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Abstract—In this paper, we study how to utilize forecasts to
design online EV (electrical vehicle) charging algorithms that can
attain strong performance guarantees. We consider the scenario
of an aggregator serving a large number of EVs together with its
background load, using both its own renewable energy (for free)
and the energy procured from the external grid. The goal of the
aggregator is to minimize its peak procurement from the grid,
subject to the constraint that each EV has to be fully charged
before its deadline. Further, the aggregator can predict the future
demand and the renewable energy supply with some levels of
uncertainty. We show that such prediction can be very effective
in reducing the competitive ratios of online control algorithms,
and even allow online algorithms to achieve close-to-offline-
optimal peak. Specifically, we first propose a 2-level increasing
precision model (2-IPM), to model forecasts with different levels
of accuracy. We then develop a powerful computational approach
that can compute the optimal competitive ratio under 2-IPM
over any online algorithm, and also online algorithms that can
achieve the optimal competitive ratio. Simulation results show
that, even with up to 20% day-ahead prediction errors, our
online algorithms still achieve competitive ratios fairly close
to 1, which are much better than the classic results in the
literature with a competitive ratio of e. The second contribution
of this paper is that we solve a dilemma for online algorithm
design, e.g., an online algorithm with good competitive ratio
may exhibit poor average-case performance. We propose a new
Algorithm-Robustification procedure that can convert an online
algorithm with good average-case performance to one with both
the optimal competitive ratio and good average-case performance.
The robustified version of a well-known heuristic algorithm based
on Model Predictive Control (MPC) is found to demonstrate
superior performance via trace-based simulations.

I. INTRODUCTION

Replacing fossil fuels by renewable energy is a major
priority all over the world (see, e.g., [2][3] and the references
therein). However, high penetration of renewable energy chal-
lenges the reliable and efficient operation of the power grid.
Specifically, renewable energy from wind and solar is known
to exhibit high variability and uncertainty. As renewable gener-
ation varies, the grid needs additional flexibility to balance the
demand and supply [4]. In this paper, we focus on balancing
the variability and uncertainty of the renewable supply by
exploiting the flexibility from electric vehicle (EV) charging

An earlier version of this work has been presented at IEEE INFOCOM
2015 [1].

demand [5], which is a typical example of deferrable demands
[6]. As reported in [7], the sale of EVs is expected to increase
exponentially, and 50% of new cars will be EVs by 2040.
Thus, the future EV demand can potentially be huge, which
could be used to compensate the variability and uncertainty
due to high penetration of renewable energy.

Towards this end, in this paper we study how to develop
robust online EV charging algorithms that minimize the impact
of variability and uncertainty of renewable energy to the grid.
Specifically, we consider a demand-aggregator who has its own
background demand and renewable energy supply (the latter is
assumed to be of no cost), and who manages a large number of
EVs. Such an aggregator could represent an apartment or office
building with a parking garage, a campus, or a micro-grid [8].
As the EVs arrive and are connected to the charging stations,
each of them specifies a deadline for the charging request to
be completed. The aggregator will first use its own renewable
energy to serve its background demand and EV demand, and if
that is not enough, it will purchase additional energy from the
grid. We model the objective of the aggregator as minimizing
the peak consumption from the grid under the constraints that
all EVs must be charged before their deadlines. Our choice of
the peak-minimization objective is motivated by the following
two considerations. First, a large peak consumption-level re-
quires the grid to provision the corresponding generation and
transmission capacity in order to meet the demand. Thus, a
large peak not only increases the overall cost of supplying
energy, but also poses danger to grid-stability. Second, utility
companies have already developed peak-based pricing schemes
to encourage large customers (including aggregators) to reduce
their peak and smoothen their demand. In this type of pricing
schemes, the customers are charged based on not only the total
usage in a billing period, but also the maximum (peak) usage
at any time in the billing period. Specifically, if a customer’s
energy consumption is given as a sequence (E1, E2, ..., En),
then the total bill is of the form c1

∑
iEi + c2 maxi{Ei}

[9]. As one can see from an example of such a peak-based
pricing scheme from the National Grid [9], the average charge
for peak usage c2 (8.32$/kW-month) is over 100 times more
than the unit charge for total usage c1 (0.07$/kWh). As a
result, the peak charge can constitute a large fraction (ranging
from 30% to 50% [10]) of the total electricity bill. Under this
type of pricing schemes, when the aggregator reschedules EV
charging jobs, the total energy consumption from the grid does



not change. It is the peak demand that is changed. Hence,
minimizing the aggregator’s operating cost is also equivalent
to minimizing its peak consumption. Further, the potential
benefit of peak reduction is huge. For campus-level aggregators
(e.g., [8]), the peak energy is usually on the order of 20MW.
Then, every one percent of peak reduction will correspond to
0.01×20MW×$9/kW-month×12 = $21600 saving per year.

The main difficulty in the above EV charging problem
comes from the sequentially-revealed uncertainty in both the
demand and the renewable supply. If all the demand and the
supply could be precisely predicted in advance, one could have
used an offline algorithm to compute the optimal charging
schedule that minimizes the peak. Specifically, there exist both
centralized algorithms (e.g., the YDS algorithm in [11]) and
decentralized algorithms (e.g., the valley-filling algorithm in
[12]) for peak-minimizing EV-charging in an offline setting.
However, in reality both the future demand and supply can
exhibit significant uncertainty. Further, such uncertainty is
typically sequentially revealed. That is, at any point in time,
the past demand and supply are revealed, the future uncertainty
is still unknown, yet the aggregator must make decision
right away. Model Predictive Control (MPC) can be used to
modify an offline algorithm to deal with sequentially-revealed
uncertainty [13]. However, as readers will see in the example
in Section II-C, an MPC-based algorithm could lead to much
larger peak consumption levels (a similar observation was also
reported in [12]).

There are various approaches in the literature to deal with
control problems with uncertainty. However, as we elaborate
below, these existing approaches are not suitable for the peak-
minimizing EV-charging problem that we study in this paper. If
a probabilistic model is known for future uncertainty, then the
problem can be cast as a stochastic control problem. However,
obtaining an accurate probabilistic model of uncertainty can
be challenging, especially when the renewable supply is non-
stationary and highly-correlated across time. Further, the com-
plexity of solving the optimal control decision for a given prob-
abilistic distribution, e.g., using Markov Decision Processes
[14], is extremely high. Another way to deal with uncertainty
is robust optimization [15][16], where future uncertainty is
modeled in a set. The resulting solution is designed to optimize
the worst-case performance for all possible realizations of the
uncertainty in this set. However, robust optimization typically
does not deal with sequential decisions.

The third approach, which we adopt in this work, is to design
competitive online algorithms [17]. In the computer science
literature, online algorithms are specifically designed to deal
with the case where the decisions must be made sequentially
based on uncertain input that is sequentially revealed. In
a peak-minimizing problem closely related to ours [18], it
was shown that, even without any future information of job
arrivals and deadlines, one can design a competitive online
algorithm whose peak consumption is at most a constant factor
e = 2.718 above the offline optimal (where the latter assumes
that the future information is known in advance). This constant
factor is referred to as the competitive ratio of the online
algorithm. However, this line of research also encounters a
number of challenges. First, existing results on competitive

online algorithms either are based on very simple models of
future uncertainty [19], or do not assume any model at all.
As a result, the worst-case performance and the correspond-
ing competitive ratio are often quite poor. In practice, both
renewable supply and EV demands can be predicted to a
certain degree. Intuitively, such prediction can provide very
useful information for eliminating uninteresting worst cases,
and thus sharpening the competitive ratio of online algorithms.
However, to the best of our knowledge, there is no systematic
methodologies for designing competitive online algorithms
under more sophisticated models of future uncertainty. The
second challenge, which in fact applies to typical robust-
optimization results as well [16], is that the algorithms are
only optimized for the worst-case. As a result, their average-
case performance can be quite poor [19]. Given that the worst-
case input may only occur very rarely, the aggregator may then
be hesitant to endorse the resulting algorithm.

In this work, we make two contributions that precisely
address these difficulties. First, from the methodology point
of view, we extend the framework of online algorithm to
incorporate available future knowledge captured by prediction.
Specifically, we propose a more general set-based model,
called 2-IPM (2-level increasing precision model), to capture
the sequentially revealed uncertainty of renewable supply, EV
demand, and background load. Compared to the traditional set-
based model used in robust optimization [15], a key novelty
of 2-IPM is that it can model the sequential nature of multiple
predictions, i.e., predictions can be made at multiple instants
(e.g., day-ahead prediction versus intra-day prediction), and
the predictions closer to the target time tend to be more
accurate (e.g., intra-day prediction is usually more accurate
than day-ahead prediction). For any given 2-IPM model, we
then develop a powerful computation procedure to find the
smallest competitive ratio in terms of the peak consumption.
This smallest competitive ratio can thus be viewed as a
measure of the “price of uncertainty” under the 2-IPM. As
readers will see in Section V-B, our 2-IPM yields much lower
price-of-uncertainty compared to the uncertainty models in
[19].

