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Abstract—We investigate the fundamental relationship between
node density and transmission delay in Large-scale wireless
networks with unreliable links from percolation perspective.
Previous works[7][2][6] have already showed the relationship be-
tween transmission delay and distance from source to destination.
However, it still remains as an open question how transmission
delay varies in accordance with node density. In this paper,
we study the impact of node density λ on the ratio of delay
and distance, denoted by γ(λ). We analytically characterize the
properties of γ(λ) as a function of λ. And then we present
upper and lower bounds to γ(λ). Next, we take propagation
delay into consideration and obtain further results on the upper
and lower bounds of γ(λ). Finally, we make simulations to verify
our theoretical analysis.

Index Terms—Connectivity, Delay, Density

I. INTRODUCTION

Wireless communication sees an explosive growth in the
number of customers in the past few decades, making Large-
scale wireless network an important part of modern life.
To ensure the successful communication between node pairs
in a wireless network, the network needs to maintain full
connectivity[3]. However, it is overly power consuming to
achieve full connectivity in Large-scale networks(i.e., the
power required to maintain full connectivity increases with
the size of the network). Thus, it is necessary to introduce
a slightly weaker connectivity criterion, i.e., an infinite con-
nected component containing a high fraction of the network
nodes exists in a network. Thanks to percolation theory[5][16],
it is possible to achieve this weaker connectivity in Large-scale
networks with power bounded.

Percolation theory[5], especially continuum percolation, has
become a useful mathematical tool when analyzing the ca-
pacity and the connectivity of wireless networks. The most
general model in Continuum Percolation, Random Connection
Model(RCM), describes the behavior of connected clusters in
a random geometric graph in which nodes are distributed ac-
cording to poisson point process with node density λ, and two
nodes share a link according to a connection function h(r).
A fundamental result of RCM points out a phase transition
effect1. For λ > λc(supercritical), there exist a unique con-

1The condition for the existence of phase transition is 0 <
∫
R2 h(r)dr <

∞.

nected component containing an infinite number of nodes(we
also say the network is percolated). For λ < λc(subcritical), all
connected component in the network are finite almost surely.

Applying percolation theory to wireless networks with unre-
liable links, we introduce two important concepts, i.e., instan-
taneous connectivity and long-term connectivity. Instantaneous
connectivity requires wireless network percolated all the time.
Long-term connectivity requires wireless network percolated
in the long run(we will elaborate it more clearly later in
sectionII-C). The instantaneous critical density, denoted by λI ,
is the critical density for instantaneous connectivity and the
long-term critical density, denoted by λL, is the critical density
for long-term connectivity. Long-term connectivity is a weaker
criterion for connectivity, thus λL < λI . The Prerequisite for
communication in wireless networks is connectivity, so we
only focus on the case λ > λL.

In wireless networks with unreliable links, delay is com-
posed of two parts, the waiting delay and the propagation
delay. The waiting delay is caused by the lack of instantaneous
connectivity. Information cannot be transmitted to a distant
destination instantaneously since the connected component
is finite almost surely. It must wait for some time until
some communication links are established and can transmit
forward again. As for the propagation delay, it only depends
on the channel condition and communication medium. It has
no relationship with networks’ node density λ. For ease of
analysis, we first ignore the impact of propagation delay and
will consider its effect in the last.

Previous works [7][2][6] have showed that if λL < λ < λI ,
the transmission delay scales linearly with distance between
source and destination(γ(λ) > 0), and if λ > λI , the trans-
mission delay scales sub-linearly with distance(γ(λ) = 0).
This also indicates that delay must have some relationship
with node density λ. However, what is the exact relationship
between the delay-distance ratio γ(λ) and the node density
λ? Do there exist lower and upper bounds to this ratio γ(λ)?
Answering these questions can help reveal the essence of delay
in wireless networks with unreliable links.

In this paper, we give a more precise description of the
delay in wireless networks with unreliable links. We present
3 properties of γ(λ) as a function of λ. Using coupling
techniques, we prove that γ(λ) is a monotone decreasing



function.
And then, we come to the upper and lower bounds of γ(λ),

ignoring the propagation delay. For the upper bound, we first
find a path between two nodes. And then we calculate the
number of hops along this path and the delay at each hop.
We obtain the result on upper bound through multiplication of
the above two items. For the lower bound, we first introduce
a concept called cluster to cluster transmission process and
establish the relationship between delay and the cluster to
cluster transmission process, which reveals the essence of
delay in networks. Then, using the definition of delay of a
cluster to cluster transmission, we obtain a lower bound of
γ(λ).

Next, we take propagation delay into consideration and
reformulate γ(λ) in this case. Propagation delay increases the
delay in Large-Scale Networks, making γ(λ) > 0 even when
λ > λI . Using similar methods, we present new upper and
lower bounds to γ(λ) for all λ > λL.

Finally, we make enormous simulation and further verifies
our theoretical results.

The original contributions that we have made in the paper
are highlighted as follows:

• We present three properties to γ(λ), i.e., γ(λ) is uni-
formly bounded; γ(λ) = 0 whenever λ > λI ; γ(λ) is a
monotone decreasing function.

• Ignoring propagation delay, we provide the upper
bound and the lower bound to reflect the range of
variation on γ(λ), i.e., 1

E(Sg(λ)+r0)
≤ γ(λ) ≤

inf
λ′∈[λL,λ]

κ
√

λ′

λL
( 1

g

(
r0

√
λL

λ
′

) − 1).

• Taking propagation delay into consideration, we proved

that 1
E(min{Sg(λ),

r0
τ })+r0

≤ γ(λ) ≤ inf
λ′∈[λL,λ]

κ
√

λ′/λL

g

(
r0

√
λL

λ
′

)
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• We conduct simulations to obtain experimental values of
γ(λ) in the above two cases. A new observation arises
from our comparison between theoretical and simulation
results is that the delay-distance ratio γ(λ) can be es-
timated by the lower bound in relative dense networks
while the experimental values of γ(λ) get closer to
the upper bound as λ decreases. This also justifies the
soundness of our theoretical conclusion.

The rest of the paper is organized as follows. In section II,
we introduce our network model, several useful mathematical
tools and some important notations. In section III, we first give
three properties of γ(λ), and then present our main results
concerning the upper and lower bound of γ(λ). The analysis
process to obtain the upper and lower bounds is given in
section IV. Simulation results are presented in Section V to
support our theoretical findings. We summarize the paper in
Section VI. Some proofs of the theorems and lemmas are
presented in line or in Appendix.

2κ is a constant independent of λ; Sg(λ) is a random variable(see section
II-E for its definition).

II. NETWORK MODEL

In this section, we present the network model in this paper.
First, we list some properties of poisson point process that are
frequently used in this paper. Then we give a brief description
of Random Connection Model. Next, random geometric graph
is introduced including some important concepts. After that,
we present the first passage percolation model and give the
accurate definition of delay-distance ratio γ(λ). Finally, we
list some important notations in this paper.

A. Poisson Point Process
In large-scale wireless networks, nodes are distributed ac-

cording to Poisson Point Process. In the following analysis,
we will frequently use the following two classical results on
Poisson Point Process.

Lemma 1. [14]Let Γ be a potentially inhomogeneous Pois-
son process on Rd with density function λ(x), where x =
(x1, x2, ..., xd) ∈ Rd. Suppose that we obtain Γ

′
by indepen-

dently coloring points x ∈ Γ according to probabilities p(x).
Then Γ

′
and Γ−Γ

′
are two independent Poisson processes with

density function p(x)λ(x) and (1− p(x))λ(x), respectively.

