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Abstract—In this paper, we develop online multi-stage decisions
for procuring and dispatching generators with diverse capabilities
to provably assure reliability of power grid operations under
high renewable uncertainty. We jointly consider both the day-
ahead reliability assessment commitment (RAC) and the real-
time dispatch problems. We first focus on the real-time dis-
patch problem and define “maximally robust algorithms,” in
the sense that they are not dominated by any other algorithm
in terms of reliability. We characterize a class of maximally
robust algorithms using the concept of “safe dispatch set,” which
also provides conditions for verifying grid reliability for RAC.
However, in general such safe dispatch sets may be difficult to
compute. We then develop efficient computational algorithms for
characterizing the safe dispatch sets. Specifically, for a simpler
single-bus two-generator case, we show that the safe dispatch sets
can be exactly characterized by a polynomial number of convex
constraints. Then, based on this two-generator characterization,
we develop a new solution for the multi-bus multi-generator
case using the idea of virtual demand splitting (VDS), which
can effectively compute a suitable subset of the safe dispatch
set. A distinct advantage of our proposed approach is that it
intelligently exploits the complementary capabilities of generators
with different ramping capabilities, and thus leads to a larger
safe dispatch set than existing approaches in the literature based
purely on affine policies. Our numerical results on an IEEE 30-
bus system demonstrate that a VDS-based solution outperforms
the standard approaches in the literature in terms of reliability,
without sacrificing economy.

I. INTRODUCTION

The high variability and uncertainty of renewable energy
poses an immense challenge to the existing power grid. Note
that, for power grid operations, it is considered the top priority
to maintain the power supply-demand balance, otherwise the
imbalance can cause the system to collapse with catastrophic
consequences [1, p. 49]. Since renewable energy is highly
variable, the grid operator has to prepare a sufficient amount
of generation from fossil-fuel generators, often with different
output levels and ramping capabilities, to compensate for the
renewable uncertainty. However, these generation resources
not only are costly, but also have hard physical constraints that
cannot be violated at any time (so do the constraints of the
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transmission grid). Hence, it becomes extremely challenging to
determine which set of resources needs to be procured before-
hand, and how to dispatch these heterogeneous resources in
real time, in order to ensure reliable grid operations with the
least amount of resources.

In most parts of the US, the responsibility of maintaining
grid reliability at all times is on the Independent System
Operator (ISO) [2–4]. An ISO typically runs (at least) two
markets. In the day-ahead market, a security-constrained unit-
commitment and economic-dispatch schedule is computed for
every hour of the next day, based on forecast of demand and
supply. Then, in the real-time market during the following day,
the ISO must adjust the dispatch decisions every 5 minutes
to match any actual demand deviation. In-between the real-
time market and the day-ahead market (or even multiple times
during the following day), the ISO runs a RAC1 (Reliability
Assessment Commitment) stage to determine whether addi-
tional generators need to be committed. In this work, we are
most interested in the decisions for both the RAC stage and
the real-time dispatch stage, in order to ensure grid reliability
under high penetration of renewable energy.

Many studies of this RAC and real-time dispatch problem
have been based on two-stage stochastic or robust optimization
[5–8], which assumes that there is a second stage where the
future renewable energy supply for all time slots is known. In
practice, however, renewable supply is revealed sequentially
in many stages, and at each stage the decisions must be made
in an online manner, without knowing the renewable supply
at future stages. It has been pointed out in [9] that such a
two-stage assumption will lead to decisions that are neither
implementable in real-time, nor reliable for the RAC stage, i.e.,
it may incorrectly identify a system as reliable, even though
the system is not. Correct multi-stage sequential decisions
can be solved via dynamic programming [10] or adaptive
robust optimization (ARO) [11], [12]. However, the solution
usually incurs exponentially high complexity. To overcome
this difficulty, the authors of [9] and [13] recently proposed
to use AARO (Adaptive Affine Robust Optimization) to this
problem, which further restrict the decision rules to the class
of affine policies.

Although AARO reduces the computational complexity, we
have found that it does not efficiently exploit the complemen-
tary capabilities of a fleet of generators with diverse power
levels and ramp limits. As a result, with the same amount
of generation resources, AARO may support a much lower
level of renewable uncertainty than the new policies that we

1Depending on the ISOs [4], this stage may also be called RUC (Reliability
Unit Commitment)
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will develop in this paper. To see the weakness of of AARO,
consider the case where there are two generators: a slow
generator with a large power output range but a small ramping
rate, and a fast generator with a small power output range
but no ramping constraints. Intuitively, in the affine policy,
only a small fraction of uncertain demand can be sent to the
slow generator due to its limited ramping capability. Similarly,
only a small fraction of uncertainty can be sent to the fast
generator due to the limited power level that it can support.
Together, the level of uncertainty that can be supported by
these two generators using the class of affine policies may be
very small, even though a much higher level of uncertainty
can be supported by the same set of resources using more
intelligent policies (see Example 1 in Section II-B for more
details). Thus, it remains an open problem how to develop
more efficient and equally-tractable ways to deal with multi-
stage decisions in such settings.

In this paper, we propose new computationally-efficient
algorithms for online multi-stage decisions that can ensure
grid reliability for a given level of renewable uncertainty. In
contrast to [9] and [13], we aim to exploit the complementary
capabilities of heterogeneous generators to support a higher
level of renewable uncertainty than AARO. Towards this end,
we first introduce the concept of “safe dispatch sets” (see
Sec. III for the rigorous definition). We show that a class of
algorithms based on safe dispatch sets is “maximally robust,”
i.e., algorithms of this class are not dominated by any other
algorithm in terms of reliability (see Sec. III for details). How-
ever, for general settings, computing these safe dispatch sets
incurs high computational complexity. Our main contribution
is to develop efficient computational algorithms (in Sec. IV)
for characterizing these safe dispatch sets. Towards this end,
we use a divide-and-conquer approach. First, for a simpler
single-bus case with a fast generator and a slow generator,
we develop a precise characterization of the safe dispatch set
that not only optimally exploits the complementary capabilities
of the two generators, but also involves only a polynomial
number of convex constraints. Second, this two-generator
characterization becomes a building block towards our solu-
tion for the general multi-bus case with many generators of
arbitrary power levels and ramping rates. Specifically, we form
virtual fast/slow generators (VFG/VSG) from actual physical
generators (which allows us to use the two-generator charac-
terization), and then use the idea of virtual demand splitting
(VDS), which can effectively compute a suitable subset of the
safe dispatch set. Note that while such demand splitting can be
viewed as a form of affine policies, it operates over generator
pairs instead of over each individual generator. Therefore, the
overall policy (VDS + two-generator characterization) more-
efficiently exploit the complementary capabilities of different
generators, and as a result produce a larger safe dispatch set
than the AARO policies in [9] and [13]. As we illustrate in the
numerical results in Sec. V, our proposed solution outperforms
state-of-the-art multi-stage AARO algorithm [9] in both RAC
and real-time dispatch. Compared to the current practice
of using standard ED algorithm for real-time dispatch, our
proposed solution provides guarantees for reliability, without
sacrificing much economy.