Second, from the algorithm point of view, we propose a
general “robustification” procedure to design online algorithms
to address both worst-case performance and average-case per-
formance. Specifically, given any online algorithm with good
average performance (in terms of the peak), this robustification
procedure can convert it to one with not only good average-
case performance, but also the optimal competitive ratio. We
apply this robustification procedure to a well-known online
algorithm, called Shrinking Horizon Model Predictive Control
(SH-MPC), which demonstrates good average-case perfor-
mance, but poor worst-case competitive ratio. Our numerical
results in Section V-C indicates that the robustified-SH-MPC
algorithm achieves both good average-case and worst-case
performance.

The rest of the paper is organized as follows. Section II
defines the system model that captures the renewable uncer-
tainty, and motivates the design of online algorithms with
the optimal competitive ratio. We derive a fundamental lower
bound on the competitive ratio in Section III, and propose



a general framework based on Algorithm Robustification in
Section IV to design online algorithms that achieve the above
lower bound. Real-trace based simulation results are provided
in Section V to demonstrate both the improvement on the op-
timal competitive ratio and the effectiveness of our Algorithm
Robustification procedure. In Section VI, we conclude.

II. SYSTEM MODEL

We consider an aggregator serving its EV demand and
background demand using both its own renewable energy
(which is assumed to be cost-free) and the energy procured
from the external grid. We assume that time is slotted, and
index a time-slot by an integer in T = {1, ..., T}, where T
is the time-horizon considered. We represent the EV demand
by a T × T upper-triangular matrix a = [ai,j ], where ai,j
is the total deferrable (EV) demand with arrival time i and
deadline j ≥ i. We represent the net non-deferrable demand
by a T × 1 vector b = [bi], where bi is the background
demand at time i minus the renewable energy available at
time i. Note that when the penetration of renewable energy
is high, the net non-deferrable demand will exhibit significant
uncertainty. Using the flexibility in the EV demand, the goal
of the aggregator is to schedule EV charging jobs against high
renewable uncertainty such that the peak energy procured from
the grid is minimized.

A. Model for Prediction and Uncertainty

In practice, there exists considerable uncertainty in both
the net non-deferrable demand and the deferrable demand.
Specifically, we define a (T − t + 2) × 1 vector x(t) =
[at,t, ..., at,T , bt]

T to include both the EV demand with arrival
time t and the net non-deferrable demand at time t. Note that
the aggregator will know the precise value of x(t) only at and
after time-slot t. In the rest of this paper, we will say that
“the value of x(t) is revealed at time t”. At a time s < t,
the value of x(t) is uncertain to the aggregator. However, the
aggregator can use various sources of information (such as
weather forecast) to predict the future values of these uncertain
quantities in order to improve its decision. In practice, such
predictions can be taken multiple times, e.g., if the operating
time-horizon is a day, one prediction can be made before the
day (called “day-ahead” prediction), and another prediction
can be made a few hours before time t (called “intra-day”
prediction). In general, intra-day prediction is more accurate
than the day-ahead prediction because it is closer to the real
time. Next, we will present a model, called 2-IPM (2-Level
Increasing Precision Model), to model the uncertainty associ-
ated with such prediction procedures. We note that, although
for ease of exposition the model below only assume one intra-
day prediction, both 2-IPM and the subsequent results can be
easily generalized to multiple intra-day predictions.

Specifically, we assume that at time 0 (before the first time-
slot), a day-ahead prediction is available for every x(t), t ∈ T.
For each future time-slot t, the day-ahead prediction provides
two (T − t+2)×1 vectors x̂L(0, t), x̂U (0, t), which are lower
and upper bounds, respectively, to x(t) (see Fig. 1 (a)). In

other words, the future value of x(t) must lie within

x̂L(0, t) ≤ x(t) ≤ x̂U (0, t). (1)

Then, at a later time ut, 1 ≤ ut < t, another intra-day
prediction is performed. (One example of ut could be ut =
max{1, t − L}, i.e., the intra-day prediction is performed L
time-slots ahead.) The intra-day prediction provides another
two (T − t+2)×1 vectors x̂L(ut, t), x̂

U (ut, t), that are better
lower and upper bounds to x(t) than the day-ahead prediction
(see Fig. 1 (b)). In other words, the following will hold:

x̂L(0, t) ≤ x̂L(ut, t) ≤ x(t) ≤ x̂U (ut, t) ≤ x̂U (0, t). (2)

Obviously, a key difference between the day-ahead predic-
tion and the intra-day prediction is that they are performed at
different times. Thus, while the value of day-ahead prediction,
x̂L(0, t), x̂U (0, t) for all t, are known even before time-slot
1, the value of x̂L(ut, t) and x̂U (ut, t) will not be known
until time-slot ut. (We will say that the value of x̂L(ut, t)
and x̂U (ut, t) are revealed at time ut.) However, from time-
slot 0 to time-slot ut − 1, although the aggregator does not
know the future intra-day prediction for x(t) that will be
performed at time ut, it does know that this future intra-
day prediction will be more accurate. In order to model this
knowledge, we assume that there exists a (T − t + 2) × 1
vector W (ut, t) ≤ x̂U (0, t) − x̂L(0, t), which is known at
time 0, that bounds the (future) intra-day prediction gap
x̂U (ut, t)− x̂L(ut, t) (see Fig. 1 (b)), i.e.,

x̂U (ut, t)− x̂L(ut, t) ≤W (ut, t). (3)

In other words, the aggregator knows the (increased) precision
level of future intra-day predictions that will be performed at
time ut, even though it does not know the exact bounds of this
intra-day prediction before time ut.

Remark 1: The novelty of our 2-IPM is in modeling the
increasing precision of interval predictions. Note that com-
pared to point predictions [20], interval predictions (i.e., (1)
and (2)) provide additional information on the accuracy level
of the prediction. While there have been many recent studies
of interval predictions [21][22], the 2-IPM allows us to capture
the increasing precision as time evolves and to rigorously study
its effect on the corresponding sequential decision problem.

Remark 2: Readers may question what happens when the
real value x(t) or the bounds for the intra-day prediction
falls outside of the day-ahead predicted interval (1). This is
indeed possible in practice, because some predictions may be
wrong. Nevertheless, for ease of theoretical analysis, we will
assume that (1) and (2) are always satisfied. This assumption
is justified because in practice these bounds are usually chosen
such that the value of x(t) will fall into the predicted intervals
with high probability, and we can always tighten the intra-
day prediction bounds so that (2) is satisfied. The case where
these bounds are violated will be studied in Section IV-C and
Section V-D.

We now define a few vector notations that summarize how
the variables defined above are revealed in time. At time 0, the
aggregator only knows Y = [x̂L(0, t), x̂U (0, t),W (ut, t), t =
1, 2, ..., T ] (see Fig. 1 (a)). At the end of the time horizon T ,
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ttu0

)(tx

),0(ˆ txU

),0(ˆ txL

Gap no

larger than

W(ut, t)
{

Day-ahead

Prediction

Intra-day

Prediction

Future

value of

interest

),(ˆ tux t

U

),(ˆ tux t

L

(b) The true value of x(ut) and the intra-day prediction of x(t) are
revealed at time ut. We denote all the information revealed from time 1
to ut by Zut . We use Z to denote all information that will be revealed
at the end of the time horizon T .

Fig. 1. Illustration of day-ahead prediction and intra-day prediction.

the aggregator knows not only Y , but also all revealed EV
demand, net non-deferable demand, and intra-day forecasts
Z = [x(s), s = 1, 2, ..., T, x̂L(us, s), x̂

U (us, s), us ≤ T ].
Thus, we refer to this vector Z as a realization, which
will only be revealed at the end of the time horizon. For
any realization Z, let Zt denote the sub-vector containing
only those components revealed at or before time t, i.e.,
Zt = [x(s), s = 1, 2, ..., t, x̂L(us, s), x̂

U (us, s), us ≤ t].
Note that the dimension of this sub-vector Zt increases with
time t. Similarly, we use Z>t to denote the sub-vector of
Z containing all components that are revealed after time t.
Thus, at time t, the aggregator knows both Y and Zt, but
not Z>t. Clearly, the set of components of [Zt, Z>t] is the
same as that of Z. However, the order of the components
of [Zt, Z>t] can be different from that of Z. Therefore, we
write Z = Πt([Zt, Z>t]), where Πt is an appropriate one-to-
one mapping that maps the components of [Zt, Z>t] to the
corresponding components in Z.

Throughout this paper, we will view Y as given, because
Y is known day-ahead (before any scheduling decisions are
made). The uncertainty comes entirely from the realization Z.
Even though we do not know the exact realization of Z before-
hand, the knowledge of Y (the day-ahead prediction) restricts
Z into a smaller sample space. Specifically, for a given Y , Y
and a possible realization Z must satisfy constraints (1)-(3),
and all such possible Z’s form a demand-trace set ZY , i.e.,

ZY = {Z : Z = [x(s), s = 1, 2, ..., T, x̂L(us, s), x̂
U (us, s),

us ≤ T ], the components of Z satisfy
(1)− (3) for the fixed Y }.

In this paper, we aim to design policies that can attain strong
performance guarantees for all possible realization drawn from
ZY .