Lemma 2. Let Γ,Γ
′

be two independent inhomogeneous
Poisson process on Rd with density functions λ(x) and λ

′
(x),

respectively, where x = (x1, x2, ..., xd) ∈ Rd. Suppose that
we obtain Γ + Γ

′
by superposing Γ

′
on Γ. Then Γ + Γ

′
is a

Poisson processes with density function λ(x) + λ
′
(x).

The above two lemmas point out that the decomposition or
superposition of Poisson Point Processes remains to be Poisson
Point Process. This is very useful in coupling techniques.

B. Random Connection Model
Random Connection Model(RCM) is the most general

model in Continuum Percolation Theory. In Random Con-
nection Model, nodes are distributed according to Poisson
point process [13] in Rd. Here we only focus on the case
of R2 with node density λ > 0. Each node x connect to
another node y according to the connection function h(r),
where r is the distance between x and y, and h(r) satisfy
0 <

∫
R2 h(r)dr < ∞.

We denote the Random Connection Model by
G(λ, r0, h(r)). Then G(λ, r0, h(r)) is a set of nodes
connected by random links. For convenient, we assume the
origin 0 ∈ G(λ, r0, h(r)).

Obviously, G(λ, r0, h(r)) is composed of one or several
disjointed connected clusters. Let us denote W (A), A ⊆
G(λ, r0, h(r)), the set of nodes attainable from nodes in set
A, i.e.,

W (A) = {x ∈ G(λ, r0, h(r))|∃a ∈ A, a ↔ x},
where, a ↔ x means that nodes a and x are in the same
connected component.

Besides, we use |W | to represent the cardinality of set W .
And we write θh(λ) = Pλ,h(|W ({0})| = ∞) and χh(λ) =
Eλ,h(|W ({0})|)3.

3E(x) is the expectation of random variable x



Then, the critical density can be determined in two ways,
i.e.,

λθ(h) = inf{λ|θh(λ) > 0}; (1)

λχ(h) = inf{λ|χh(λ) = ∞}. (2)

According to Theorem 6.2 in [16], λθ(h) = λχ(h) = λc(h).
Furthermore, 0 < λc(h) < ∞. And there exists a unique
infinite connected cluster if λ > λc(h) (supercritical). This
infinite connected cluster is also called the giant component,
denoted by C(G(λ, r0, h(r))). On the other hand, if λ <
λc(h)(subcritical), all the connected components are finite
almost surely.

Random Connection Model is just one kind of continuum
percolation model. Another continuum percolation model is
Poisson Boolean Model B(λ, r). In Poisson Boolean Model
B(λ, r), nodes are distributed according t Poisson Point Pro-
cess with density λ, and two nodes can communicate if and
only if their distance is smaller than r. Poisson Boolean Model
can also be seen as a collection of discs with radius r

2 . Poisson
Boolean Model is a special case of Random Connection
Model, thus the conclusions for Random Connection Model
still hold for Poisson Boolean Model.

C. Random Geometric Model

Assume nodes are distributed according to Poisson Point
Process with node density λ in an infinite two-dimensional
space R2. For each node u, we use u to represent both this
node and its location without causing confusion. We say two
nodes share a link if and only if their distance is smaller
than r0. However, due to the severe natural hazards, enemy
attack or energy depletion, each link suffers the possibility to
fail. We model this failure as each link opening or closing
intermittently.

(a) Illustration of connection
function g(r).

(b) Illustration of connection
function f(r).

Fig. 1. Illustration of two connection functions.

Assume time is slotted. Consider a link with length r,
at time slot t, we let it open with probability g(r)(Fig. 1),
independent of its former states. In reality, the farther two
nodes are apart, the more difficult for a successful communi-
cation. Moveover, when r > r0, there exists no link. Thus, it
is reasonable to assume that g(r) is a monotone decreasing
function and g(r) = 0 whenever r > r0. Besides, we place
another restriction on g(r), i.e.,

1 > g(0) ≥ g(r) ≥ g(r0) > 0, 0 ≤ r ≤ r0. (3)

Then the network at each time slot t can be represented
by a Random Connection Model Gt(λ, r0, g(r)). Here, we use

subscript t to indicate that the network is dynamic. Note that
if λ > λc(g(r)), Gt(λ, r0, g(r)) is percolated for all t(we also
say the network has instantaneous connectivity); while if λ <
λc(g(r)), Gt(λ, r0, g(r)) is not percolated for all t. Thus, the
instantaneous critical density λI = λc(g(r)).

Next, we introduce the concept of long-term connectivity.
We first construct a new geometric graph. The location of
all nodes in this graph is the same as that in Gt(λ, r0, g(r)).
Two nodes x and y share a link in this graph if and only
if there exist t, such that x and y share an open link in
Gt(λ, r0, g(r)). Note that x and y has the potential to share a
link in Gt(λ, r0, g(r)) for some t, whenever their distance is
smaller r0. Thus this new geometric graph can be represented
by a Random Connection Model G(λ, r0, f(r))(it can be
also represented by Poisson Boolean Model B(λ, r0)). Here,
f(r) = 1 when r < r0, and f(r) = 0 when r > r0(Fig. 1).
We say the wireless network has long-term connectivity if and
only if G(λ, r0, f(r)) is percolated. And the critical density
λL = λc(f(r)) is defined as the long-term critical density.

As for the instantaneous critical density and the long-term
critical density, we have the following relationship.

Lemma 3. λL ≤ λI .

Proof: For any λ > λI , there exist one infinite connected
cluster in Gt(λ, r0, g(r)). From the definition of G(λ, r0, f(r)),
we have

G(λ, r0, f(r)) = ∪∞
t=1Gt(λ, r0, g(r)).

Thus, there must exist one infinite connected cluster in
G(λ, r0, f(r)). Therefore, λ > λL. Hence, λL ≤ λI .

Since the prerequisite for communication in large-scale
wireless network is connectivity, it is enough to only focus
on the case λ > λL.

D. First Passage Percolation Model

This paper is based on the First Passage Percolation Model.
First Passage Percolation, first formulated by Hammersley and
Welsh[1] in 1965, can be a very powerful tool for analysis of
transmission delay in Large-scale networks.

Given a Random Connection Model G(λ, r0, h(r)), attach
each link e of G(λ, r0, h(r)) a random variable Tc(e), repre-
senting the time needed to pass through the link e. Consider
a path π, the passage time is defined as

Tp(π) =
∑
e∈π

(Tc(e)).

And for any two nodes x and y(x, y are not necessarily
adjacent), the first-passage time Tλ(x, y) is given by

Tλ(x, y) = inf {Tp(π) : π is a pass from x to y}.

In this paper, the states of links are dynamic. Sometimes,
information must wait at one end of a link until this link is on.
This is equivalent to introducing a crossing time Tc(e) to each
link e ∈ G(λ, r0, f(r)). Assume that the length of the link e



is 0 < r < r0, Tc(e) satisfy the Geometric distribution(here
we have ignored the propagation delay),i.e.,

P(Tc(e) = k) = (1− g(r))kg(r). (4)

Eqn. (3) assures that 0 < E(Tc(e)) < ∞. Using Liggett’s
subadditive ergodic theorem[20], previous works have proved
that, for x, y ∈ C(G(λ, r0, f(r))), when λ > λL,

lim
d(x,y)→∞

Tλ(x, y)

d(x, y)
= γ(λ). (5)

Moveover, if λL < λ < λI , γ > 0; while if λ > λI , γ = 0.
Eqn. (5) is also the definition of γ(λ). From the former

result, we can also see that γ must depend on λ. However,
the existing results only point out when γ(λ) equals to 0, and
when it is larger than 0. The exact relationship between γ(λ)
and λ still remains as an open question. In this paper, we will
give a more precise description on γ(λ).