II. SYSTEM MODEL

We study a power grid with Nb buses in B = {1, 2, ..., Nb}
interconnected by Nl transmission lines in L = {1, 2, ..., Nl}.
Each bus b could have some conventional generators, renew-
able supply, and demand.

Assume that the RAC stage is conducted every T time slots.
The purpose of RAC is to ensure that future real-time dispatch
decisions can always balance the supply and demand for all
possible realizations of demand and renewable supply in the
following T time slots.

Demand: We first model the demand side. In this work,
we assume that the renewable supply will always be used
to provide energy when available (and never curtailed). As
a result, the renewable supply can be viewed as negative
demand. Thus, we only need to focus on the net-demand,
i.e., the total demand minus the total renewable supply, at
each bus. Let Db(t) (b ∈ B, t = 1, 2, ..., T ) be the net-
demand at bus b and time t. Then, the entire net-demand time-
sequence can be denoted as D(1:T ) = {Db(1:T ), b ∈ B},
where Db(1:T ) = {Db(t), t = 1, 2, ..., T} is the net-demand
time-sequence for each bus b ∈ B.

Uncertainty: We now model the uncertainty in net-demand
due to renewable supply, on which the multi-stage decisions
must be computed. Like [7] and [9], we assume that the
net-demand sequence D(1:T ) may be any sequence in a
given uncertainty set D. In practice, this uncertainty set is
typically constructed from forecasts performed before time 1
[7]. However, at each time t, only the subsequence D(1:t)
is known, while the future subsequence D(t + 1:T ) remains
uncertain. While our proposed methodology can be applied to
any form of uncertainty sets, for simplicity we will use the
following form for the rest of the paper. The uncertainty set
D consists of all D(1:T ) satisfying the following:

Dmin
b (t) ≤ Db(t) ≤ Dmax

b (t), (1)

∆down
b (t1, t2) ≤ Db(t1)−Db(t2) ≤ ∆up

b (t1, t2), (2)

where the parameters Dmin
b (t) and Dmax

b (t) denote the lower
and upper limits, respectively, of the net-demand of bus b at
time t, and the parameters ∆up

b (t1, t2) and ∆down
b (t1, t2) denote

the maximum downward and upward rate of change for the
net-demand of bus b. We note that, in a multi-stage setting, the
constraint (2) can be used to refine the remaining uncertainty
at time t. Specifically, we introduce the following notation: for
t ≤ t1 ≤ t2, let

D[t1,t2]|D(1:t) = {D(t1:t2)|there exists D′(1:T ) ∈ D,
such that D′(1:t) = D(1:t), D′(t1:t2) = D(t1:t2)}, (3)

which captures the remaining future uncertainty in the interval
[t1, t2], given the past net-demand trajectory D(1:t). If t = 0,
we will simplify the notation as D[t1,t2], which is just the
original uncertainty set D restricted to the time interval [t1, t2].
Note that D[t1,t2]|D(1:t) is usually much smaller than D[t1,t2].

Supply: We use G = {1, 2, ..., Ng} to denote the set of
generators in the system, and use Pg(t) to denote the power
level at each generator g and each time slot t. Denote

P(1:T ) = {Pg(1:T ), g ∈ G} = {Pg(t), g ∈ G, t = 1, 2, ..., T}.
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For a bus b ∈ B, we use Gb ⊆ G to denote the set of generators
located at the bus b. Further, different generators have different
power level and ramping constraints. Specifically, for each
generator g ∈ G, Pg(t) must satisfy

Pmin
g ≤ Pg(t) ≤ Pmax

g , t = 1, 2, ..., T, (4)

|Pg(t)− Pg(t− 1)| ≤ Rg, t = 2, 3, ..., T, (5)

where Rg is the generator g’s ramping capability in one time
slot (typically 5 minutes [2]). Notice that when Rg = Pmax

g −
Pmin
g , the generator can ramp to any level within its power

range. In the rest of the paper, we refer this special case as
“instantly fast” generators, or simply “fast” generators.

Other Constraints: Given the demand D(1:T ), the power
dispatch decision P(1:T ) must satisfy both the demand-supply
balance constraints and the transmission limit constraints. The
demand-supply balance constraints require that the total power
generation must be equal to the total net-demand (here, we
ignore the transmission loss), i.e.,∑

g∈G
Pg(t) =

∑
b∈B

Db(t), t = 1, 2, ..., T. (6)

To model the transmission limit constraints, we assume a
simplified DC model [14]. Let S = [Sl,b] be the shift factor
of the power system, which is determined by the network
topology and the reactance of the transmission lines. Then, the
amount of power transmitting on line l at time slot t cannot
exceed the power line l’s transmission limit, TLl, i.e.,∣∣∣∣∣∣

Nb∑
b=1

Sl,b

(
Db(t)−

∑
g∈Gb

Pg(t)

)∣∣∣∣∣∣ ≤ TLl, for any t, l. (7)

A. Real Time Dispatch and RAC

In practice, the dispatch decisions must respect causality,
i.e., at each time t, the ISO can only make decisions based
on the revealed net-demand subsequence D(1:t) and the
remaining uncertainty set D[t+1,T ]|D(1:t), but cannot depend
on the exact values of D(t + 1:T ). Due to the causality
requirement, it is possible that, if an incorrect decision was
made at an earlier time, then at a future time, no dispatch
decisions can meet all the constraints. Thus, it is imperative
that the decisions at each time take future uncertainty into
account, so that such scenario will never occur. Towards this
end, we introduce the following concept.