B. Objective

We are interested in designing online algorithms for sche-
duling EV demand that minimize the peak energy drawn from
the grid. At each time t = 1, 2, ..., T , an online algorithm π
must determine the amount of energy Et(Zt, π) drawn from

the grid, based only on the knowledge of Y and Zt. (Note that
we have assumed that Y is fixed. Hence, we have omitted Y
in the notation Et(Zt, π) for simplicity, but the dependency
of Et(Zt, π) on Y is implicitly assumed.) In other words, the
decision at time t cannot be based on the values of any com-
ponent of Z>t, which will only be revealed in the future. The
online algorithm π is said to be feasible if all the EV demands
can be completely served before deadlines using the sequence
of energy-procurement decisions [Et(Zt, π), t ∈ T] minus
the revealed non-deferrable demand (i.e., background demand
minus renewable energy). Let Epπ(Z) = maxt{Et(Zt, π)}
be the peak energy drawn from the grid using a feasible
online algorithm π. The aggregator is interested on reducing
Epπ(Z). However, it is not possible for one online algorithm
to minimize Epπ(Z) for all Z’s. Instead, we consider an offline
solution provided by a “genie” that knows the entire future Z
in advance. This genie can set the energy procurement Et(Z)
at each time-slot t based on Z. This genie can then solve the
following problem offline:

min
All demand can be completely served

max
t
{Et(Z)}. (4)

Let E∗off(Z) be the optimal offline solution to (4). Clearly, for
any online algorithm π, we will have E∗off(Z) ≤ Epπ(Z). We
can then evaluate the performance of an online algorithm π by
comparing it to the above offline optimal. Specifically, for a
fixed Y , define the competitive ratio (CR) ηY (π) of an online
algorithm π as the maximum ratio between Epπ(Z) and E∗off(Z)

under all possible Z ∈ ZY , i.e., ηY (π) = max
Z∈ZY

{
Epπ(Z)
E∗off(Z)

}
.

In other words, the competitive ratio characterizes how in
the worst case the online algorithm can perform more poorly
compared to the offline optimal.

In the rest of the paper, we will first find an achievable lower
bound on the competitive ratio ηY (π) under 2-IPM, which
characterizes the fundamental limits how 2-level prediction can
improve the worst-case performance. Then, we will propose a
systematic approach to design online algorithms with both the
optimal competitive ratio and good average-case performance.

Remark 3: Related to the above peak-minimization objec-
tive, another approach is to set an upper limit for the peak
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Fig. 2. Poor performance of the SH-MPC algorithm. In this example, the
day-ahead prediction consistently underestimates the real demand, and the
SH-MPC algorithm leads to a peak that is 1.29 times higher than the optimal
offline peak. In comparison, an optimal online algorithm can achieve a peak
that is at most 1.06 times higher than the optimal offline peak.

power consumption, and schedule EV charging within the
power limit [23]. However, this approach does not minimize
peak demand charges.

C. A Motivating Example
Before describing our main results, we use an example to

illustrate that it is not trivial to design an online algorithm with
good competitive ratio.

Consider Model Predictive Control (MPC) [13], which is
a popular approach for dealing with sequential-revealed un-
certainty. At each time-slot, using the offline solution, MPC
computes the entire schedule for the future based on past
information that has been revealed and most-recently predicted
future demand/supply. However, MPC only executes the first
step of the schedule in the current time-slot. Then, in the
next time-slot, as new information is revealed, MPC repeats
this procedure with the newly-revealed information and again
applies the first step. Note that, since our model assumes a
finite time-horizon, the time window considered by MPC will
shrink by one at each time-slot. Thus, this version of MPC
is referred to as Shrinking-Horizon MPC (SH-MPC) in the
literature [24]. Clearly, if the future demand/supply is close to
their predicted values (which likely holds in the average case),
the performance of SH-MPC will be quite good. However, the
following example illustrates that the worst-case performance
of SH-MPC can be very poor, especially when the future
prediction is persistently wrong. Specifically, there are 48 time-
slots. One EV charging job arrives at the beginning of time-slot
1, departs at the end of time-slot 48, and the total demand is 48.
(In other words, there is no uncertainty for the EV demand.)
The day-ahead predictions of the net non-deferrable demands
are 10 for all time-slots, with an uncertain interval of [8, 12],
i.e., future non-deferrable demands are assumed to fall within
this interval. Suppose that the real values of non-deferrable
demands turn out to be 11 for all time-slots (note that this
realization falls within the uncertainty set, and there is no intra-
day prediction in this example). The offline optimal peak for

this example is simply 48/48 + 11 = 12. If we apply the SH-
MPC algorithm to this example, the resulting peak will be 15.5
(see Fig. 2), and thus the worst-case competitive ratio would
be no smaller than 15.5/12 = 1.29. In contrast, applying the
computational approach in Section III to this uncertainty set,
the optimal competitive ratio can be shown to be 1.06, which is
much smaller than 1.29 in the case of SH-MPC. As shown in
Fig. 2, the poor performance of the SH-MPC algorithm can be
understood as follows. In the first time-slot, SH-MPC sees that
the current non-deferrable demand (i.e., 11) is higher than the
predicted value (i.e., 10). However, SH-MPC still assumes that
the future non-deferrable demand is the same as the predicted
value (i.e., 10). Because the EV demand is flexible, SH-MPC
computes a schedule that smoothens out the future demand.
Thus, the charging rate at the time-slot 1 only increases slightly
and the corresponding amount of EV demand is deferred to
the future. This procedure is repeated, until towards the end
of the horizon, SH-MPC realizes that the earlier predictions
have been consistently wrong. However, now the decisions
in the earlier time-slots cannot be reverted. SH-MPC has
no choice but to increase the peak to accommodate the EV
demand deferred from the past. In summary, since SH-MPC
fails to account for the possible future deviations from the
predicted values, it leads to poor performance in the worst
case. In contrast, the methodology that we propose below
will explicitly account for future uncertainty, and hence will
provide much better worst-case guarantees.

D. Summary of Notations
For ease of reference, we list all the notations in this paper

in Table I.

III. FUNDAMENTAL LIMIT OF THE COMPETITIVE RATIO

In this section, we extend the computation framework in [19]
to find a fundamental lower bound on the competitive ratio
ηY (π) of any algorithm π. This lower bound will be given by
the solution of the optimization problem (9). However, solving
(9) is much more difficult than that in [19]. In Section III-B, we
will develop a general convexification technique to convexify
(9). Such a convexification technique generalizes fractional-
linear programs [25], and thus may be of independent interest.

We need the following three lemmas throughout this section.
Lemma 1: Given a demand realization Z, a sufficient and

necessary condition for a service profile E = [E1, E2, ..., ET ]
to be feasible, i.e., all demand can be completed before the
corresponding deadlines, is that for all t1 ≤ t2, t1, t2 ∈ T, the
following inequality holds,

t2∑
t=t1

t2∑
s=t

at,s +

t2∑
t=t1

bt ≤
t2∑
t=t1

Et. (5)

Proof: See Appendix A.
Lemma 1 is a generalization of Lemma 6 in [19]. It states

that, in order for a service profile E = [E1, E2, ..., ET ] to
be feasible, the total energy procured from the grid plus the
renewable energy supply in any time interval [t1, t2] must
be no smaller than the total demand that must be served in



TABLE I. LIST OF NOTATIONS.

T Total Number of time-slots.
a = [ai,j ] A T × T matrix representing EV demand.
b = [bi] A T × 1 matrix representing net non-

deferrable demand.
x(t) Demand variable revealed at time t, includ-

ing at,t, ..., at,T and bt.
x̂L(0, t),
x̂U (0, t)

Lower bound and upper bound of x(t).
Known at time 0 (day-ahead prediction).

x̂L(ut, t),
x̂U (ut, t)

Lower bound and upper bound of x(t).
Known at time ut (intra-day prediction).

W (ut, t)
Maximum gap between x̂L(ut, t) and
x̂U (ut, t). Known at time 0 (day-ahead pre-
diction).

Y All quantities known at time 0, including
x̂L(0, t), x̂U (0, t) and W (ut, t) for any t.

Z A vector containing all the uncertain quan-
tities not known at time 0.

Zt A sub-vector of Z that contains
the quantities revealed at or before
time t, including [x(s), s ≤ t] and
[x̂L(us, s), x̂

U (us, s), us ≤ t].
Z>t A sub-vector of Z that contains

the quantities revealed after time
t, including [x(s), s > t] and
[x̂L(us, s), x̂

U (us, s), us > t].
Et(Zt, π) Total amount of energy drawn from the grid

under an causal online algorithm π.
E∗off(Z) Offline optimal peak energy consumption

(assuming Z is known at time 0, which is
non-causal).

ηY (π) Competitive ratio of the online algorithm π.

the same interval. Further, the condition (5) is also sufficient.
Specifically, if we use the Earliest-Deadline-First (EDF) policy
to serve the demand, then all the demand can be finished before
the corresponding deadlines.

Clearly, Lemma 1 also applies to an online algorithm π.
Specifically, a feasible online algorithm π must be able to
support all possible demand trace Z ∈ ZY . Then, according to
Lemma 1, the service profile [Et(Zt, π), t = 1, 2, ..., T ] must
satisfy (5) for all possible demand trace Z ∈ ZY .

When studying online algorithms, we usually compare the
peak of an online algorithm with the peak of an offline optimal
algorithm. The following lemma gives a close-form formula of
the offline optimal peak.