E. Useful Notations

Some useful notations are listed as follows.
• (Section II-B)G(λ, r0, h) is a Random Connection Model,

and h is the connection function; B(λ, r) is the Poisson
Boolean Model; we use C(G(λ, r0, h))(C(B(λ, r))) to
represent the giant component of G(λ, r0, h)(B(λ, r)).

• (Section II-C) Gt(λ, r0, g) is the instantaneous geomet-
ric graph at time slot t and its critical density is λI ;
G(λ, r0, f) is the long-term geometric graph and its
critical density is λL.

• P(•) represents the probability of some event;E(•) rep-
resents the expectation of a random variable;zx(zy) rep-
resents the x(y)-coordinate of z; d(u, v) =∥ u − v ∥ is
the Euclidean distance between node u and v.

• (Section IV-C)H(z0, a) is a circular region defined as
H(z0, a) = {z = (zx, zy) ∈ R2| ∥ z − z0 ∥< a}.
The random variable Sg,t,u(λ) is defined as Sg,t,u(λ) =
sup{a|∃ node v ∈ H(u, a), v ↔ u at time slot t}. Actu-
ally, Sg,t,u(λ) is independent of t and u. Thus, we write
Sg,t,u(λ) as Sg(λ) for short.

• (Section II-D) Tc(e) is the passage time for a link e;
Tp(π) is the passage time for a path π; Tλ(x, y) is the
first passage time from node x to y; (Section IV-B) Tp(Π)
is the passage time for a cluster to cluster transmission
process Π;

• (Section IV-A)Nλ(d(u, v)) is the minimum number of
hops from node u to v.

• π represents a path; Π represents a cluster to cluster
transmission process.

III. MAIN RESULTS

In this section, we first give some properties on the delay-
distance ratio γ(λ). And then we present our main results
concerning the tradeoff between node density and γ(λ) in
wireless networks with unreliable links, in which an upper
bound and a lower bound for γ(λ), are given.

A. Properties of γ(λ)

γ(λ) can be seen as a function mapping from [λL,∞) to
R. The properties of γ(λ) are listed below.

Theorem 1. γ(λ) has the following three properties:

• there exists γM < ∞, such that for ∀λ, γ(λ) ≤ γM ;
• for ∀λ > λI , γ(λ) = 0;
• γ(λ) is a monotone decreasing function.

Proof: The first property can be proved later, so we do
not elaborate it here. The second property has already been
proved by previous literatures[7] [6][2][21]. Thus, we only
present the proof of property 3 here.

Given λ1 > λ2, consider two Random Connection Models
Gt(λ1, r0, g(r)) and Gt(λ2, r0, g(r)). We use coupling tech-
nique to prove γ(λ1) ≤ γ(λ2). Nodes in Gt(λ1, r0, g(r))
and Gt(λ2, r0, g(r)) are distributed according to Poisson Point
Process Γ1 and Γ2 with node densities λ1 and λ2, respectively.
According to lemma 2, Γ1 can be seen as the superposition
of Γ2 and another Poisson Point Process Γ

′
with node density

λ2 − λ1.
Consider nodes x, y ∈ Γ2, since Γ2 ⊆ Γ1, we obtain x, y ∈

Γ1. For any path π connecting x and y in Gt(λ2, r0, g(r)), this
path also exists in Gt(λ1, r0, g(r)). And the delay from x to
y, Tλ(x, y), is defined as the minimum delay among all paths
connecting x and y. Thus,

Tλ1(x, y) ≤ Tλ2(x, y).

Divide the above inequality by d(x, y), and let d(x, y) →
∞, we obtain

γ(λ1) ≤ γ(λ2).

We also have a conjecture about γ(λ), i.e., γ(λ) is a
continuous function. However, we fail to prove it.

According to Theorem 1, we can sketch γ(λ) out(Fig. 2).

Fig. 2. Sketch of γ(λ).



B. Main results on γ(λ)

We have obtained several properties of γ(λ). Now we are
ready to present our main results.

Theorem 2. Given Random Connection Model Gt(λ, r0, g(r))
with λL < λ < λI , the corresponding γ(λ) satisfies

1

E(Sg(λ) + r0)
≤ γ(λ) ≤ inf

λ′∈[λL,λ]
κ

√
λ′

λL
(

1

g
(
r0

√
λL

λ′

)−1),

(6)
where κ is a constant independent of λ.

If we take propagation delay into consideration, we have
the following results.

Theorem 3. Given Random Connection Model Gt(λ, r0, g(r))
with λ > λL, τ is the propagation delay for a existing link
and τ < 1. Then the corresponding γ(λ) satisfies

1

E(min{Sg(λ),
r0
τ }) + r0

≤ γ(λ) ≤ inf
λ′∈[λL,λ]

κ
√
λ′/λL

g
(
r0

√
λL

λ′

)
(7)

where κ is a constant independent of λ.

Our results provide a theoretical way to estimate delay in
Large-scale wireless networks. We use connection function
g(r) to represent the condition of a Large-scale wireless
network, making our results applicable to most cases in real
networks. Also, waiting delay and propagation delay are both
taken into account in our formulation, making our results more
reliable.

IV. UPPER AND LOWER BOUNDS OF γ(λ)

In this section, we first give an upper bound to the delay-
distance ratio, γ(λ). And then, we make further analysis on
transmission delay and introduce a concept called cluster to
cluster transmission. Using this concept, we derive another
upper bound and a lower bound. Finally, we take propagation
delay into consideration, and formulate its impact on γ(λ).

Turn back to the definition of γ(λ)(Eqn. 5).

γ(λ) = lim
d(x,y)→∞

Tλ(x, y)

d(x, y)
,

where x, y belongs to the giant component of G(λ, r0, f(r)).
However, we needn’t calculate γ(λ) for all x, y ∈
C(G(λ, r0, f(r))). The correctness of this assertion is assured
by the following lemma.

Lemma 4. Given a convergent sequence {xk}, k = 1, 2, ...,
and limk→∞ xk = x0. {yk}, k = 1, 2, ..., is a subsequence of
{xk}, and limk→∞ yk = y0. Then x0 = y0.

Obviously, the number of nodes in C(G(λ, r0, f(r))) is
countable. We enumerate for all nodes. We randomly select
a node and label it as x0, and then label other nodes ac-
cording to the distance from x0(larger subscript means larger
distance from x0). Define sequence {mk, k = 1, 2, ..., },mk =

Tλ(x0,xk)
d(x0,xk)

, then limk→∞ mk = γ(λ). According to lemma 4,
we only need to find a subset of nodes of C(G(λ, r0, f(r)))(the
cardinality of this subset must be infinity), and calculate γ(λ)
from this subset. This technique is used in deriving the upper
bound.

A. Upper Bound of γ(λ)

The definition of of delay is defined as the minimum delay
along all paths connecting source and destination nodes. Thus,
it must be smaller than or equal to the delay along one
path. In this part, we will first find a subset of nodes of
C(G(λ, r0, f(r))). And then we find a path for each node pair
in this subset. After that, we calculate the delay along this
path. Finally, dividing the delay by distance, we obtain an
upper bound of γ(λ).

Before proceeding, we need the following lemma.

Lemma 5. Consider Poisson Boolean models in R2. Let λc(r)
denote the critical density in the case where the transmission
range is r. Then it is the case that

λc(r1)r
2
1 = λc(r2)r

2
2,

where r1, r2 > 0.