Definition 1. Given an uncertainty set D, we call π(D)2

a causal real-time dispatch algorithm under D, if at each
time t, the dispatch decision Pπ(D)(t) = {Pπ(D)

g (t), g ∈ G}
produced by the algorithm π(D) is a function of D(1:t).

Definition 2. We say that a causal real-time dispatch algo-
rithm π(D) is robust for the uncertainty set D, if and only if for
all demand sequence D(1:T ) ∈ D and all time t = 1, ..., T ,
the dispatch decision Pπ(D)(t) produced by the algorithm
π(D) satisfies constraints (4)-(7).

2Since D is a part of the problem formulation, the algorithm π may thus
behave differently for different uncertainty sets D.

The objectives of this work are then the following. First,
at the RAC stage, given an uncertainty set D, and a set of
generators committed, we would like to know whether there
exist causal real-time dispatch algorithms that are robust for
the uncertainty set D. Then, if the answer at the RAC stage
is positive, we would like to find a causal real-time dispatch
algorithm that is indeed robust for the uncertainty set D. Note
that unlike robust optimization [7], our formulation does not
aim to minimize the worst-case future cost. As was discussed
in the introduction and will be presented next, our solution
produces “safe dispatch sets” that allow the operator to balance
both reliability and economy.

B. Need to Handle Heterogeneity

Before we present our solution, we motivate our problem
formulation through a simple example. Limitations of two-
stage formulations have been reported in [9] (See another
example in [15]). Here, we focus on the limitation of AARO in
[9]. Specifically, [9] restricts the future decisions to be affine
functions of the future input, i.e.,

PAARO
g (t) = wg(t) +

∑
b∈B

Wb,g(t)Db(t), (8)

where wg(t) and Wb,g(t) are coefficients computed in ad-
vance, subject to the constraints that the decisions in (8)
must meet the constraints (4)-(7) for all realizations from the
uncertainty set D. In particular, Wb,g(t) can be interpreted
as the fraction of demand assigned to generator g from
bus b. Unfortunately, the AARO approach can be inefficient
in utilizing the complementary capabilities of heterogeneous
generators, and hence its decisions can be overly conservative,
as shown in the following example.

Example with Heterogeneous Generators: Let n be a pos-
itive parameter. We assume the following uncertainty set
D = {D(1 : T )|0 ≤ D(t) ≤ n2 and |D(t) − D(s)| ≤
|t− s|+ n, ∀t, s ≤ T}. In other words, the net-demand D(t)
at any time can be between 0 and n2. Further, D(t) could
jump by n+1 in one time-slot. However, if such jump indeed
occurs, further changes of D(t) along the same direction will
have to be slower, i.e., at a long-term rate of 1 per time-
slot. Now, consider a pair of generators: a slow generator
with ramping rate R = 1 that can operate within the whole
power range [0, n2], and a (instantly) fast generator that can
operate at any power level in the smaller range [0, 2n], but
without ramping constraints. Intuitively, we can use the fast
generator to meet the sudden jump, and use the slow generator
to follow the slower long-term changes. In this way, a robust
real-time dispatch algorithm does exist for this uncertainty set
(see Remark 2 on how this conclusion can be verified). In
contrast, if one applies AARO policy in (8) to each of the two
generators, this uncertainty set can no longer be supported.
To see this, note that no more than Wslow(t) = 1

n+1 fraction
of uncertainty can be assigned to the slow generator at any
time. Otherwise, the ramping requirement in one time-slot will
exceed (n+ 1)× 1

n+1 = 1, which is the ramping limit of the
slow generator. Similarly, no more than Wfast(t) = 2

n fraction
of uncertainty can be assigned to the fast generator at any time.
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Otherwise, the power level will exceed n2 × 2
n = 2n, which

is the power limit of the fast generator. Together, only about
3
n of the uncertainty can be supported by any affine policy.

In the following, we will present our solution for multi-stage
decisions that not only correctly determines system reliability,
but also avoids such inefficiency.

III. MAXIMALLY ROBUST ALGORITHM

In order to develop new policies that can more efficiently
utilize a fleet of complementary generators, in this section we
formulate what the “optimal” policy should be. Below, we
first consider the real-time dispatch algorithm. Our goal is to
formulate an “optimal” real-time dispatch algorithm that best
utilizes any given set of generators, regardless of the RAC
decision. The notion of optimality is defined below.

Definition 3. Let Λ = {D| There exists a causal real-time
dispatch algorithm π0 that is robust for the uncertainty set
D}. A causal real-time dispatch algorithm π is said to be
maximally robust if and only if π(D) is robust for all the
uncertainty sets D ∈ Λ.

In other words, if any other algorithm is robust for an
uncertainty set D, then a maximally robust algorithm π must
also be robust for D. Thus, a maximally robust algorithm is
not dominated by any other algorithms in terms of reliability.
It turns out that this problem of determining dynamic control
decisions so that the system states remain in a desired set of
trajectories has been studied by dynamic programming (see
section 4.6.2 in [10]). Similar to the “target set” in [10, p197],
we can introduce the notion of “safe dispatch sets” as follows:

Definition 4. Given an uncertainty set D, a demand history
D(1:t) and a power dispatch decision P(t), a causal real-
time dispatch algorithm π is said to be robust given D(1:t)
and P(t), if and only if for any D(t+ 1:T ) ∈ D[t+1,T ]|D(1:t),
the algorithm π produces dispatch decisions {Pπg (t1), t1 >
t, g ∈ G} satisfying constraints (4)-(7) for all t1 > t. (Note
that (4)-(7) are defined for the entire range of t, but here
Pπg (t1) is only defined for t1 > t.)