Lemma 2: Given a realization of Z, for any t1 ≤ t2, t1, t2 ∈
T, define the intensity of an interval J = [t1, t2] as

gJ(Z) =

∑t2
t=t1

(
∑t2
s=t at,s + bt)

t2 − t1 + 1
. (6)

Then, the offline optimal peak is given by

E∗off(Z) = max{0,max
J
{gJ(Z)}}. (7)

Lemma 2 states that the offline optimal peak is equal to

the maximum intensity over all possible intervals. The reason
that we have a “0” term in Eqn. (7) is that the power procured
from the grid must be non-negative. Lemma 2 is easy to prove.
Clearly, the offline optimal peak must be no smaller than the
maximum intensity given by (7). Otherwise, the demand inside
the interval with the maximum intensity cannot be finished
before the end of the interval. Further, there exists an offline
solution with a peak exactly equal to E∗off(Z). Specifically, we
can construct an offline solution that always procure E∗off(Z)
amount of energy at each time-slot. According to Lemma 1,
the service profile of this offline solution can indeed finish all
the demand before the corresponding deadlines.

A. Lower Bound
Consider an online algorithm π with competitive ratio

ηY (π). We first study the maximum value for Et(Zt, π) given
a realization Z. Recall that the decision Et(Zt, π) should only
depend on Zt. Further, we note that there may exist different
realizations Z = Πt([Zt, Z>t]) that yield the same value of
Zt, because the future Z>t can vary given the past Zt up to
time t. Thus, the value of Et(Zt, π) must be chosen such that
it is no greater than ηY (π) times the offline-optimal peak for
any possible future realization Z>t. Let

Epet (Zt) = inf
Z′∈ZY :Z′t=Zt

E∗off(Z
′), (8)

where the superscript “pe” stands for “peak estimation”. Note
that the infimum in (8) is taken over all possible realization
ZZ ′ ∈ ZY that has the same revealed components at time t
as Zt. Then, we have the following lemma. The detailed proof
is in Appendix B.

Lemma 3: Given an online algorithm π with competitive
ratio ηY (π), we must have Et(Zt, π) ≤ ηY (π)Epet (Zt).

We now apply Lemma 1. If π is feasible, then for all Z ∈
ZY and all t1 ≤ t2, t1, t2 ∈ T, we must have
t2∑
t=t1

(
t2∑
s=t

at,s + bt

)
≤

t2∑
t=t1

Et(Zt, π) ≤ ηY (π)

t2∑
t=t1

Epet (Zt).

Define the following optimization problem:

η∗t1,t2(Y ) = sup
Z∈ZY

∑t2
t=t1

(∑t2
s=t at,s + bt

)
∑t2
t=t1

Epet (Zt)
(9)

Let η∗Y = max
t1≤t2,t1,t2∈T

{η∗t1,t2(Y )}. Then, η∗Y provides a lower

bound on the competitive ratio, which is stated below.
Theorem 4: For any feasible online algorithm π, its com-

petitive ratio must be no smaller than η∗Y , i.e., ηY (π) ≥ η∗Y .
The above arguments share some similarity to Theorem 4

in [19]. However, computing η∗Y here is much more difficult
than that in [19]. The computation of η∗Y requires solving the
optimization problem (9). Like in [19], the denominator of
the objective function in (9) is the optimal value of another
optimization problem. In general, such a bi-level optimization
problem is NP-hard [26]. In [19], special structures of the
problem are exploited to convert a similar bi-level optimization
problem to a convex problem, which is then easier to solve.



However, the techniques in [19] critically rely on the property
that the uncertain quantities (i.e., the EV demand matrix)
can be freely scaled up or down without violating system
constraints. Unfortunately, this property does not hold in this
paper. Specifically, if all the uncertain quantities in Z is
component-wise multiplied by a large constant, it may violate
the bounds from day-ahead prediction in (1). In the next
subsection, we will develop a more general convexification
technique than that in [19] to convexify the optimization
problem (9).

B. Convexification of Problem (9)
We present the key convexification technique in Lemma 5.
Lemma 5: Consider the following optimization problem:

M1 = sup
~x,y

(cT~x+ α)/y

subject to y = f(~x), A~x ≤ b, (10)

where ~x, c are n×1 vectors, A is a m×n matrix, b is a m×1
vector, and α, y are scalars. Suppose that the following two
conditions hold:

(a) f(·) is a convex function of ~x, and f(~x) > 0 over the
entire constrained region of A~x ≤ b;

(b) There exists ~x satisfying A~x ≤ b, such that cT~x+α > 0.
Then, the optimal value M1 of (10) is equal to the optimal
value M2 of the following optimization problem:

M2 = sup
~x′,u

cT~x′ + αu

subject to 1 ≥ uf(~x′/u), A~x′ ≤ bu, u > 0. (11)

Remark 4: The optimization problem (11) can be trans-
formed from (10) as follows. First, we let ~x′ = ~x/y, u = 1/y.
Then, the resulting optimization problem will be similar to
(11), except that we have a constraint 1 = uf(~x′/u) instead
of 1 ≥ uf(~x′/u). Note that f(~x) is a convex function.
uf(~x′/u) must also be convex in (~x, u) because it is the
perspective of f(·) [27]. Therefore, after relaxing the constraint
1 = uf(~x′/u), the optimization problem (11) becomes a
convex problem, and can be efficiently solved. The result of
Lemma 5 can be viewed as a generalization of fractional-linear
program [25], which requires f(~x) to be linear. The detailed
proof is available in Appendix C.

We are now ready to convexify (9). We assume that the
condition (b) holds in our problem, i.e.,

∑t2
t=t1

(
∑t2
s=t at,s +

bt) > 0 for some Z ∈ ZY . In other words, we cannot serve
all the EV demand and the background demand using only the
renewable energy. This assumption is reasonable, because that
the renewable energy is highly variable, and we need to procure
energy from the external grid when the renewable energy turns
out to be low. It remains to show that the condition (a) also
holds for (9), i.e.,

∑t2
t=t1

Epet (Zt) is a convex function of Z.
Obviously, it is sufficient to show that Epet (Zt) is a convex
function of Zt. The convexity of Epet (Zt) is ensured by the
following lemma.

Lemma 6: Suppose that f(x, y) is a convex function defined
on a convex set D. Let Dx = {y : (x, y) ∈ D}, then g(x) =
infy∈Dx f(x, y) is also a convex function.

Lemma 6 can be viewed as an extension of the result in
Section 3.2.5 of [27, p. 87], with the difference that the set
Dx now changes with x. Readers can refer to [28] for the
complete proof of Lemma 6.

It only remains to prove the convexity of Epet (Zt). Since
Z = Πt([Zt, Z>t]), we slightly abuse notation and write
E∗off(Z) = E∗off(Zt, Z>t). We now view Zt as x, and Z>t as
y. Then, based on (8), we can rewrite Epet (Zt) as Epet (x) =
infy:(x,y)∈ZY {E∗off(x, y)}. The region of (x, y), i.e., ZY , is
a convex set because all the constraints in (1)-(3) are linear
constraints. Further, according to (7), it is easy to verify that
E∗off(x, y) is a convex function of (x, y) over the convex set
ZY . Therefore, Epet (Zt) is a convex function.

Remark 5: Although the 2-IPM in this paper assumes only
one intra-day prediction, the results in this section can also be
generalized to general prediction models, with multiple intra-
day predictions. Specifically, each intra-day prediction can be
characterized by a similar set of inequalities as (2)-(3). As
a result, the set ZY of all possible realizations can still be
described by a set of linear constraints. Then, Epet (Zt) is still
a convex function based on Lemma 6, and thus the optimal
competitive ratio in (9) can be computed efficiently using the
convexification technique in Lemma 5. Further, due to the
same reason, the Algorithm Robustification procedure to be
developed in Section IV will also work for such more general
prediction models.

IV. ALGORITHM DESIGN AND ROBUSTIFICATION

Note that we have obtained a lower bound η∗Y for the com-
petitive ratio of any online algorithm, the next step is to design
an online algorithm that can attain this lower bound. It turns
out that we can use the idea of the EPS algorithm proposed
in [19]. Specifically, at each time, an online algorithm can
set Et(Zt, π) = η∗Y E

pe
t (Zt). We also refer to this algorithm

as the EPS (Estimated Peak Scaling) algorithm because it
always scales up the estimated value Epet (Zt) of the lowest
possible future peak by the competitive ratio η∗Y . Like in [19],
it is not difficult to prove from the definition of η∗Y that this
EPS algorithm is feasible for any input Z ∈ ZY because
the condition (5) is always satisfied. Thus, the EPS algorithm
attains the optimal competitive ratio η∗Y .

The problem of this EPS algorithm, however, is that al-
though it achieves the optimal competitive ratio for the worst-
case input, its average-case performance can be quite poor, i.e.,
its peak can be high for many other inputs. To understand this
dilemma, note that according to Lemma 3, any online algorith-
m with optimal competitive ratio η∗Y should set Et(Zt, π) to be
no larger than η∗Y E

pe
t (Zt). In the case of the EPS algorithm,

it always set Et(Zt, π) to the highest possible value. Thus, it
can be viewed as the most conservative algorithm. If the future
input indeed followed the worst-case, such conservatism would
have been essential to attain the optimal competitive ratio: by
serving more demand up-front, the EPS algorithm avoids a
potentially large peak in the future. However, if the future
input is different from the worst case, the EPS algorithm will
likely be too conservative. For example, if the future input
followed precisely the one that produces the value Epet (Zt)



in (8), then using a rate Et(Zt, π) = Epet (Zt) would have
been sufficient. Thus, one could argue that, since the worst-
case perhaps occurs very rarely, using EPS may turn to be a
poor choice in most scenarios.