Proof: See Proposition 2.10 in [16].
In long-term critical density λL is also the critical density of

Poisson Boolean Model with transmission range r0. Consider
the network with density λ > λL, according to lemma 5, we
immediately know that when λr2 > λLr

2
0 , i.e., r >

√
λL

λ ·r0,
Poisson Boolean Model B(λ, r) is percolated.

Let 0 < ε <
√

λ
λL

− 1 and r̃ = r0

√
λL

λ (1 + ϵ), then
B(λ, r̃) is percolated. Note that, in Random Connection Model
G(λ, r0, f(r)), the transmission is r0 > r̃. Thus, B(λ, r̃) is a
subgraph of G(λ, r0, f(r)). We denote the giant component of
B(λ, r̃) by C(B(λ, r̃)). According to the uniqueness of giant
component in supercritical case, there must be C(B(λ, r̃)) ⊆
C(G(λ, r0, f(r))). According to lemma 4, when calculating
γ(λ), we only need to focus on the case that both nodes belong
to C(B(λ, r̃)).

Assume that nodes u, v ∈ C(B(λ, r̃)). Then there exists at
least one path in B(λ, r̃) from u to v. We choose the path with
minimum number of hops, and denote it by πm.

Up to now, we have found a path connecting u and v. Next,
we are to calculate the delay along this path. To start with, we
need to work out the number of hops, denoted by Nλ(d(u, v)),
in πm. We needn’t calculate each Nλ(d(u, v)) for different λ.
We can find the relationship of Nλ(d(u, v)) for different λ in
the following way.

Scale the network up by
√

λ
λL

, and then the node density
becomes λL, the transmission range becomes (1 + ϵ)r0, and
the distance between u and v becomes d(u, v)

√
λ
λL

. Then it

is equivalent to calculate NλL
(d(u, v)

√
λ
λL

). Next, we present
the lemma concerning NλL(d).



Lemma 6. Given B(λL, (1+ϵ)r0), and u, v ∈ C(B(λL, 1+ϵ)),
the minimal number of hops needed for transmitting informa-
tion from u to v is NλL(d(u, v)). Then there exist κ such that

lim
d(u,v)→∞

NλL
(d(u, v))

d(u, v)
= κ.

The proof of this lemma 6 is based on a conclusion on
subadditivity and is given in Appendix I.

Lemma 7. (Liggett [20])Let {Sl,m} be a collection of random
variables indexed by integers 0 ≤ l ≤ m. Suppose {Sl,m} has
the following properties:

1) S0,m ≤ S0,l + Sl,m, 0 ≤ l ≤ m;
2) {S(m−1)k,mk,m ≥ 1} is a stationary process for each k;
3) {Sl,l+k, k ≥ 0} = {Sl+1,l+k+1, k ≥ 0} in distribution

for each l;
4) E[|S0,m|] < ∞ for each m.

Then α , limm→∞
E[S0,m]

m = infm≥1
E[S0,m]

m ; S ,
limm→∞

S0,m

m exists with probability 1 and E[S] = α.
Furthermore, if

5. the stationary process {S(m−1)k,mk,m ≥ 1} is ergodic;

then S = α with probability 1.

According to lemma 6, we immediately get

lim
d(u,v)→∞

Nλ(d(u, v))

d(u, v)
= lim

d(u,v)→∞

NλL
(d(u, v)

√
λ
λL

)

d(u, v)

= κ

√
λ

λL
. (8)

Then we calculate the delay Tp(πm) along path πm. Accord-
ing to Strong Large Number Theory, with high probability, we
have

Tp(πm) =
∑
e∈πm

Tc(e) = Nλ(d)E[Tc(e)].

Therefore,

γ(λ) = lim
d→∞

Tλ(u, v)

d(u, v)

≤ lim
d→∞

Tp(πm)

d(u, v)

= E[Tc(e)] lim
d→∞

Nλ(d(u, v))

d(u, v)

= κ

√
λ

λL
E[Tc(e)]. (9)

From the definition of the path πm, we know that the length
of each hop is smaller than r̃ = r0

√
λL

λ (1 + ϵ). Besides, the
connection function g(r) is monotone decreasing. Thus, for a

link e
′

whose length is r̃, there must be

E[Tc(e)] ≤ E[Tc(e
′
)]

=
∞∑
k=0

kP(Tc(e
′
) = k)

=
∞∑
k=0

k(1− g(r̃))kg(r̃)

=
1

g(r̃)
− 1. (10)

Thus,

γ(λ) = κ

√
λ

λL
E[Tc(e)]

≤ κ

√
λ

λL
(

1

g(r̃)
− 1)

= κ

√
λ

λL
(

1

g

(
r0

√
λL

λ (1 + ϵ)

) − 1).

Let ϵ → 0, we obtain

γ(λ) ≤ κ

√
λ

λL
(

1

g

(
r0

√
λL

λ

) − 1).

Furthermore, from property 3 of theorem 1, we know γ(λ)
is a monotone decreasing function. Thus,

γ(λ) ≤ inf
λ′∈[λL,λ]

κ

√
λ′

λL
(

1

g
(
r0

√
λL

λ′

) − 1).

B. Cluster to Cluster Transmission

In section IV-A, we have obtained the upper bound of γ(λ)
by calculating the delay along one path. However, the method
used in section IV-A cannot be generalized to study the lower
bound of γ(λ). We don’t know the number of paths connecting
two nodes, nor do we know the delay along each path. Thus,
it is impossible to find the minimum delay along all the paths.

To find a lower bound of γ(λ), we need to make clear that
when delay is introduced to network.

Consider transmitting information from node u to v. As-
sume that at time slot t1, node u1(u1 = u) transmits
information to other nodes. Since we have ignored the
propagation delay, all nodes connected to u1 in geometric
graph Gt1(λ, r0, g(r)), denoted by w1, receive the information
instantaneously. Then, the transmission process stops. The
transmission process will restart at time slot t2 > t1

4, when
at least one node in w1 find the opportunity to forward the
information to a new node, denoted by u2. At this time slot,
u2 transmits information to those nodes which are connected
to u2 in geometric graph Gt2(λ, r0, g(r)), and do not belong
to w1, denoted by w2, instantaneously. This process goes on,

4Here, we do not require t2 to be the smallest, i.e., there may exist t1 <
t
′
< t2, such that at least one node in w1 have the opportunity to forward

the information to a new node at time slot t
′
.



until at time slot tM , node uM and the destination node v are
in the same connected cluster and information is transmitted
to node v instantaneously.

We can see that the cluster to cluster transmission as a
series of outbursts. During each outburst, some new nodes
receive the information. wk, k = 1, 2, ...,M is the set of
nodes which receive the information right at the kth outburst.
A cluster to cluster transmission process can be represented
by Π = {(t1, u1), (t2, u2), ..., (tM , uM )}. Information can be
transmitted from u to v through Π. Define the passage time
for the cluster to cluster transmission process Π as

Tp(Π) = tM − t1.

Then, we have the following lemma.

Lemma 8. Given nodes u, v ∈ C((G)(λ, r0, f(r))), the first
passage time

Tλ(u, v) = inf{Tp(Π)|Π is a cluster to cluster

transmission process from u to v}.
(11)

Proof: For convenience, we use L to denote the set
of cluster to cluster transmission process from u to v. Then
Eqn.(11) can be rewritten as

Tλ(u, v) = inf{Tp(Π)|Π ∈ L }.

It is easy to see that for each cluster to cluster transmission
process Π from u to v,

Tp(Π) ≥ Tλ(u, v).

Thus,
inf{Tp(Π)|Π ∈ L } ≥ Tλ(u, v). (12)

Next, we show that

inf{Tp(Π)|Π ∈ L } ≤ Tλ(u, v).

