3), fQ = f(n1, n2, n3), gQ = g(n1, n2, n3),
α′−1 = α̂′, T = T (P ), B = B(P ),M = M(P ), Ti = T × i, Bi = B × i,Mi = M × i. In
addition, we should note that Eq. (6.1) is still valid in the current situation.

Now, let us start the proof by introducing two functions β, β̂ ∈ IncF (Q) given
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by:





β̂(Bi, Bj) = δ(i, j)α̂′B ;
β̂(Bi,Mj) = α̂′(B,M);
β̂(Bi, Tj) = α̂′(B, T );
β̂(Mi,Mj) = δ(i, j)α̂′M ;
β̂(Mi, Tj) = 0;
β̂(Ti, Tj) = δ(i, j)α̂′T ;





β(Bi, Bj) = δ(i, j)α′B ;
β(Bi,Mj) = α′(B,M);
β(Bi, Tj) = α′(B, T );
β(Mi,Mj) = δ(i, j)α′M ;
β(Mi, Tj) = 0;
β(Ti, Tj) = δ(i, j)α′T .

We can check that β̂β = δQ :

> β̂β(Bi, Bj) = δ(i, j)α̂′(Bi, Bi)α′(Bj , Bj)
= δ(i, j)α̂′Bα′B
= δ(i, j)δBi

;

> β̂β(Bi,Mj) = α̂′Bα′(B,M) + α̂′(B,M)α′M
= α̂′α′(B,M)
= 0;

> β̂β(Bi, Tj) = β̂Biβ(Bi, Tj) + β̂(Bi, Tj)βTj

= α̂′Bα′(B, T ) + α̂′(B, T )α′T
= α̂′α′(B, T ) (by α′(M, T ) = 0)
= 0;

> β̂β(Mi,Mj) = δ(i, j)β̂MiβMj

= δ(i, j)α̂′Mα′M
= δ(i, j)α̂′α′(M, M)
= δ(i, j)δMi

;

> β̂β(Mi, Tj) = β̂Miβ(Mi, Tj) + β̂(Mi, Tj)βTj

= 0;

> β̂β(Ti, Tj) = δ(i, j)β̂TiβTj

= δ(i, j)α̂′T α′T
= δ(i, j)δTi

.

To complete the proof, it then suffices to verify β̂fQβ = gQ in the following six
steps:

• β̂fQβ(Bi, Bj) = β̂Bi
fQ(Bi, Bj)βBj

= α̂′BfBα′B
= gB

= gQ(Bi, Bj);
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• β̂fQβ(Bi,Mj) = β̂Bif
Q(Bi,Mj)βMj +

β̂(Bi,Mj)fQ(Mj ,Mj)βMj
(by Eq. (6.1))

= α̂′Bf(B,M)α′M + α̂′(B,M)fMα′M
= g(B,M) (by Eq. (6.1))
= gQ(Bi,Mj);

• β̂fQβ(Bi, Tj) = β̂Bi
fQ(Bi, Tj)βTj

+∑
k β̂(Bi,Mk)fQ(Mk, Tj)βTj

(by Eq. (6.1))
=

∑
k α̂′(B,M)f(M, T )α′T (by f(B, T ) = 0)

= 0 (by α̂′(B,M)f(M, T ) = 0)
= g(B, T )
= gQ(Bi, Tj);

• β̂fQβ(Mi,Mj) = β̂Mif
Q(Mi,Mj)βMj

= δ(i, j)α̂′MfMα′M
= δ(i, j)gM

= gQ(Mi,Mj);

• β̂fQβ(Mi, Tj) = β̂Mi
fQ(Mi, Tj)βTj

(by Eq. (6.1))
= α̂′Mf(M, T )α′T
= g(M, T ) (by Eq. (6.1) and α′(M, T ) = 0)
= gQ(Mi, Tj);

• β̂fQβ(Ti, Tj) = β̂Ti
fQ(Ti, Tj)βTj

= α̂′T fT α′T
= gT

= gQ(Ti, Tj).

Corollary 6.4. Let Q be the weak order of the dihedral group of order 2m,
m ≥ 3. Then nQ and CQ are conjugate to each other in IncF (Q) over any field F.

Proof. Let P be the total order of m + 1 elements, say 1 < 2 < · · · < m + 1. It is
not difficult to find that Q is just P (1, 2, 1). Let x be the unique bottom element of Q

and y be one of the two elements which are covered by the unique top element of Q.
Let n = m+1 and put α′ = T1,n−1(−1)T (n−1) · · ·T (2), where T (j), j = 2, . . . , n−1,

are defined in Eq. (3.1). A closer look on Example 3.2 says that we can apply Lemma
6.3 for f = T1,n−1(−1)nP T1,n−1(1), g = CP , and the above-mentioned α′, to conclude
that g(1, 2, 1) = CQ is conjugate to f(1, 2, 1) = Txy(−1)nQTxy(1), and therefore the
claim follows.

Corollaries 6.2 and 6.4 are about the Bruhat orders and the weak orders, re-
spectively, of types I2(m),m ≥ 3. These, together with the sporadic observations in
Example 4.12, suggest that it may deserve to further exploit other Bruhat orders and
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weak orders of Coxeter groups and see if their incidence matrices and cover matrices
are always conjugate to each other in the corresponding incidence algebras. To this
end, a good knowledge of the structure of these posets may be crucial. We close
this paper by noting that a detailed description of the underlying graph of the Hasse
diagrams of the weak orders of the Coxeter groups of types Bn and Ã2 can be found
in [15].
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