This conflict between worst-case performance and average-
case performance is not uncommon in the context of com-
petitive online algorithms [17]. An algorithm designed for
the worst-case can exhibit poor average-case performance,
making it less appealing for practical implementation. Ideally,
we would like to design an algorithm with both good worst-
case and good average-case performance. In the rest of this
section, we will present a novel “robustification” procedure to
design such an algorithm. Our key idea is as follows. We first
identify not one, but a class of algorithms that all attain the
optimal competitive ratio. Then, starting from any algorithm
with reasonable average-case performance, we “robustify” its
decision by comparing it to the above class of algorithms.
The resulting algorithm will then achieve both the optimal
competitive ratio and good average-case performance.

A. Online Algorithms with the Optimal Competitive Ratio

Suppose that π is an optimal online algorithm with com-
petitive ratio η∗Y . For any realization Z ∈ ZY , we next study
all possible values of Et(Zt, π) that the algorithm π can take.
The upper bound on Et(Zt, π) is given by Lemma 3, i.e.,

Et(Zt, π) ≤ η∗Y E
pe
t (Zt). (12)

Next, we derive a lower bound for Et(Zt, π).
At time t, we use rt,t1 to represent the total not-yet-served

demand with deadline no greater than t1, which includes all
the remaining demand (with deadline no greater than t1) from
the previous time-slots, the newly arrived net demand, and the
newly arrived EV demand with deadline no greater than t1.
Consider any time instant t1 ≥ t, given any input Z with the
first part being Zt, we must have

Et(Zt, π)+η∗Y

t1∑
s=t+1

Epes (Zs) ≥ rt,t1+

t1∑
s=t+1

(
t1∑
w=s

as,w + bs

)
.

(13)
Here, as,w and bs are the elements of Z. The right hand side is
the total demand that has to be served within [t, t1], while the
left hand side is the maximum possible energy procurement
from the grid (assuming that each future energy procurement
rate is set to the upper bound in (12)).

We move the term “η∗Y
∑t1
s=t+1E

pe
s (Zs)” from the left-

hand-side of (13) to the right-hand-side, and then we have

Et(Zt, π) ≥ rt,t1+
t1∑

s=t+1

(
t1∑
w=s

as,w + bs − η∗Y Epes (Zs)

)
. (14)

Note that (14) must hold for all possible future inputs. Define
the following optimization problem that maximizes the right
hand side of (14) over all possible future inputs:

sup
Z′∈ZY :Z′t=Zt

t1∑
s=t+1

(
t1∑
w=s

a′s,w + b′s − η∗Y Epes (Z ′s)

)
(15)

where a′s,w, b
′
s are the corresponding elements of Z ′. Let

R∗η∗Y
(Zt, t1) be the optimal value of (15). Then, in order to

attain the optimal competitive ratio, the following must hold

Et(Zt, π) ≥ rt,t1 +R∗η∗Y (Zt, t1). (16)

Finally, the above inequality must hold for all t1 ≥ t.
Therefore, we obtain the following lower bound for Et(Zt, π):

Et(Zt, π) ≥ max
t1≥t
{rt,t1 +R∗η∗Y (Zt, t1)}. (17)

Remark 6: Note that Epes (Z ′s) is a convex function (see
Section III-B). Therefore, the objective of (15) is a concave
function. Further, both constraints (Z ′ ∈ ZY and Z ′t = Zt) of
(15) are linear constraints. Hence, (15) is a convex optimization
problem, and thus can be efficiently solved.

We summarize the above discussion into Lemma 7.
Lemma 7: For any feasible η∗Y -competitive online

algorithm, we must have

max
t1≥t
{rt,t1 +R∗η∗Y (Zt, t1)} ≤ Et(Zt, π) ≤ η∗Y E

pe
t (Zt).

Remark 7: We note a key difference in the qualitative nature
of the upper and lower bounds. The upper bound of Et(Zt, π)
depends only on the optimal competitive ratio η∗Y and the
past realization Zt, but is independent of the past decisions
Es(Zs, π), s < t. In contrast, the lower bound of Et(Zt, π)
also depends on the past energy procurement Es(Zs, π), s < t.
Due to this reason, the lower bound is more adaptive: if the
energy procured from the grid in the previous time-slots is
large, we will have less remaining demand rt,t1 , and thus
have a smaller value for the lower bound. Such an ability to
adjust based on the past decisions is the key reason that we can
robustify an algorithm with good average-case performance to
have optimal competitive ratio.

Input: Time-slot t, the remaining demand rt,t1 and the
part Zt that has been revealed.

1 Compute the lower bound (17) and upper bound (12),
and let Et(Zt, π) be any value in between.

2 The aggregator purchases Et(Zt, π) amount of energy
from the external power grid, and uses the renewable
energy and the purchased energy Et(Zt, π) to serve the
existing demand. The aggregator first serves the
background demand bt, and then serves the deferrable
demand by the earliest deadline first (EDF) policy (i.e.,
demand with earlier deadline gets served first). The
aggregator will stop serving demand if all the available
demand at time t is completely served or the amount of
energy Et(Zt, π) is exhausted.
Algorithm 1: A Class of Optimal Online Algorithms

Motivated by Lemma 7, we define a class of online al-
gorithms, called ABS (Adaptive Bound-based Scheduling), in
Algorithm 1. We first show that all ABS algorithms are well-
defined. Specifically, we show that the lower bound (17) is
always no greater than the upper bound (12). Therefore, it is
always feasible to pick a value for Et(Zt, π) at each slot.



Lemma 8: Given Z ∈ ZY and an algorithm π in the class
ABS, at each time-slot t, we must have

max
t1≥t
{rt,t1 +R∗η∗Y (Zt, t1)} ≤ η∗Y E

pe
t (Zt). (18)

Lemma 8 is the key of this section, and its proof is non-
trivial. We can see that both sides of (18) depend on η∗Y . In
fact, η∗Y is the smallest value such that (18) always holds. For
any η < η∗Y , it is possible to construct a case Z ′ ∈ ZY such
that maxt1≥t{rt,t1 + E∗η(Zt, t1)} > ηEpet (Zt) for some t.

Proof: Recall that maxt1≥t{rt,t1 + R∗η∗Y
(Zt, t1)} is the

smallest value of Et(Zt, π) that satisfies (14) for all possible
t1’s and all possible future realizations. Therefore, in order to
prove (18), it suffices to show that η∗Y E

pe
t (Zt) also satisfies

(14), i.e.,

η∗Y

t1∑
s=t

Epes (Zs) ≥ rt,t1 +

t1∑
s=t+1

(
t1∑
w=s

as,w + bs

)
, (19)

for all t1 ≥ t, and all possible as,w and bs.

We prove by induction on t. When t = 1, r1,t1 =
b1 +

∑t1
s=1 a1,s. Therefore, the right hand side of (19) is∑t1

s=1(
∑t1
w=s as,w + bs). Based on the definition of η∗Y in (9),

(19) holds trivially for all t1 ≥ t when t = 1.

Assume that (19) holds for a given t and all t1 ≥ t. We will
show that (19) holds for t+ 1 and all t1 ≥ t+ 1. Note that

rt+1,t1 = (rt,t1 − Et(Zt, π))+ + bt+1 +

t1∑
s=t+1

at+1,s,

where (x)+ = max{x, 0}, (rt,t1 − Et(Zt, π))+ is the re-
maining demand with deadline no greater than t1 and bt+1 +∑t1
s=t+1 at+1,s is the new arrival demand with deadline no

greater than t1. If (rt,t1 − Et(Zt, π))+ = 0, then (19) holds
trivially based on the definition of η∗Y . In the rest of this proof,
we only need to consider (rt,t1−Et(Zt, π))+ > 0. In this case,

rt+1,t1 = rt,t1 − Et(Zt, π) + bt+1 +

t1∑
s=t+1

at+1,s.

We prove by contradiction. Assume that there exist
t̃1, ãs,w, b̃s, such that (rt,t̃1 − Et(Z̃t, π))+ > 0 and

η∗Y

t̃1∑
s=t+1

Epes (Z̃s) < rt+1,t̃1
+

t̃1∑
s=t+2

 t̃1∑
w=s

ãs,w + b̃s

 .

Then,

0

< rt+1,t̃1
+

t̃1∑
s=t+2

 t̃1∑
w=s

ãs,w + b̃s

− η∗Y t̃1∑
s=t+1

Epes (Z̃s)

= rt,t̃1 − Et(Z̃t, π) + b̃t+1 +

t̃1∑
s=t+1

ãt+1,s

+

t̃1∑
s=t+2

 t̃1∑
w=s

ãs,w + b̃s

− η∗Y t̃1∑
s=t+1

Epes (Z̃s)

=

t̃1∑
s=t+1

 t̃1∑
w=s

ãs,w + b̃s

− η∗Y t̃1∑
s=t+1

Epes (Z̃s)

+rt,t̃1 − Et(Z̃t, π)

≤ R∗η∗Y (Z̃t, t̃1) + rt,t̃1 − Et(Z̃t, π).