Definition 5. Given the demand history D(1:t), a dispatch
decision P(t) is safe if P(t) belongs to the safe dispatch set
F(D(1:t)), i.e.,

F(D(1:t)) = {P(t)|P(t) can balance D(t) subject to

the constraints (4), (6) and (7), and there exists a causal

algorithm π that is robust given D(1:t) and P(t)}. (9)

Intuitively, a maximally-robust algorithm simply needs to
pick a dispatch decision at each time t from the safe dispatch
set F(D(1:t)). As in [10, p197], this safe dispatch set can be
generated via backward induction. Then, the induction formula
is given by F(D(1:T )) = AT (D(T )) and

F(D(1:t)) =

 ⋂
D(t+1)

ft(F(D(1:t+ 1)))

⋂At(D(t)),

(10)
where At(D(t)) is the set of generator decisions that can
balance demand D(t) and ft(A) = {P(t)| ∃P(t + 1) ∈

A, such that |Pg(t + 1) − Pg(t)| ≤ Rg}. The detailed proof
of the induction formula (10) is available in technical report
[16]. We now summarize the results that can be shown based
on [10, p197]:

Proposition 6. Given the uncertainty set D, there exists a
causal and robust real-time dispatch algorithm if and only
if F(D(1)) 6= ∅ for all D(1) ∈ D1 , {D(1)|D(1:T ) ∈
D}. Further, if F(D(1)) 6= ∅ for all D(1) ∈ D1, then any
algorithm in the following class is maximally robust:

Step 1: at time slot 1, pick an arbitrary dispatch decision
P (1) ∈ F(D(1));

Step 2: at time slot t > 1, pick an arbitrary dispatch decision
P(t) ∈ F(D(1:t))

⋂
C(P(t− 1)), where

C(P(t−1)) = {P(t) : |Pg(t)−Pg(t−1)| ≤ Rg, g ∈ G} (11)

is the set of dispatch decisions that can be reached at time t
from the dispatch decision P(t− 1) at time t− 1.

The proof is available in [16]. According to Proposi-
tion 6, once we know how to calculate the safe dispatch
set F(D(1:t)), both the RAC decision (first part of Propo-
sition 6) and the real-time dispatch decision (second part of
Proposition 6) are solved. However, in general the complexity
of the backward induction (10) is high because there exist
uncountably many demand sequences. Thus, the backward
induction is useful only for theoretical analysis.

IV. COMPUTATIONALLY-EFFICIENT ALGORITHMS

In this paper, our goal is to design computationally-efficient
algorithms that can approximate the optimal policy. Towards
this end, we take a divide-and-conquer approach. First, recall
from Section II-B that, for the case with one (instantly) fast
generator and one slow generator, AARO may support a
much lower level of uncertainty than the maximum possible.
We thus focus on this case first. Surprisingly, we show in
Section IV-A that in this special case, the safe-dispatch set
can be precisely characterized in polynomial time, and thus the
optimal dispatch decisions can be solved effectively. We then
use this special case as a key building block for the general case
in Section IV-B with multiple generators of arbitrary power
level and ramping rates, and develop a general algorithm
with polynomial time complexity. This algorithm can utilize
complementary generators more efficiently than AARO, and
thus support a higher level of renewable uncertainty with same
amount of resources.

A. One Slow Generator + One Fast Generator

We first consider a one-bus two-generator case. We assume
that the first generator is a slow generator, with time-varying
generation limits [P vmin

slow (t), P vmax
slow (t)], and time-varying up-

ramping rate Rvup
slow(t) and down-ramping rate Rvdown

slow (t). Thus,
the dispatched power level P v

slow(t) for this slow generator
must satisfy

0 ≤ P vmin
slow (t) ≤ P v

slow(t) ≤ Pmax
slow(t),

−Rvdown
slow (t) ≤ P v

slow(t+ 1)− P v
slow(t) ≤ Rvup

slow(t).



5

The second generator is a fast generator. We assume that this
fast generator can generate both negative and positive power in
the range P v

fast(t) ∈ [−rv-
fast(t), r

v+
fast(t)], and it has no ramping

constraint, i.e., the parameter Rg in (5) is +∞.
Since there is only one bus, D(t) becomes a scalar. Thus,

if we know the dispatch level P v
slow(t) of the slow generator,

we can immediately obtain the dispatch level P v
fast(t) of the

fast generator through P v
fast(t) = D(t) − P v

slow(t). Hence, in
the following discussion, we will only focus on the dispatch
level P v

slow(t) of the slow generator. We first assume that
F(D(1:t)) 6= ∅, and derive some necessary conditions that the
generator parameters (P vmin

slow (t), P vmax
slow (t), Rvdown

slow (t), Rvup
slow(t),

rv-
fast(t), rv+

fast(t)) need to satisfy. We then show that these
conditions are also sufficient. As a result, we will obtain a
close-form formula for F(D(1:t)).

1) Necessary Conditions for F(D(1:t)) 6= ∅: The first set
of necessary conditions are quite obvious and they simply
check whether the lower/upper limits of the slow generator
are consistent with its ramping speed.

Lemma 7. (Parameter-checking condition) Given D(1:t), if
F(D(1:t)) 6= ∅, then for any t ≤ t0 ≤ t1, the following
constraints hold:

P vmin
slow (t0)−

t1−1∑
s=t0

Rvdown
slow (s) ≤ P vmax

slow (t1), (12)

P vmax
slow (t0) +

t1−1∑
s=t0

Rvup
slow(s) ≥ P vmin

slow (t1). (13)

Clearly, if (12) is violated, then from any allowed power
level at time t0 (above P vmin

slow (t0)), the slow generator would
have no way to ramp down to an allowed power level at t1
(below P vmax

slow (t1)). Thus, F(D(1:t)) would have been empty.
The necessity of (13) is similar.

Even if conditions in (12) and (13) hold, the slow gen-
erator still may not be able to use all the power levels in
[P vmin

slow (t0), P vmax
slow (t0)]. For instance, if t0 < t′ and P vmin

slow (t0) <

P vmin
slow (t′)−

∑t′−1
s=t0

Rvup
slow(s), then the slow generator should not

use any power level below P vmin
slow (t′)−

∑t′−1
s=t0

Rvup
slow(s) at time

t0. Otherwise, it will not be able to ramp up to any allowed
power level (above P vmin

slow (t′)) at time t′. Similarly, if t′ < t0,
P vmin

slow (t0) should not below P vmin
slow (t′) −

∑t0−1
s=t′ R

vdown
slow (s).