Recall the definition of Tλ(u, v), i.e.,

Tλ(x, y) = inf {Tp(π) : π is a pass from x to y}.

Let π0 be the path with minimum delay from u to v, we
prove that there exists a cluster to cluster transmission process
Π0, such that Tp(Π0) = Tp(π0).

Assume that π0 = i0i1i2...iK(i0 = u, iK = v). At time
slot t1, some nodes in path π0 may be in the same connected
cluster as i0. Let iη1−1 be the node attainable from i0 with
largest subindex, then the link between iη1−1 and iη1

must be
off at this time slot. Let t2 > t1 be the first time slot that this
link is on. At time slot t2, let iη2−1 be the node attainable
from iη1 with largest subindex. Then the link between iη2−1

and iη2 must be off until time slot t3 > t2...At time slot tk,
node iηk−1

and destination node v are in the same connected
cluster and the information transmit to v instantaneously. We
denote by Π0 this cluster to cluster transmission process. And

Π0 = {(t1, i0), (t2, iη1), ..., (tk, iηk−1
)}.

From the construction of Π0, it is obvious that Tp(Π0) =
Tp(π0).

Thus,

Tλ(u, v) = Tp(π0)

= Tp(Π0)

≥ inf{Tp(Π)|Π ∈ L }. (13)

Combining Eqn.(24) and Eqn.(13), we obtain

Tλ(u, v) = inf{Tp(Π)|Π ∈ L }.

Lemma 8 establishes the relationship between delay and
cluster to cluster transmission process. Cluster to cluster
transmission process can represent the information dissemi-
nation process more precisely. Our following results on the
lower bound of γ(λ) are just based on the cluster to cluster
transmission.

C. Lower Bounds of γ(λ)

In this section, we use the concept of cluster to cluster
transmission process to derive a lower bound of γ(λ).

To start with, we need to introduce a random variable
Sg,t,u(λ)(g is the connection function, u is a node) to represent
the size of connected cluster in the instantaneous geometric
random graph Gt(λ, r0, g(r)). We establish a cartesian coor-
dinate in R2. We define H(z0, a) as

H(z0, a) = {z = (zx, zy) ∈ R2| ∥ z − z0 ∥< a}.

The random variable Sg,t,u(λ) is defined as

Sg,t,u(λ) = sup{a|∃ node v ∈ H(u, a), v ↔ u at time slot t}.

According to the translation invariance and time independence
of our dynamic random connection model Gt(λ, r0, g(r)),
Sg,t,u(λ) is independent of t and u. Thus, we can write
Sg,t,u(λ) as Sg(λ) if causing no confusion.

(1)
1, ,
( )

g t u
S  ( 2)

2, ,
( )

g t u
S  

0d r 

( ), ,
( )M

Mg t u
S  

0d r 

0d r 

Fig. 3. Illustration of a cluster to cluster transmission process.

Now, given two nodes u(source) and v(destination), con-
sider a cluster to cluster transmission process(Fig. 3)

Π = {(u(1), t1), (u
(2), t2), ..., (u

(M), tM )},

where u(1) = u, and u(M), v are in the same connected cluster
at time slot tM . Then the delay along this cluster to cluster
transmission process is

Tp(Π) = tM − t1 =

M−1∑
k=1

(tk+1 − tk) ≥ M − 1.



Note that, for ∀k = 1, 2, ...,M − 1, u(k+1) is connected to
a node in wk, denoted by u

′
. Then

∥ u(k+1) − u(k) ∥ ≤ ∥ u(k+1) − u
′
∥ + ∥ u

′
− u(k) ∥

≤ Sg,tk,u(k)(λ) + r0.

And for k = M ,

∥ vx − u(M) ∥≤ Sg,tM ,u(M)(λ).

Combining the above two inequalities together, we obtain,

d(u, v) = ∥ v − u ∥

≤
M−1∑
k=1

∥ u(k+1) − u(k) ∥ + ∥ v − u(M) ∥

≤
M−1∑
k=1

(Sg,tk,u(k)(λ) + r0) + S
g,tM ,u

(M)
x

(λ)

<
M∑
k=1

(Sg,tk,u(k)(λ) + r0). (14)

For ∀k, Sg,tk,u(k)(λ) admit the same distribution as Sg(λ).
Moreover, according to the spatial independence of Poisson
Point Process, Sg,tk,u(k)(λ) are i.i.d. random variables. Ac-
cording to the law of strong large numbers, we have

lim
M→∞

∑M
k=1(Sg,tk,u(k)(λ) + r0)

M
= E(Sg(λ) + r0).

That is, for ∀ϵ > 0, ∃Mϵ, such that ∀M > Mϵ(this condition
is satisfied for large enough d(u, v)), we have∑M

k=1(Sg,tk,u(k)(λ) + r0)

M
< E(Sg(λ) + r0) + ϵ.

Combined with Eqn. (14), we have

d(u, v) < M(E(Sg(λ) + r0) + ϵ).

Then

Tp(Π) ≥ M − 1 >
d(u, v)

E(Sg(λ) + r0) + ϵ
− 1.

Note that the right part of the above equation does not
depend on the selection of the cluster to cluster transmission.
Thus,

Tλ(u, v) ≥
d(u, v)

E(Sg(λ) + r0) + ϵ
− 1.

Therefore,

γ(λ) = lim
d(u,v)→∞

Tλ(u, v)

d(u, v)

≥ 1

E(Sg(λ) + r0) + ϵ

(15)

Let ϵ → 0, we finally obtain

γ(λ) ≥ 1

E(Sg(λ) + r0)
.

D. Impact of Transmission Delay

The delay in Large-scale Wireless Network is composed of
two parts, i.e., the waiting delay and the propagation delay.
In previous sections, we have formulated the waiting delay,
while ignore the transmission delay. However, propagation
delay may become dominant in some cases especially when
the node density is large enough5. In the following discussion,
we denote by τ the propagation delay for a existing link. For
ease of analysis, we assume that the propagation delays are the
same for different links. Moreover, we assume that τ < 1. This
assumption is reasonable, because if the propagation process
along a link cannot be finished in one time slot, the state of
the link may change, causing undesirable troubles. Besides,
τ is dominated by the bit rate and the length of a message
in Large-scale Wireless Networks. Therefore, we can always
achieve τ < 1 by slicing messages into small pieces.

After introducing transmission delay, γ(λ) increases obvi-
ously. In this section, we present the proof of theorem 3 as
follows.

Proof: We first consider the upper bound. We have
already obtained Eqn.(9),i.e.,

γ(λ) ≤ κ

√
λ

λL
E[Tc(e)],

where the length of link e is smaller than r̃ = r0

√
λL

λ (1+ ϵ).
Using similar method in deriving Eqn. (10), we obtain

E[Tc(e)] ≤ E[Tc(e
′
)]

=

∞∑
k=0

(k + τ)P(Tc(e
′
) = k)

<

∞∑
k=0

(k + 1)(1− g(r̃))kg(r̃)

=
1

g(r̃)

=
1

g

(
r0

√
λL

λ (1 + ϵ)

) (16)

where e
′

is link whose length is r̃. The inequality above is
slightly different from Eqn. (10). This is because we have
taken propagation delay into consideration.

Thus,

γ(λ) ≤ κ

√
λ

λL

1

g

(
r0

√
λL

λ (1 + ϵ)

) .

Let ϵ → 0, we obtain,

γ(λ) ≤ κ

√
λ

λL

1

g

(
r0

√
λL

λ

) .