The last inequality holds based on the definition of the opti-
mization problem (15). The above derivation implies that

Et(Z̃t, π) < R∗η∗Y (Z̃t, t̃1) + rt,t̃1 ,

which contradicts to our choice of Et(Z̃t, π).
Hence, (19) holds for t+1 and all t1 ≥ t+1. By induction,

(19) holds for all t’s and t1 ≥ t. Thus, Lemma 8 holds.
Next, we show that all ABS algorithms are indeed optimal.
Lemma 9: Any algorithm π in the class of ABS is feasible

and achieves the optimal competitive ratio of η∗Y .
Proof: The proof is straightforward. First, based on the

choice of Et(Zt, π), it is easy to see that the peak of the
algorithm π never exceeds η∗Y times the offline optimal peak.
Thus, the algorithm π is η∗Y -competitive. Second, let t1 = t
in (16). It is easy to check that R∗η∗Y (Zt, t) = 0. Therefore,
Et(Zt, π) ≥ rt,t, which implies that no demand will violate
its deadline at time t. This completes the proof.

B. Algorithm Robustification
We have characterized the structure of optimal online al-

gorithms. It only remains to find an online algorithm in ABS
that also has good average performance. Our strategy is to take
any algorithm with reasonable average-case performance, and
convert it into one in the class ABS. We call this procedure
Algorithm-Robustification. The Algorithm-Robustification pro-
cedure is formally stated in Algorithm 2. Specifically, Step 3
of the procedure states that, if Et(Zt, π) is between the upper
bound and the lower bound, then we use the decision of the
original algorithm π. Otherwise, we “robustify” the decision
by setting Et(Zt, πRobust) to one of the bounds, so that the
resulting “robustified” algorithm belongs to ABS. Intuitively,
this procedure implies that for most inputs the robust version of
π will likely behave in the same way as the original algorithm.
Hence, the average-case performance will likely be similar.
However, if there is a danger that the competitive ratio may be
violated in the future, the robustified algorithm will then take
the more conservative decision represented by the bounds.



Input: A realization Z ∈ ZY , the optimal competitive
ratio η∗Y and any online algorithm π.

Output: An optimal online algorithm πrobust and its
schedules Et(Zt, πRobust).

1 for t = 1 : T do
2 Compute α = maxt1≥t{rt,t1 +R∗η∗Y

(Zt, t1)},
β = η∗Y E

pe
t (Zt), and the schedule Et(Zt, π) of the

online algorithm π.
3 Set Et(Zt, πRobust) = Mβ

α (Et(Zt, π)), where
Mβ
α (x) = max{min{x, β}, α}.

4 end
Algorithm 2: Algorithm-Robustification Procedure

In practice, in Section V-C, we will robustify a well-known
online algorithm, called Shrinking Horizon Model Predictive
Control (SH-MPC). The SH-MPC algorithm usually exhibits
good average-case performance [24]. However, its worst-case
competitive ratio can be very poor (see Section II-C). We
then apply this Algorithm-Robustification procedure to the SH-
MPC algorithm. This robustified SH-MPC algorithm will then
achieve optimal competitive ratio in the worst case. Further,
our numerical results demonstrate that the robustified SH-MPC
algorithm achieves almost the same average-case performance
as the SH-MPC algorithm.

C. Accommodating Incorrect Predictions

Our prediction model in Section II-A has implicitly as-
sumed that the day-ahead and intra-day predictions are always
“correct.” This assumption implies that the upper and lower
bounds of intra-day prediction are always within the upper and
lower bounds of day-ahead prediction, and the real-time values
are always within the upper and lower bounds or intra-day
predictions. Then, under this assumption, Lemma 8 guarantees
that the robustification procedure in Algorithm 2 will always
work, i.e., the lower limit α computed by Step 2 of Algorithm
2) is always no greater than the upper limit β.

What if the predictions are incorrect? In reality, the pre-
dicted bounds are based on some confidence intervals. Thus,
there will always be some small probability that the future
realization falls outside of these bounds. In that case, Lemma
8 may not hold, and we may have α > β in Algorithm 2.
Obviously, our robustification procedure will fail.

Interestingly, Lemma 8 also suggests a way to “fix” the
robustification procedure when the above situation happens.
Essentially, when α > β in Algorithm 2, it implies that
the originally-computed competitive ratio η∗Y (assuming that
the day-ahead prediction is correct) is no longer the correct
competitive ratio for the amount of uncertainty faced by the
aggregator. The value of η∗Y will have to be increased. We
note the monotonicity of α and β with respect to η∗: it is
easy to check that α is a monotone decreasing function of η∗Y ,
while β is a monotone increasing function of η∗Y . Thus, if we
keep increasing η∗Y , eventually we can make α ≤ β. Based on
this discussion, we add the following parameter-tuning step
between Step 2 and Step 3 in Algorithm 2:
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Fig. 3. Synthesized EV demand [29]. For any pair of discretized arrival time
tstart and discretized departure time tend, this figure plots the total EV demand.

(Parameter-Tuning Step): If α > β, increase η∗Y until α ≤ β.
With the above parameter-tuning step, the algorithm robus-

tification procedure can proceed even when the predictions
are incorrect. Of course, incorect predictions could negatively
impact the performance of the system. We will study this
impact using simulation in Section V-D.

V. SIMULATION

We conduct simulation using real traces from two data sets.
Elia [30], Belgium’s electricity transmission system operator,
provides day-ahead predictions and real-time values of back-
ground demand and renewable energy for every hour of each
day. (However, Elia [30] does not provide data for intra-day
prediction.) The National Household Travel Survey (NHTS)
dataset [29] provides vehicle driving records for 150147 house-
holds. By assuming that future EV driving patterns are similar,
it is not difficult to use the data in [29] to synthesize a model
for the EV demand (see Fig. 3, and refer to our technical report
[28] for more details), including EV arrival time, deadline and
amount of energy charging demand, as has been done in earlier
works in [31].

A. The importance of Accounting for Uncertainty
We note that the day-ahead prediction in our 2-IPM consists

of an upper bound and a lower bound for each time-slot. In
contrast, the day-ahead prediction in Elia data-set [30] only
contains one predicted value. Nonetheless, by comparing the
difference between day-ahead predicted value and the real-
time value over long periods of time (e.g., a year), it is easy
to compute upper and lower bounds of the prediction error
(for a given confidence level). Combining them with the day-
ahead predicted values of [30], we can then generate the upper
and lower bounds for day-ahead predictions as required in our
model (see our technical report [28] for more details). In Fig.
4 (a), we apply this methodology to Elia’s data on background
demand and renewable energy over a 24-hour period from
8am 02/05/2013 to 8am 02/06/2013, and plot the following
versions of net non-deferrable demand b (as the background
demand minus the renewable energy): the real-time value, the
day-ahead predicted value directly from [30], and the upper
and lower bounds of the real-time values as constructed above.
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(b) The decision of the open-loop deterministic control algorithm
vs. the EPS algorithm. The open-loop control algorithm produces
a large peak, when the demand turns out to be higher in real time.
In contrast, the peak of the EPS algorithm is much lower.

Fig. 4. The EPS algorithm vs. the open-loop deterministic control algorithm.

From Fig. 4 (a), we can see that the gap between the upper
and lower bounds can be quite large (up to 20% of the day-
ahead predicted value). The dataset in [30] does not provide
explicit intra-day prediction. Hence, in our first experiment, we
only consider day-ahead prediction. Lastly, for EV demand, we
scale up1 the synthesized model (see Fig. 3) by a factor 20,
and assume that the day-ahead prediction of the EV demand is
always accurate. In other words, we consider the uncertainty
of background demand and renewable energy only.

We next demonstrate that, even for the scenario with low
uncertainty, an algorithm that is oblivious to future uncertainty
may lead to large peak consumption levels. Specifically, we
consider the following open-loop deterministic control algo-
rithm. At day-ahead, this algorithm assumes that the day-ahead
predicted values of the background demand, the renewable
energy (both from [30]) and the EV demand, are all accurate. It
thus computes the offline optimal peak and the corresponding
charging schedule (e.g., one possible schedule is to procure
at each time-slot the amount of energy equal to this offline
optimal peak), and then applies this schedule during real-time
operation. Note that there is a chance that this schedule may
not meet the deadline constraints of some EV demands because
the real-time values will differ from the predicted values.
In that case, this open-loop deterministic control algorithm
will then need to procure additional energy at the time of
the deadlines to meet the requirement of these EV demands.
Intuitively, this open-loop deterministic control algorithm will
perform poorly even if there is only a slight deviation between
the real-time values and the predicted values because it always
wait until the last minute to remediate the prediction error.
This is confirmed from Fig. 4 (b), where we plot the energy
procurement schedule of this open-loop deterministic control
algorithm versus the EPS algorithm (discussed at the beginning
of Section IV). The open-loop deterministic control algorithm
suffers a large peak at the last minute because the deadlines

1This EV trace [29] is obtained based on 150147 households. However,
Belgium has 4 million households. Scaling the EV demand up by 20 will
correspond to the future scenario where all vehicles in Belgium are electrified.

of most EV demands are 8am (see Fig. 3). In contrast, since
the EPS algorithm increases the amount of energy procured
early on, it avoids this last-minute peak. (We will see shortly
that algorithms in the class of ABS will tend to have even
lower peak than that of the EPS algorithm.) Hence, this figure
clearly illustrates the importance of explicitly accounting for
future uncertainty in the system.