Thus, we can define the “effective lower limit” and “effective
upper limit” of the slow generator at time t0 ≥ t as

P eff-vmin
slow (t0) = max{ max

t0<t′≤T
{P vmin

slow (t′)−
t′−1∑
s=t0

Rvup
slow(s)},

max
t≤t′≤t0

{P vmin
slow (t′)−

t0−1∑
s=t′

Rvdown
slow (s)}},(14)

P eff-vmax
slow (t0) = min{ min

t0<t′≤T
{P vmax

slow (t′) +

t′−1∑
s=t0

Rvdown
slow (s)},

min
t≤t′≤t0

{P vmax
slow (t′) +

t0−1∑
s=t′

Rvup
slow(s)}}. (15)

Clearly, the power level of the slow generator at time t0 should
be within [P eff-vmin

slow (t0), P eff-vmax
slow (t0)]. The following necessary

condition is then obvious.

Lemma 8. (Capacity condition) Given D(1:t), if
F(D(1:t)) 6= ∅, then for any t0 ≥ t, the following
conditions must hold:

min
D(t0)∈Dt0|D(1:t)

{D(t0)} ≥ P eff-vmin
slow (t0)− rv-

fast(t0), (16)

max
D(t0)∈Dt0|D(1:t)

{D(t0)} ≤ P eff-vmax
slow (t0) + rv+

fast(t0). (17)

In other words, no future demand can exceed the combined
limits of the slow and fast generators.

While the above conditions are more obvious, the next
condition is the key to capture the safety requirement in multi-
stage decisions.

Lemma 9. (Load-following condition) Given D(1:t), if
F(D(1:t)) 6= ∅, then for any t ≤ t0 ≤ min{t1, t2}, the
following condition must hold:

rv+
fast(t1) +

t1−1∑
s=t0

Rvup
slow(s) + rv-

fast(t2) +

t2−1∑
s=t0

Rvdown
slow (s)

≥ max
D(1:t0)∈D[1,t0]|D(1:t)

{
max

D(t1)∈Dt1|D(1:t0)

{D(t1)} −

min
D(t2)∈Dt2|D(1:t0)

{D(t2)}
}
. (18)

Proof. Given any net-demand sequence D(1:t0) ∈
D[1,t0]|D(1:t), consider the dispatch decision (P v

slow(t0),
P v

fast(t0)) at time t0. We need to ensure that for any time
t1 ≥ t0, the maximum demand is reachable. (If not, the safe
dispatch set F(D(1:t)) would have been empty.) Thus, we
have

P v
slow(t0)+

t1−1∑
s=t0

Rvup
slow(s)+rv+

fast(t1) ≥ max
D(t1)∈Dt1|D(1:t0)

{D(t1)}.

(19)
Similarly, in order to reach the minimum demand at time t2 ≥
t0, we must have

P v
slow(t0)−

t2−1∑
s=t0

Rvdown
slow (s)− rv-

fast(t2) ≤ min
D(t2)∈Dt2|D(1:t0)

{D(t2)}.

(20)
Then, we must have

γmin
t1 (D(1:t0)) ≤ P v

slow(t0) ≤ γmax
t2 (D(1:t0)), t1, t2 ≥ t0,

(21)
where γmin

t1 (D(1:t0)) , maxD(t1)∈Dt1|D(1:t0)
{D(t1)} −∑t1−1

s=t0
Rvup

slow(s) − rv+
fast(t1) and γmax

t2 (D(1:t0)) ,
minD(t2)∈Dt2|D(1:t0)

{D(t2)} +
∑t2−1
s=t0

Rvdown
slow (s) + rv-

fast(t2).
Since (21) is true for all D(1:t0) ∈ D[1,t0]|D(1:t), taking the
worst case among all D(1:t0), we get (18).

Remark 1. Since the uncertainty set D only consists
of linear constraints (1) and (2), it is easy to
see that the terms “minD(t0)∈Dt0|D(1:t)

{D(t0)}”,
“maxD(t0)∈Dt0|D(1:t)

{D(t0)}” in (16)-(17), and the right-
hand-side of (18), are all convex optimization problems, and
thus can be computed efficiently.
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2) Sufficiency of Conditions (12)-(13),(16)-(18): While the
necessity of the above conditions (12)-(13),(16)-(18) are easy
to follow, the next result is more surprising and it shows
that these conditions are also sufficient for F(D(1:t)) 6= ∅.
Establishing this sufficiency is our first main contribution.

Theorem 10. Given D(1:t), if all the five conditions (12)-
(13),(16)-(18) hold, then the safe dispatch set F(D(1:t)) is
not empty. Further, it can be explicitly expressed as follows:

F(D(1:t)) = {(P v
slow(t), P v

fast(t))|P v
slow(t) ∈ h(D(1:t)),

P v
slow(t) + P v

fast(t) = D(t)}. (22)

The interval h(D(1:t)) above can be computed as

h(D(1:t)) =

[
max

{
P eff-vmin

slow (t),
T

max
t1=t

γmin
t1 (D(1:t))

}
,

min

{
P eff-vmax

slow (t),
T

min
t1=t

γmax
t1 (D(1:t))

}]
, (23)

where γmin
t1 (D(1:t)) and γmax

t1 (D(1:t)) are defined below (21).

Note that the upper and lower limits in h(D(1:t)) are simply
combinations of the limits in (21) and the effective limits
[P eff-vmin

slow (t), P eff-vmax
slow (t)]. Thus, it naturally produces an outer

bound on F(D(1:t)). To show that h(D(1:t)) produces the
exact form of F(D(1:t)) as in (22), we will have to show that,
for any P (t) = (P v

slow(t), P v
fast(t)) within the right hand side

of (22), we can construct a causal real-time dispatch algorithm
π (like in Prop. 6), such that this algorithm π is robust given
D(1:t) and P (t). The detailed construction is in the proof of
Theorem 10 (see Appendix A).