5This is because the waiting delay is caused by the lack of instantaneous
connectivity of wireless network. When node density is large enough, the
wireless network has instantaneous connectivity, making waiting delay negli-
gible.



Note that γ(λ) is a monotone decreasing function, thus

γ(λ) ≤ inf
λ′∈[λL,λ]

κ

√
λ′

λL

1

g
(
r0

√
λL

λ′

) . (17)

Then we consider the lower bound. Similar to the previous
part, we still focus on the cluster to cluster transmission.
Consider a cluster to cluster transmission process

Π = {(u(1), t1), (u
(2), t2), ..., (u

(M), tM )},

similarly, we have, for ∀k = 1, 2, ...,M − 1,

∥ u(k+1) − u(k) ∥≤ Sg,tk,u(k)(λ) + r0.

And for k = M ,

∥ v − u(M) ∥≤ S
g,tM ,u

(M)
x

(λ) < Sg,tM ,u(M)(λ) + r0.

Besides, the distance transmitted is also limited by the finite
hops in one time slot. Since each hop takes τ time slot, then
the message can experience at most 1

τ hops in one time slot.
As a result, the longest distance transmitted in one time slot
is upper bounded by r0

τ . Then for ∀k = 1, 2, ...,M − 1,

∥ u(k+1) − u(k) ∥≤ r0
τ

+ r0.

And for k = M ,

∥ v − u(M) ∥≤ r0
τ

<
r0
τ

+ r0.

Integrating the above four inequalities, we obtain, for ∀k =
1, 2, ...,M − 1,

∥ u(k+1) − u(k) ∥≤ min{Sg,tk,u(k)(λ),
r0
τ
}+ r0.

And for k = M ,

∥ v − u(M) ∥≤ min{Sg,tM ,u(M)(λ),
r0
τ
}+ r0.

Again, using the method in section IV-C, we immediately
obtain

γ(λ) ≥ 1

E(min{Sg(λ),
r0
τ }) + r0

.

V. DISCUSSION

In this section, we make simulations to uphold our the-
oretical results. First, we give a further discussion on some
parameters in our expressions. Then, enormous simulations are
done to justify several assertions in this paper. Our theoretical
results are based on a relatively general model, Random
Connection Model. Many Network Models can be converted
to a Random Connection Model, making our results applicable
to many different cases. The difference is that the connection
functions are different in different cases. In the following
discussion, we simply let r0 = 1, and the connection function
g be defined as

g(r) =

{
1
4 (2− r)2 : r ≤ 1

0 : r > 1

Moreover, if we take propagation delay into consideration, we
let τ = 0.2.

A. Discussion on Several Parameters

In our expression of theoretical bounds Eqn. (6), two
terms κ and E(Sg(λ)) are applied. Besides, In Eqn. (7),
E(min{Sg(λ),

r0
τ }) is applied. κ is a constant, and we simply

obtain its value through simulation; while E(Sg(λ)) and
E(min{Sg(λ),

r0
τ }) are functions depend on λ, and we find

two analytical expressions to approximate them.
We first focus on κ(defined in lemma 6). In our simulation,

we simulated 2304 points in a 40×40 region. The node density
is λ = λL ≈ 1.44, and the transmission range is 1.01. A
message is originated from a node located at the center of the
region, we record down the minimum number of hops and the
distance from the source for each node, and present it in Fig.
4.(a).
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(a) Illustration of the relationship between Nλ(d) and d
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Fig. 4. Simulation results on κ. The first Figure reveals the linear relationship
between Nλ(d) and d, and the second indicates κ ≈ 1.7153.

From Fig. 4.(a), we can see that Nλ(d) grows linearly with
d. To find κ, we calculate Nλ(d)

d for each node, and present its
probability distribution graph in Fig. 4.(b). It can be seen from
Fig. 4.(b) that the probability Nλ(d)

d = 1.7153 is the largest.
Thus, κ ≈ 1.7153.

Next, we turn to E(Sg(λ)). The physical meaning of
E(Sg(λ)) is the average size of the connected component



intersected with the origin. It is obvious to note that when
λ = 0, E(Sg(λ)) = 0. And when λ = λI , E(Sg(λ)) = ∞
since the network is percolated in this case. Thus, we give a
conjecture about the analytical expression of E(Sg(λ)), i.e.,

E(Sg(λ)) =
c1λ

λI − λ
. (18)

We make enormous numerical computations to find the
experimental values of E(Sg(λ)) with respect to different λ,
ranging from 1.44(λL ≃ 1.44) to 2.4. We then rewrite Eqn.
(18) as

1

E(Sg(λ))
=

λI

c1
· 1
λ
− 1

c1
.

Using least square method, we can easily obtain c1 ≈
1.2841, λI ≈ 2.4886.

Then we make a comparison between the fitting value and
the experimental value of E(Sg(λ)). From Fig. 5, It can
be seen that there is a good agreement between fitting and
experimental results.
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Fig. 5. Comparison between experimental and fitting value of E(Sg(λ)).

Now, we come to E(min{Sg(λ),
r0
τ }). Obviously,

E(min{Sg(λ),
r0
τ }) = 0 whenever λ = 0. Besides,

E(min{Sg(λ),
r0
τ }) ≤ r0

τ for ∀λ, and E(min{Sg(λ),
r0
τ })

is monotone increasing with λ. Thus, we conjecture that the
analytical expression of E(min{Sg(λ),

r0
τ }) has the format

E(min{Sg(λ),
r0
τ
}) = c2λ

c3 + λ
. (19)

Similarly, we make enormous numerical computations to
find the experimental values of E(min{Sg(λ),

r0
τ }) with re-

spect to different λ, ranging from 1.44 to 20. We rewrite Eqn.
(19) as

1

E(min{Sg(λ),
r0
τ })

=
c3
c2

· 1
λ
+

1

c2
.

Using least square method, we can easily obtain c2 ≈
2.0845, c3 ≈ 1.6813.

Then we make a comparison between the fitting value and
the experimental value of E(min{Sg(λ),

r0
τ }). From Fig. 6,

It can be seen that there is a good agreement between fitting
and experimental results.
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Fig. 6. Comparison between experimental and fitting value of
E(min{Sg(λ),

r0
τ
}).

B. Comparison between Two Bounds

This paper is originated from the idea that the delay-distance
ratio γ(λ) may depend on the node density λ. We calculate
γ(λ) under different node densities. From Fig. 7, we can see
that γ(1.6) = limd→∞

Tλ(d)
d ≈ 0.68, γ(1.9) ≈ 0.35, γ(2.2) ≈

0.11, γ(2.5) ≈ 0. This justify the fact that γ(λ) depend on λ6,
making our discussion meaningful.
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Fig. 7. Simulation results on different λ.

Now, we are ready to compare our theoretical bounds
and the experimental values of γ(λ). We first ignore the
propagation delay, Fig. 8 shows the comparison between the
experimental value and our theoretical value of both the upper
bound and the lower bound. In our simulations, We work out
the experimental values of γ(λ) where λ is set to be evenly
distributed in the interval of [λL, λI ]. From Fig. 8, we find the

6To be more exact, γ(λ) decreases with λ.



experimental values are right bounded by both the upper and
the lower bounds.
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Fig. 8. Comparison between upper bound and lower bound(propagation delay
is ignored).

Then, we take propagation delay into consideration. In the
following part, we take τ = 0.2. We first examine the effect
of introducing propagation delay to the delay-distance ratio
γ(λ).

We consider two networks, whose node densities λ are 1.5
and 2.2(1.5 is near λL, 2.2 is near λI ) respectively. For each
network, we make simulations to find γ(λ) in the cases τ = 0
and τ = 0.2. The result is show in Fig. 9.