B. 2-IPM and the Price of Uncertainty
We next evaluate the merit of the proposed 2-IPM in

capturing the uncertainty of prediction. Note that given specific
parameters of 2-IPM, we can calculate the lowest competitive
ratio over all online algorithms (see Section III). This optimal
competitive ratio can thus be viewed as a measure of the
“price of uncertainty”, i.e., it represents the increase in cost
(compared to the offline optimal peak) due to the inherent
uncertainty captured by 2-IPM. Note that we have simulated
based entirely on real traces in Section V-A. In the rest of the
numerical experiments, we will manipulate the trace to observe
the performance in different settings.

We first compare the competitive ratio under 2-IPM versus
that under the prediction model in [19]. Note that the uncer-
tainty model in [19] assumes that the ratio between the future
uncertainty (i.e., the walk-in demand in [19]) and the predicted
value (i.e., the reserved demand in [19]) is bounded. However,
the absolute quantity of the predicted value is not specified.
Thus, we refer to the uncertainty model in [19] as a relative
uncertainty model. In contrast, in 2-IPM the absolute quantities
for the predicted upper/lower bounds are specified. Hence, we
refer to 2-IPM as an absolute uncertainty model. One can map
absolute uncertainty in this paper to relative uncertainty in [19]
by using only the ratio between the prediction error and the
predicted value. For instance, suppose xDA(t) is the day-ahead
predicted value. In 2-IPM, the upper and lower bounds of day-
ahead prediction are specified as

x̂L(0, t) = xDA(t)×(1−ε), x̂U (0, t) = xDA(t)×(1+ε). (20)

In contrast, with the relative uncertainty model in [19], only ε



is specified, but not xDA(t).

Intuitively, absolute uncertainty contains more information
than relative uncertainty, and thus 2-IPM should yield lower
competitive ratios. To confirmed this point, we use the day-
ahead predicted values as shown in Fig. 4 (a), but varies
the upper/lower bounds of day-ahead prediction by varying
ε in (20). In Fig. 5, we plot the optimal competitive ratios
under both 2-IPM and under the relative uncertainty model
from [19], as ε varies from 0.05 to 0.2. We can see that,
even with only day-ahead prediction, the optimal competitive
ratios under 2-IPM are lower. For example, when ε = 0.2, the
competitive ratio reduces from 1.2 to 1.16, which corresponds
to approximately 4% reduction on the peak demand (which
is significant as 1% reduction corresponds to 0.01× 20MW×
$9/kW-month×12 = $21600 saving per year for campus-level
aggregators [8] with peak energy in the order of 20MW). In
this sense, we argue that the price of uncertainty under 2-
IPM is lower than that under a comparable model of relative
uncertainty as in [19].

We next evaluate the impact of intra-day prediction. Note
that the Elia data set [30] does not have intra-day prediction
data. Thus, in the following we will artificially vary the param-
eters of intra-day prediction and evaluate the corresponding
optimal competitive ratios. Such an evaluation methodology
has a unique advantage: even before the operator carries out
the intra-day prediction, our methodology will be able to reveal
how useful such information will be in terms of reducing the
optimal competitive ratio. Again, this knowledge of “price of
uncertainty”, i.e., how much the cost can be reduced by intra-
day prediction, could be very useful in deciding which types of
intra-day prediction to perform and how accurate they need to
be. Specifically, we evaluate three types of intra-day prediction,
i.e., hour-ahead prediction, 12-hour-ahead prediction and 18-
hour-ahead intra-day prediction. For each type of intra-day
prediction, we vary the intra-day prediction gap as

W (ut, t) = min{2εintra × xDA(t), x̂U (0, t)− x̂L(0, t)},

where x̂L(0, t), x̂U (0, t) are the day-ahead predicted bounds
specified in (20), and εintra is the parameter we can vary. In
Fig. 5, we plot the corresponding optimal competitive ratios
under several choices of εintra, as the ε (i.e., error of day-
ahead prediction) varies from 0.05 to 0.2. We can make a
number of interesting observations. First, even if the hour-
ahead prediction is perfect (i.e., εintra = 0), the optimal
competitive ratio barely changes from the case with only day-
ahead prediction. Intuitively, this is because the hour-ahead
prediction is too late: most of the decisions have already
been made well before such hour-ahead prediction becomes
available. In contrast, a perfect 12-hour-ahead prediction re-
duces the optimal competitive ratio by 2%. Interestingly, even
an imperfect 18-hour-ahead prediction can be very helpful.
For example, when ε = 0.2, 18-hour-ahead prediction with
εintra = 0.08 reduces the optimal competitive ratio from 1.16
(no intra-day prediction) to 1.13, which is comparable to the
gain from a perfect 12-hour-ahead prediction. In practice, the
earlier the intra-day prediction is performed, the less accurate
it will likely be. Thus, the results in Fig. 5 will allow the
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Fig. 5. Price of Uncertainty. Here, we compare the optimal competitive
ratios between having only day-ahead prediction vs. having both day-ahead
& intra-day predictions.

operator to evaluate which type of intra-day prediction will be
most useful, i.e., in reducing the cost of uncertainty.

C. Worst-case vs. Average-case Performance
Until now we have focused on evaluating the worst-case

competitive ratio. This worst-case competitive ratio is achiev-
able by the EPS algorithm. However, as we discussed in Sec-
tion IV, the EPS algorithm has poor average-case performance.
In Section IV, we also present a robustification procedure that
can be used to design algorithms with both good average-
case performance and worst-case guarantees. Our next set of
simulations will demonstrate this point.

Specifically, we will robustify a well-known heuristic algo-
rithm, called Shrinking Horizon Model Predictive Control (SH-
MPC) [24]. Empirically, the SH-MPC algorithm is often found
to exhibit good average-case performance, especially when the
future values of uncertain quantities are close to the predicted
values. Nevertheless, we have also constructed a scenario in
Section II-C where the SH-MPC algorithm performs much
poorer than the optimal competitive ratio achieved by the EPS
algorithm.

We next show that the robustified version of the SH-MPC
algorithm (according to Section IV-B), will achieve both good
worst-case and average-case performance. We will use two
traces (see Fig. 6). In both traces, the day-ahead predicted
values of background demand and renewable energy, and
their corresponding upper-bounds and lower-bounds, are the
same and are obtained using the methodology in Section V-A
(see Fig. 4 (a)). Both traces also employ the same intra-
day prediction model that uses the values of the respective
quantities one time-slot ahead as the slot-ahead prediction for
the next time-slot, and the intra-day prediction gap W (ut, t)
is set according to the maximum difference between the cor-
responding quantities in adjacent time-slots (see our technical
report [28] for more details). Further, both traces use the same
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(a) Easy trace. The day-ahead predicted values are close to the
real-time values of the net non-deferrable demand.
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(b) Difficult trace. The day-ahead predicted values deviates
significantly from the real-time values of the net non-deferrable
demand.

Fig. 6. Net non-deferrable load of two Simulation traces.
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(a) Easy trace. Note that the curve for “robustified-SH-MPC”
overlaps with that of “SH-MPC”. Compared to the SH-MPC
algorithm and the robustified-SH-MPC algorithm, the EPS al-
gorithm produces an unnecessarily larger peak.
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(b) Difficult trace. The SH-MPC algorithm cannot handle large
uncertainty gracefully, and may lead to a large peak towards the
end. Our robustified-SH-MPC algorithm can take actions earlier
to prevent a large peak in the future.

Fig. 7. Schedules under two Simulation traces.

EV traces. Specifically, we use the EV demand shown in Fig.
3 as the day-ahead predicted value, and assume that the real
demand vary uniformly randomly between 0.8 to 1.2 times the
day-ahead predicted value. (We do not use intra-day prediction
for EV demand.) However, the two figures differ in their
revealed values of the net non-deferrable demand. In Fig. 6
(a), the revealed values of the net non-deferrable demand are
closer to their day-ahead predicted values, while in Fig. 6 (b),
the difference is much bigger (particularly at the end of the
time-horizon). We will also refer to the trace in Fig. 6 (a) as
the “easy trace”, and the trace in Fig. 6 (b) as the “difficult
trace”.