Remark 2. In Theorem 10, we have derived the precise
characterization of the safe dispatch set for a single-bus system
with a pair of slow and fast generators. To see how our
proposed approach can achieve a larger safe dispatch set
than AARO, we use the Example in Section II-B. One can
verify that such a configuration satisfies the conditions (12)-
(13) and (16)-(18) in Theorem 10. (See details in our technical
report [16]). Thus, the entire uncertainty set can be handled
by this pair of generators. In contrast, as we have illustrated
in Section II-B, if any affine policy is used, only about 3

n of
the uncertainty can be supported. As n increases, the gap
between the affine policies and our precise characterization
grows as O(n). We refer the readers to additional simulations
in Section V to further illustrate the difference.

B. Multiple Buses + Multiple Generators

In this section, we study the general case with multiple
generators of arbitrary power levels and ramping rates, which
unfortunately does not admit exact closed-form characteriza-
tions for the safe dispatch set. Instead, we aim to utilize a
suitable subset of the true safe dispatch set.

Our basic idea is demand splitting, i.e., fractions of the
future net-demand uncertainty are sent to the generators ac-
cording to pre-computed splitting factors. However, assigning
a splitting factor for each physical generator will lead to
severely-reduced safe dispatch sets, because it fails to leverage
the complementary capabilities of generators, an example

of which is shown in Section II-B. This observation thus
motivates us to consider the following idea of virtual demand
splitting (VDS). Based on the actual physical generators, we
will conceptually form pairs of virtual fast generator (VFG)
and virtual slow generator (VSG). A fraction (i.e., the splitting
factor) of net-demand uncertainty is then sent to such a virtual
generator pair (VGP). For each VGP, we can then use the
two-generator characterization in Section IV-A. By carefully
forming the VGPs and choosing the splitting factors, this
procedure will result into a subset FVDS(D(1:t)) of the true
safe dispatch set F(D(1:t)), which can then be used for RAC
and real-time dispatch to ensure robust operations.

Since our ultimate goal is real-time dispatch and RAC,
below we first directly give the formulation (24) of the real-
time dispatch decision following the above procedure, which
produces economic dispatch P(t) at time t that is also safe
for future uncertainty at all t0 > t, given history D(1:t). The
formulations of RAC and FVDS(D(1:t)) are similar and will
be given next.

minimize
Z(t)

Cost(P(t)) (24a)

subject to

Rup
slow,g(t0) +Rv+

fast,g(t0) = Rg, ∀t0 ≥ t,∀g ∈ G, (24b)

Rdown
slow,g(t0) +Rv-

fast,g(t0) = Rg, ∀t0 ≥ t,∀g ∈ G, (24c)

P vmax
slow,g(t0) +Rv+

fast,g(t0) = Pmax
g , ∀t0 ≥ t,∀g ∈ G, (24d)

P vmin
slow,g(t0)−Rv-

fast,g(t0) = Pmin
g , ∀t0 ≥ t,∀g ∈ G, (24e)∑

g∈Gb

Rv+
fast,g(t0) ≥

∑
g∈Gb

rv+
fast,g(t0), ∀t0 ≥ t, ∀b ∈ B, (24f)∑

g∈Gb

Rv-
fast,g(t0) ≥

∑
g∈Gb

rv-
fast,g(t0), ∀t0 ≥ t, ∀b ∈ B, (24g)∑

b∈B

Dmain
b (t0) =

∑
g∈G

Pmain
VGP,g(t0), ∀t0 ≥ t, (24h)∑

g∈G
ηb,g = 1, ∀b ∈ B, (24i)∣∣∣∑

b∈B

Sl,b

(
Db(t0)−

∑
g∈Gb

Dg(t0)
)∣∣∣ ≤ TLl,∀l ∈ L,

for all Db(t0) ∈ Dt0|D(1:t), Dg(t0) in (25),∀t0 ≥ t
, (24j)

{Rup
slow,g(t), Rdown

slow,g(t), rv+
fast,g(t), rv+

fast,g(t), Pmain
VGP,g(t), ~η}

satisfy constraints (12)-(18), ∀ VGP pair g
, (24k)(

P v
slow,g(t), P v

fast,g(t)
)
∈ FZ(t)

g (D(1 : t)), ∀g ∈ G, (24l)

−Rv-
fast,g(t) ≤ Pg(t)− P v

slow,g(t) ≤ Rv+
fast,g(t), ∀g ∈ G, (24m)∑

g∈Gb

Pg(t) =
∑
g∈Gb

(P v
slow,g(t) + P v

fast,g(t)), ∀b ∈ B, (24n)

|Pg(t)− Pg(t− 1)| ≤ Rg, only if t ≥ 2,∀g ∈ G. (24o)

The set of problem variables is Z(t) =
{Rup

slow,g(t0), Rdown
slow,g(t0), Rv+

fast,g(t0), Rv-
fast,g(t0), rv+

fast,g(t0),

rv+
fast,g(t0), Pmain

VGP,g(t0), ηb,g, Pg(t), P
v
slow,g(t), P

v
fast,g(t),∀g ∈

G,∀b ∈ B,∀t0 ≥ t}, which are explained below. In
(24a), the objective is to minimize the generation cost
at current time t, where Cost(·) is a convex energy-cost
function. (24b)-(24e) are the constraints that define virtual
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Fig. 1. Illustration of the VDS approach

generators, i.e., each physical generator g ∈ Gb contributes
Rv+

fast,g and Rv-
fast,g from its ramp limit Rg to a VFG pool

{
∑
g∈Gb R

v+
fast,g,−

∑
g∈Gb R

v-
fast,g} on its corresponding bus

b. The remaining power output range (P vmax
slow,g, P

vmin
slow,g) and

ramping rates (Rup
slow,g, R

down
slow,g) together form a VSG.