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

d

T
λ(d

)/
d

(a) λ = 1.5, τ = 0, γ(λ) ≈
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(b) λ = 1.5, τ = 0.2, γ(λ) ≈
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Fig. 9. The influence of propagation delay τ to the delay-distance ratio γ(λ).

From Fig. 9, we can also see that when λ is small, the
influence of τ to γ(λ) is small; and the influence becomes
more significant as λ grows larger. This also indicate that
when node density is small, delay is mainly caused by the
waiting delay(waiting delay is mainly caused by the lack of

instantaneous connectivity); while when node density is large,
delay is mainly caused by propagation delay.

Next, we compare our theoretical bounds and experimental
results of γ(λ) in the case τ = 0.2. In our simulation, the
node densities λ are chosen from [1.44, 20]. As the change of
γ(λ) is larger when λ is small, we choose more simulation
points for smaller node density. The comparison between our
theoretical bounds and experimental results is shown in Fig.
10. The experimental values are right bounded by both the
upper and the lower bounds.
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Fig. 10. Comparison between upper bound and lower bound(propagation
delay is considered).

From Fig. 8 and Fig. 10, it can be also seen that when λ is
large, γ(λ) is much closer to the lower bound. An explanation
to this phenomena is that the larger γ(λ) is, the larger the size
of clusters in the cluster to cluster transmission process. Larger
cluster size provides more opportunity to forward messages.
Thus, when the node density is large enough, it is probably
that the message can transmit again right at the next time
slot. This makes our lower bound more accurate. However,
our upper bound is a little bit loose. But we can see that
γ(λ) gets closer to the upper bound when the node density λ
decreases. This is because our upper bound is obtained from
the delay of just one path. And the smaller λ is, the smaller
the number of paths connecting two nodes. This makes γ(λ)
get closer to the upper bound.

VI. CONCLUSION

In this paper, we study the tradeoff between γ(λ) and λ
using percolation theory. We point out that the lack of instan-
taneous connectivity brings about waiting delay and prove that
γ(λ) is upper bounded by inf

λ′∈[λL,λ]
κ
√

λ′

λL
( 1

g

(
r0

√
λL

λ
′

) − 1),

and lower bounded by 1
E(Sg(λ)+r0)

≤ γ(λ). Then we take
propagation delay into consideration, and obtain further re-
sults. Finally, through simulations based on the exact value
of γ(λ), we further obtain a new observation that the lower
bound serves as a good estimate to the value of γ(λ) in dense



networks. And γ(λ) gets closer to the upper bound when λ
decreases. Simulation results conform our theoretical findings.
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APPENDIX

Appendix I

The proof of Lemma 6 is presented as follows. The method
used in this proof is similar to that used by Dousse et al. in
[6] and Kong et al. in [7].

We first construct a cartesian coordinate system. Without
of loss of generality, we assume that there is a node at the

origin. Let zn = argminz∈C(B(λL,(1+ϵ)r0)){d(z, (0, n))}, then
we have the following lemma.

Lemma 9. d(z, (0, n)) < ∞ with probability 1.

We will present the proof of lemma 9 in Appendix II.
Let N

′

λL
(m,n) = NλL(d(zn, zm))We need first to prove that

N
′

λL
(0,m) scales linearly with respect to m, i.e.,

Lemma 10. There exists κ, such that

lim
m→∞

N
′

λL
(0,m)

m
= κ.

To prove lemma 10, we use lemma 7.
It is easy to see that N

′

λL
(0,m) ≤ N

′

λL
(0, l) +

N
′

λL
(l,m)(0 ≤ l ≤ m). Then the first condition of lemma

7 is satisfied. Since Poisson Boolean Model B(λL, (1+ ϵ)r0))
is homogeneous, the second and the third conditions of lemma
7 are also satisfied. Now, we only need to prove that conditions
4 and 5 are also satisfied.

Lemma 11. E(N
′

λL
(0,m)) < ∞.

Proof: Consider N
′

λL
(0,m), let z

′
= z0+zm

2 . We draw a
series of squares centering at z

′
(Fig. 11), and the side lengths

are 1, 2, 4, ..., 2k, ....

z

Fig. 11. A series of squares centering at z
′
.

We use R(d) to denote the rectangle with side lengths d
2 and

2d. We say R(d) is good if and only if there exists a crossing
connecting the two short sides in R(d)(Fig. 12). We denote the
event that R(d) is good by AR(d). Since the Poisson Boolean
Model B(λL, (1 + ϵ)r0) is percolated7,

lim
d→∞

P(AR(d)) = 1. (20)

We use C(d) to denote the square torus ([z
′

x − d, z
′

x + d]×
[z

′

y −d, z
′

y +d])\ ([z′

x− d
2 , z

′

x+
d
2 ]× [z

′

y − d
2 , z

′

y +
d
2 ]). We say

C(d) is good if and only if there exists a circuit in C(d)(Fig.

7λL is the critical density of Poisson Boolean Models with transmission
range r0. Now the transmission range is (1 + ϵ)r0, according to lemma
5, we know the critical density becomes (1 + ϵ)−2λL. Obviously, λL >
(1 + ϵ)−2λL, thus B(λL, (1 + ϵ)r0) is percolated.



Fig. 12. Illustration of a good rectangle R(d).

13). We denote the event that C(d) is good by AC(d). From
Fig. 13, we can see that C(d) is composed of four d

2 × 2d

rectangles, i.e., R1(d) = [z
′

x − d, z
′

x − d
2 ] × [z

′

y − d, z
′

y + d],
R2(d) = [z

′

x+
d
2 , z

′

x+d]×[z
′

y−d, z
′

y+d], R3(d) = [z
′

x−d, z
′

x+

d]× [z
′

y+
d
2 , z

′

y+d], R4(d) = [z
′

x−d, z
′

x+d]× [z
′

y−d, z
′

y− d
2 ].

And we use ARi(d)(i = 1, 2, 3, 4) to represent the event that
Ri(d) is good.

Fig. 13. Illustration of a good square torus C(d). Here, z
′
= (z

′
x, z

′
y).

Obviously, if for ∀i = 1, 2, 3, 4, Ri(d) is good, C(d) must
be good. Thus,

P(AC(d)) ≥ P(AR1(d)
∩

AR2(d)
∩

AR3(d)
∩

AR4(d)).

Note that for ∀i = 1, 2, 3, 4, ARi(d) is an increasing event8.
According to the FKG Inequality(Theorem 2.4 in [5]), we have

P(AC(d)) ≥ P(AR1(d)
∩

AR2(d)
∩

AR3(d)
∩

AR4(d))

≥ P(AR1(d))P(AR2(d))P(AR3(d))P(AR4(d))

= P(AR(d))
4. (21)

Combine Eqn. (20) with Eqn. (21), and we obtain

lim
d→∞

P(AC(d)) = 1.

Thus, for ∀ 1
2 < ρ < 1, there exists dρ, such that, for ∀d ≥

d0,
P(AC(d)) ≥ ρ.

8A random variable N is on the measurable pair (Ω,F ) is called increasing
if N(ω) ≤ N(ω

′
) whenever ω ≤ ω

′
.

Let k0 = min{k|2k ≥∥ zm − z0 ∥, 2k ≥ dρ}, then for all
k ≥ k0,

P(AC(2
k)) ≥ ρ.

Assume that C(2k)(k ≥ k0) is good, if the shortest path
from z0 to zm is not contained in the square [z

′

x−2k, z
′

x+2k]×
[z

′

y−2k, z
′

y+2k], it must intersect with the circuit in C(2k)(Fig
14). We can replace the part of the path ACB with ADB, then
the resulting path is shorter. Thus, the shortest path from z0 to
zm must be contained in [z

′

x−2k, z
′

x+2k]× [z
′

y−2k, z
′

y+2k].