In Fig. 7, we compare the schedules of the EPS algorithm,
the SH-MPC algorithm and the robustified-SH-MPC algorithm
under both traces. By comparing Fig. 7 (a) and 7 (b), we
observe that the EPS algorithm cannot distinguish between
the easy trace and the difficult trace, and its peaks are similar
high in both traces. In other words, the EPS algorithm is
too conservative: it treats every trace as the worst trace, and
scales up Epet (Zt) by the maximum value η∗Y . In contrast,
the SH-MPC algorithm produces a much lower peak in the

easy trace, when the day-ahead prediction is fairly accurate.
However, its performance in the difficult trace is very poor. In
the difficult trace, the day-ahead predicted values consistently
underestimate the net non-deferrable load. As a result, the SH-
MPC algorithm sets its service rate too low at the beginning,
and has to use a much higher rate when all the EV demand
approaches the deadlines. Our robustified-SH-MPC algorithm,
on the other hand, inherits the benefits of both the EPS
algorithm and the SH-MPC algorithm. For the easy trace,
the robustified-SH-MPC algorithm gives virtually the same
schedule as the SH-MPC algorithm. For the difficult trace,
the robustified-SH-MPC algorithm detects that the service
rate of the SH-MPC algorithm is too low at about 6pm.
It then increases the service rate afterwards, and avoids the
potential peak in the end. In summary, the robustified-SH-MPC
algorithm achieves both good average-case and good worst-
case performance.

D. Impact of Incorrect Predictions
The above simulations have assumed that the predictions are

always correct, i.e., future realizations always fall within the
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(a) Difficult trace. (Note that the net-demand is higher than the
day-ahead predicted upper bound after about 10pm.)
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(b) Schedules of the Robustified-SH-MPC algorithm under 3
different parameter settings. Intra-day prediction becomes more
useful when day-ahead prediction is wrong. For example, with
6-hour-ahead intra-day prediction, even though the optimal com-
petitive ratio only reduces by 1.7% (from 1.081 to 1.063), the
real peak is reduced by 10%.

Fig. 8. Impact of wrong day-ahead predictions.

bounds of earlier predictions, in which case the Robustified-
SH-MPC algorithm achieves both efficiency and robustness.
We next simulate a setting with incorrect day-ahead prediction-
s, in which case we use the parameter-tuning step introduced in
Section IV-C. Interestingly, our key observation below is that,
although finer intra-day predictions play less of a role when
all predictions are correct (see Fig. 5), they produce a bigger
impact on the system performance when day-ahead predictions
may be incorrect. Specifically, our simulation is based on the
difficult trace in Fig. 6 (b), except that we tighten the day-ahead
predicted upper/lower bounds to simulate an incorrect day-
ahead prediction (see Fig. 8 (a)). Thus, the real net-demand
may go beyond the bounds. The simulation setup for EV
demand and intra-day prediction are the same as that in Sec-
tion V-C and Section V-B, respectively. We choose different
parameter settings for the intra-day prediction, and compare
the performance of the Robustified-SH-MPC algorithm. From
Fig. 8 (b), a key observation is that intra-day predictions reduce
the peak significantly when day-ahead predictions are wrong.
As a reference point for comparison, we compute the optimal
competitive ratios under the three scenarios (day-ahead only,
half-hour-ahead intra-day prediction with εintra = 0, and 6-
hour-ahead intra-day prediction with εintra = 0.05), and find
them to be 1.081, 1.077, and 1.063, respectively. In other
words, intra-day predictions only reduce the competitive ratio
slightly when all day-ahead predictions are correct. In contrast,
when day-ahead predictions are incorrect, the resulting peaks
in Fig. 8 (b) can differ substantially. For example, if we have
intra-day prediction that is 6 hours ahead with εintra = 0.05,
the peak can be reduced by as much as 10% compared to
the scenario with only day-ahead prediction. This simulation
result demonstrate that, even though intra-day predictions are
not very effective in reducing the optimal competitive ratio,
they are still very important to the overall robustness of the
system, especially when day-ahead predictions are incorrect.

VI. CONCLUSION

We study competitive online EV-charging algorithms for
an aggregator to reduce the peak procurement from the grid.
We model the uncertainty of the system using the 2-IPM,
which captures both day-ahead and intra-day predictions of the
demand and the renewable energy supply. We then develop a
powerful computation approach that can compute the optimal
competitive ratio under 2-IPM over any online algorithms, and
also develop a class of online algorithms that can achieve
the optimal competitive ratio. Noting that algorithms with
the optimal competitive ratio (e.g., the EPS algorithm) may
have poor average-case performance, we then propose a new
Algorithm Robustification procedure that can convert an online
algorithm with reasonable average-case performance to one
with both the optimal competitive ratio and good average-
case performance. We demonstrate the superior performance
of such robustified algorithms via trace-based simulations.

There are a number of interesting directions for future work.
First, we can study the impact of batteries on peak shedding.
In this paper, we assume that EVs can only be charged. In
contrast, dedicated batteries can not only be charged during
idle hours, but also be discharged during peak hours. This
additional flexibility could further reduce the peak demand.
Second, in this work we have focused only on one aggregator.
In practice, such an aggregator needs to participate in the
overall electric power market. Then, it would be interesting
to study the potential benefits of smart EV charging schemes
for the entire power grid.
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APPENDIX

A. Proof of Lemma 1

Proof: The necessity is obvious. We focus on the suffi-
ciency in the following proof.

Suppose that the condition (5) holds for all t1 ≤ t2, t1, t2 ∈
T. Recall that Z contains entries that specify the EV demand,
the net non-deferable demand, and the intra-day predictions.
We will show that the earliest-deadline-first policy can finish
all the demand specified in Z before the corresponding dead-
lines.

We prove by contradiction. Suppose that some demand
misses its deadline. Without loss of generality, we assume that
this demand’s deadline is at time-slot d. We say a time-slot
t < d is good, if and only if all the energy Et is used to serve
the demand with deadline no later than d. It is easy to see that
the time-slot d is always good.

If all the time-slots t = 1, 2, ..., d − 1 are good, then there
is no energy wasted2 during the first d time-slots, and all the
energy is used to serve demand with deadlines no later than
d. Note that

∑d
t=1

∑d
s=t at,s+

∑d
t=1 bt ≤

∑d
t=1Et. Then, all

demand with deadline no later than d can be finished before
the end of the time-slot d, which contradicts to our assumption.

If there exists some time-slots t < d that is not good, let tb =
max{t < d|t is not good}. Then, in time-slots t = tb+1, ..., d,
no energy is wasted, and only demand with deadline smaller
or equal to d is served. Furthermore, all demand with arrival
time no later than tb and deadline no later than d must have
been completed before or at time-slot tb. (Otherwise, tb would
have been good because the energy Etb could have been used
to serve this part of demand according to the earliest-deadline-
first policy.) Therefore, only demand with arrival time larger
than tb and deadline no later than d is served from tb + 1
to d. On the other hand, we note that

∑d
t=tb+1

∑d
s=t at,s +∑d

t=tb+1 bt ≤
∑d
t=tb+1Et. Then, all demand with deadline

no later than d can be finished before the end of the time-slot
d, which contradicts to our assumption again.

2If at some t, the available demand to serve is less than Et, we will say
that part of Et is wasted.



B. Proof of Lemma 3
Proof: Recall the definition (8) that

Epet (Zt) = inf
Z′∈ZY :Z′t=Zt

E∗off(Z
′).

Since E∗off(Z
′) is nonnegative, Epet (Zt) is also nonnegative,

and thus is greater than −∞. Then, for any ε > 0, there must
exist Zε ∈ ZY satisfying Zεt = Zt, such that

E∗off(Z
ε) < Epet (Zt) + ε.

Thus, in order for the online algorithm π to have a competitive
ratio ηY (π) for the input Zε, its decision Et(Zt, π) must
satisfy

Et(Zt, π) ≤ ηY (π)E∗off(Z
ε) < ηY (π)(Epet (Zt) + ε).

Letting ε→ 0, we immediately have

Et(Zt, π) ≤ ηY (π)Epet (Zt).

C. Proof of Lemma 5
Proof: We first show that M2 ≥ M1. Let {Mn

1 } be an
increasing sequence satisfying Mn

1 > 0 for any n = 1, 2, ...,
and limn→∞Mn

1 = M1. Since M1 > 0 (this can be easily
proved based on the conditions (a) and (b) of the lemma),
such a sequence {Mn

1 } always exists. Recall that M1 is the
optimal value of the optimization problem in (10). Then, for
any n, there exists (~xn, yn) satisfying the constraints of (10),
such that (cT~xn + α)/yn > Mn

1 . Note that yn = f(~xn) > 0
(by condition (a) of this lemma). Let

~x′ =
~xn
yn
, u =

1

yn
.

Then, (~x′, u) satisfies the constraints in (11), and cT~x′+αu =
(cT~xn + α)/yn > Mn

1 . Noting that M2 is the optimal value
of (11), we must have M2 > Mn

1 . Letting n → ∞, we then
have M2 ≥M1 > 0.

We next show that M2 ≤ M1. Since M2 > 0, there must
exist an increasing sequence {Mn

2 } satisfying Mn
2 > 0 for any

n = 1, 2, ..., and limn→∞Mn
2 = M2. Then, according to the

definition of M2, for any n, there exists (~x′n, un) satisfying the
constraints of (11), such that cT~x′n + αun > Mn

2 > 0. Note
that un > 0. Let

~x =
~x′n
un
, y =

1

un
.

Then, it is easy to check that y ≥ f(~x) and A~x ≤ b. Let
y0 = f(~x) ≤ y. Then,

cT~x+ α

y0
≥ cT~x+ α

y
= cT~x′n + αun > Mn

2 .

Noting that M1 is the optimal value of (10), we must have
M1 > Mn

2 . Letting n→∞, we then have M1 ≥M2.
Combining the above analysis, we then have M1 = M2.
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