Then, in (24f)-(24g), each VSG is paired with a VFG
(rv+

fast,g, r
v-
fast,g) from the VFG pool, to form a VGP (see

Fig. 1). (24h) is the power demand-supply balance condition
for the main part of the net-demand, which is given by
Dmain
b (t0) = (max{Db(t0)} + min{Db(t0)})/2. For the

remaining uncertain demand (Db(t0) − Dmain
b (t0)), we use

affine splitting according to the splitting factors ηb,g in (24i),
such that (similar to (8), see Fig. 1)

Dg(t0) = Pmain
VGP,g(t0) +

∑
b∈B

ηb,g(Db(t0)−Dmain
b (t0)),

∀t0 ≥ t, ∀g ∈ G. (25)

Dg(t0) is then the total demand that VGP g must meet. (24j)-
(24k) are the constraints that this splitting of uncertain demand
must satisfy. (24j) ensures that the transmission-line limit is
met for each possible value of Db(t0) ∈ Dt0|D(1:t) and Dg(t0)
according to (25), ∀t0 ≥ t. (24k) ensures that the exact
safe dispatch set for each VGP g (which we characterized
in Theorem 10 in Section IV-A) is non-empty according to
the limits of VGP g and the uncertainty level of Dg(t) from
(25). This ensures that, for each VGP g, the lower limit
of h(·) in (23) is no greater than the correspoding upper
limit. Finally, (24l)-(24o) choose a safe dispatch decision
P(t) for time t. In particular, (24l) chooses the power output
levels of each VSG/VFG pair, P v

slow,g(t) and P v
fast,g(t), from

the safe dispatch set FZ(t)
g (D(1:t)) of the VGP, which is

given in Theorem 10. Then, (24m) and (24n) map from
(P v

slow,g(t), P v
fast,g(t)) ∈ FZ(t)

g (D(1:t)) for all VGPs g, back
to the dispatch decisions P(t) on real generators. Last but not
the least, (24o) ensures that the safe dispatch decision P(t) is
within the ramp limit from previous dispatch decision P(t−1).

Remark 3. Note that (24j)-(24l) can be written as a polyno-
mial number of convex constraints (see technical report [16]).

While (24) focuses on real-time dispatch, similar formu-
lations can be developed for characterizing the safe dispatch

subset FVDS(D(1:t)) itself or for RAC. Specifically, the subset
FVDS(D(1:t)) can be written as

FVDS(D(1:t)) = {P(t)|There exists Z(t) such that
(24b)-(24n) holds}. (26)

For RAC, we can simply use constraints (24b)-(24k) based
on the original uncertainty set D and for all t0 ≥ 1. Further,
we can minimize any trivial objective function subject to the
constraints (24b)-(24k). If the minimization problem produces
a finite value, we can conclude that the safe dispatch subset
is non-empty, and the system must be safe for RAC.

Remark 4. We note that our idea of demand splitting shares
some similarity to the choice of AARO in [9]. However,
there are two key differences. First, we assign a splitting
factor for each pair of VSG and VFG (rather than for each
generator). As we argue in Section IV-A (see Remark 2),
the additional flexibility by using VGPs will likely enlarge
the obtained subset FVDS(D(1:t)). Second, at each time, we
reformulate the constraints (24b)-(24o) based on current and
future uncertainty. In other words, our real-time dispatch
decision is not restricted by the day-ahead parameters. In
contrast, the real-time dispatch decisions in [9] are affected
by the day-ahead decisions. Specifically, in the “policy-guided
robust ED model” in [9], the real-time dispatch decision at
each time slot is constrained in such a way that, for all possible
renewable realization in the next time slot, the current dispatch
level for each generator must be able to ramp to its power
level for the next time-slot computed by the day-ahead affine
policy. As a result, the real-time decisions of [9] is often
more constrained and less economical. As we will show in
the simulation results in Section V, this difference will lead to
a reduction in energy costs for our proposed policy.

V. COMPUTATIONAL RESULTS

In this section, we present the MATLAB simulation re-
sults to demonstrate the effectiveness of our proposed VDS
approach on two different settings: a single-bus two-generator
case and a more realistic case with a richer pool of generators.

A. A Single-bus Two-generator Case

We first demonstrate that, for a a simple single-bus two-
generator setting without transmission constraints (similar to
Section IV-A), our proposed algorithm can produce a larger
safe dispatch set compared to AARO based approaches. The
parameters of generators are summarized in the following
Table I. Note that generator A represents the “slow” generator,
and generator B represents the “fast” generator.

TABLE I
LISTS OF GENERATORS

Type Generator Limit Ramping Rate
A 0-500MW 12MW/slot
B 0-30MW 30MW/slot

We use the demand data from Elia [17], Belgium’s electric-
ity transmission system operator. Specifically, we scale down
the load data from 6am to 9am on 01/01/2015 by 15 times
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Fig. 2. The maximum wind power Pmax
r that can be supported at different

levels of wind variability α using the AARO approach in [9] and our proposed
VDS algorithm.

and feed it into our single-bus power system (see Fig. 3(a)).
For the wind supply, we create a parameterized uncertainty
set so that we can easily experiment with different levels of
wind output and variability. Specifically, the renewable power
Pr varies within [0, Pmax

r ], and the maximum variation of
renewable energy is given by ∆up

w (∆t) = α[20 + 5(∆t− 1)]
and ∆down

w (∆t) = α[−20 − 5(∆t − 1)], where the positive
parameter α controls the variability of the wind-output.

We compare our proposed approach at the RAC stage with
state-of-the-art AARO approach [9] under different values of
Pmax
r and α. In Fig. 2, for each value of α, we plot the

maximum value of Pmax
r at which each algorithm determines

the system as reliable (Pmax
r can be viewed as the size of

safe dispatch set). As shown in Fig. 2, our proposed VDS
algorithm always performs no worse than AARO, and can
ensure reliability at significantly higher levels of wind than
AARO when α is small. The performance gain is over 5 times
when the wind variation is small (e.g., α = 0.8 and 1). Note
that this observation is consistent with our earlier analysis in
Remark 2 of Section IV-A. The above results thus confirm
our discussion earlier that our proposed approach can yield
a larger safe dispatch set compared to AARO. In the next
section, we will show that such enhancement in reliability will
transform into economical gains even in the case where AARO
determines the system as reliable.