Fig. 14. The contradiction if the shortest path from z0 to zm is not contained
in [z

′
x − 2k, z

′
x + 2k]× [z

′
y − 2k, z

′
y + 2k].

Suppose u, v, w are three consecutive nodes along this
shortest path. Then ∥ u−w ∥> (1+ ϵ)r0, or we can eliminate
node v, and get a shorter path. This also indicates that if
we draw disks with radius (1+ϵ)r0

2 centering at u and w
respectively, the two disks are disjoint. Assume the number of
hops of the shortest path is N , then we can draw L

2 disjoint
disks in total. And these disks are all located in a square with
side length 2k+1 + (1 + ϵ)r0. Thus,

L

2
· π( (1 + ϵ)r0

2
)2 ≤ (2k+1 + (1 + ϵ)r0)

2.

Then,

L ≤ 8(2k+1 + (1 + ϵ)r0)
2

π((1 + ϵ)r0)2
.

Note that N
′

λL
(0,m) is the minimum number of hops from

x0 to xm, thus

N
′

λL
(0,m) ≤ L ≤ 8(2k+1 + (1 + ϵ)r0)

2

π((1 + ϵ)r0)2
.

Now, if N
′

λL
(0,m) > 8(2k+1+(1+ϵ)r0)

2

π((1+ϵ)r0)2
, then none of

C(2k0+1), C(2k0+2), ..., C(2k) is good. Thus,

P(N
′

λL
(0,m) >

8(2k+1 + (1 + ϵ)r0)
2

π((1 + ϵ)r0)2
)

≤
k∏

i=k0+1

P(Ac
C(2

i)) ≤ (1− ρ)k−k0 .



Let lk = 8(2k+1+(1+ϵ)r0)
2

π((1+ϵ)r0)2
, then,

E(N
′

λL
(0,m))

=

∞∑
i=1

P(N
′

λL
(0,m) ≥ i)

=

lk0∑
i=1

P(N
′

λL
(0,m) ≥ i) +

∞∑
j=k0

lj+1∑
i=lj+1

P(N
′

λL
(0,m) ≥ i)

≤ lk0 +
∞∑

j=k0

P(N
′

λL
(0,m) > lj) · (lj+1 − lj)

< lk0 +

∞∑
j=k0

(1− ρ)j−k0 · 8(2
j+2 + (1 + ϵ)r0)

2

π((1 + ϵ)r0)2

< ∞ .

Then condition 4 of lemma 7 is satisfied. Next, we prove
that N

′

λL
(m,n) satisfies condition 5. To demonstrate that

N
′

λL
(mk, (m+ 1)k) is ergodic, we show it is strong mixing,

which is a stronger property.

Lemma 12. N
′

λL
(mk, (m+ 1)k) is strong mixing.

Proof: In previous analysis, we have proved that
P(AC(2

k)) ≥ ρ whenever k ≥ k0. Summing over k yields
∞∑

k=k0

P(AC(2
k)) =

∞∑
k=k0

ρ = ∞. (22)

Since AC(2
k), k = k0, k0 + 1, ... are independent events,

according to the Borel-Cantelli Theorem, with probability 1,
there exist k

′
< ∞9, such that AC(2

k
′

) occurs.
We now construct squares B1 and B2 centered at

xmk+x(m+1)k

2 and x(m+n)k+x(m+n+1)k

2 with side length 2k
′
+1

and 2k
′′
+1 respectively, such that the path with minimum

number of hops from xmk to x(m+1)k, and the path with
minimum number of hops from x(m+n)k to x(m+n+1)k are
contained in B1 and B2.

Due to the stationarity, k
′′

does not rely on n. Besides, k
′

and k
′′

are all finite(we denote this event by Af ) with probabil-
ity 1. Thus, when n is large enough, B1 and B2 are disjointed.
Hence, N

′

λL
(mk, (m+1)k) and N

′

λL
((m+n)k, (m+n+1)k)

become independent.
Therefore,

lim
n→∞

P({N
′

λL
(mk, (m+ 1)k) < i}

∩
{N

′

λL
((m

+n)k, (m+ n+ 1)k) < i})

= lim
n→∞

P({N
′

λL
(mk, (m+ 1)k) < i}

∩
{N

′

λL
((m

+n)k, (m+ n+ 1)k) < i}|Af )P(Af )

+ lim
n→∞

P({N
′

λL
(mk, (m+ 1)k) < i}

∩
{N

′

λL
((m

+n)k, (m+ n+ 1)k) < i}|Ac
f )P(Ac

f )

9Actually, the number of such k
′

is infinite.

= P({N
′

λL
(mk, (m+ 1)k) < i}|Af ) P({N

′

λL
((m

+n)k, (m+ n+ 1)k) < i}|Af )

= P({N
′

λL
(mk, (m+ 1)k) < i}) P({N

′

λL
((m+

n)k, (m+ n+ 1)k) < i}) .

Then, N
′

λL
(mk, (m+ 1)k) is strong mixing.

Now, we have proved that N
′

λL
(m,n) satisfy conditions

1− 5 of lemma 7. Thus, there exists κ, such that

lim
m→∞

N
′

λL
(0,m)

m
= κ.

Now, we are ready to prove lemma 6.
Proof: Consider NλL(d(u, v)). Without of loss of gener-

ality, we suppose that u is at the origin, v is at the +x axis.
Assume that integer nd satisfy nd ≤ d(u, v) < nd + 1, then

NλL
(d(u, v)) ≤ NλL

(d(0, znd
)) +NλL

(d(znd
, v)), (23)

and

NλL
(d(u, v)) ≥ NλL

(d(0, znd
))−NλL

(d(znd
, v)). (24)

Note that

d(znd
, v) ≤ d(znd

, (0, nd)) + d((0, nd), v)

≤ d(znd
, (0, nd)) + 1

< ∞.

Using similar method in the proof of lemma 11, we can
prove E(NλL(d(znd

, v))) < ∞(to avoid verbosity, we do
not elaborate it here). Therefore, NλL

(d(znd
, v)) < ∞ with

probability 1. Then, divide Eqn. (23) and Eqn. (24) by d(u, v),
and let d(u, v) → ∞. We immediately obtain

lim
d(u,v)→∞

NλL(d(u, v))

d(u, v)
= κ.

Appendix II

We present the proof of lemma 9 here.
Proof: Similar to that in the proof of lemma 11, we

construct a series of squares centered at (0, n) with side length
1, 2, 4, ..., 2k, ...(Fig. 11). C(d) is defined similarly. We say
C(d) is perfect if and only if C(d) is good and the circuit in
C(d) belongs to the giant component.

Again, applying Borel-Cantelli Theorem to Eqn. (22), there
exists a sequence {k′

i}, such that for ∀i = 1, 2, ..., event
AC(2

k
′
i ) occurs.

Suppose that the probability that d(zn, (0, n)) < ∞ is
smaller than 1. Then, in the case d(zn, (0, n)) = ∞, none
of C(2k

′
i )(i = 1, 2, ...) is perfect, otherwise d(zn, (0, n)) is

finite.
This also indicates that there exists an infinite large circuit

encircling (0, n), and this circuit does not belong to the
giant component. Therefore, with a probability larger than 0,
there exist two infinite connected cluster in B(λL, (1 + ϵ)r0).
This contradict the uniqueness of infinite connected cluster in
percolated networks.

Thus, d(zn, (0, n)) < ∞ with probability 1.