B. IEEE 30-bus Test Case

Next, we evaluate the VDS algorithm on a standard IEEE
30-bus system [18]. The parameters of different generator
types and location information are listed in Table II. Here,
Type I, II and III of generators can be viewed as “slow”
generators with different capabilities, while Type IV generators
can be viewed as “fast” generators. By pairing “slow” and
“fast” generators on Bus 2, 13, 22 and 23, we expect that our
proposed algorithm can outperform other existing approaches
in the literature. We take the load data from Section V-A and
split it evenly into two parts, which are then fed into buses 2
and 3. The wind data is also from 6am to 9am on 01/01/2015.
We apply a linear transformation to scale down the data (see
Fig. 3(b), the curve labeled “Real Renewable”), and feed it
to bus 3. Note that the load data is more predictable than the
wind data. Hence, for simplicity, we assume that the exact
values of the load are known at the RAC stage, and thus the

TABLE II
LISTS OF FOSSIL-FUELED GENERATORS

Type Generator Limits Ramping Rate Price Bus Location
I 60-140MW 0.2MW/min 48$/MWh 1
II 21-60MW 0.2MW/min 56$/MWh 2, 23
III 50-160MW 0.2MW/min 60$/MWh 13, 22
IV 0-8MW 0.5MW/min 80$/MWh 2,13,22,23,27

uncertainty all comes from the wind energy. The uncertainty
set of the wind is modeled according to (1) and (2), and its
parameters are estimated from historical data. Specifically, the
upper bound and the lower bound are shown in Fig. 3(b),
and the maximum variation ∆up

w (∆t) = ∆up
w (t, t + ∆t) and

∆down
w (∆t) = ∆down

w (t, t+ ∆t) of wind (here we assume that
the maximum variation only depends on the time difference)
are shown in Fig.3(c).

We first compare the decisions in the RAC stage. We
compare VDS with AARO and the two-stage formulation.
To compare these three approaches, we scale up the wind
energy (both its bounds and maximum variation) by a scaling
factor ranging from 0.4 to 1.4. In the middle three rows of
Table III, for each renewable scale, we report whether the
three approaches for RAC (i.e., VDS, AARO and two-stage
formulation) will determine the system as reliable day-ahead.
We make the following observations. First, note that AARO-
RAC and VDS-RAC determine the system as reliable up to
a renewable scale of 1.0 and 1.3, respectively. Thus, under
the VDS algorithm, the system can support significantly more
renewable than under AARO, even though the set of resources
is the same. Second, the two-stage formulation (2-Stage RAC)
declares the system as reliable at an even higher renewable
scale of 1.4. However, as we discussed earlier, such assurance
could be misleading because the real system is not two-staged.
Indeed, the two-stage formulation by itself does not provide
a way to dispatch generators in real time. As we will show
shortly, none of the real-time economic dispatch algorithms
that we try can meet all grid constraints in real time under
such a high renewable scale of 1.4.

Specifically, in the last three rows of Table III, we report
the total real-time generation costs (i.e., the summation of
the cost at all times) under VDS-ED, AARO-ED (or “policy-
guided ED” in [9]) and the standard ED (which minimizes
the energy cost in the current slot). A value of “Inf” in
these rows corresponds to the case when no feasible dispatch
decisions meeting all grid constraints (4)-(7) can be found.
We observe that, the system would be unreliable under the

TABLE III
DAY-AHEAD RAC AND REAL TIME DISPATCH COST

Wind Scale 0.4 0.6 0.8 1.0 1.3 1.4
VDS-RAC yes yes yes yes yes no
AARO-RAC yes yes yes yes no no
2-Stage RAC yes yes yes yes yes yes
VDS-ED $72,833 $69,624 $66,467 $63,316 $58,955 Inf
AARO-ED $73,076 $70,002 $66,819 $63,668 Inf Inf
Standard-ED $72,800 $69,542 Inf Inf Inf Inf

Note: In row 2 to 4, “yes” or“no” means whether the system is determined as reliable
day-ahead by the corresponding RAC policy.
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Fig. 3. Simulation data: (a) load; (b) wind and its range; (c) maximum variation of wind.

standard ED algorithm in real time once the scaling factor is
beyond 0.6. In contrast, for VDS, whenever VDS-RAC reports
that the system is reliable day-ahead, which is the case up to
a renewable scale of 1.3, VDS-ED is guaranteed to maintain
reliability in real-time. Similarly, AARO-ED can maitain real-
time reliability whenever AARO-RAC declares the system as
reliable day-ahead, albeit at a lower renewable scale up to 1.0.
At renewable scale above 1.3, none of the three ED algorithms
can maintain real-time reliability. We caution that, at this level
of renewable uncertainty, we do not know whether there exist
causal real-time dispatch algorithms that can maintain real-
time reliability (because the VDS-ED algorithm is based on a
subset of the true safe dispatch set). Nonetheless, this example
illustrates that the two-stage formulation alone can easily lead
to incorrect conclusions on system reliability.

Finally, we compare the numerical values in the last three
rows in Table III. We observe that, when the standard ED
algorithm can meet all grid constraints (scaling factor = 0.4
and 0.6), our VDS-ED achieves similar costs. This confirms
our earlier discussion that VDS-ED only intervenes the ED
decisions when necessary. On the other hand, when the stan-
dard ED algorithm fails to provide safe dispatch decisions (for
scaling factor from 0.6 to 1.3), our proposed VDS-ED can still
guarantee reliable grid operations, which demonstrates the im-
portance of checking the safe dispatch set. Then, we compare
VDS-ED with AARO-ED. Even though AARO [9] can achieve
grid reliability up to a scaling factor of 1.0, its total fuel costs
are always higher than those under VDS-ED. We believe that
there are two reasons for the inefficiency of AARO-ED. First,
as we discussed earlier in Remark 2 in Section IV-A, VDS in
general yields a larger safe dispatch set than AARO. Hence, it
can choose more-economic dispatch decisions. Second, as we
discussed in Remark 4 of Section IV-B, the policy-guided ED
[9] based on AARO imposes further restrictions on the ED
decisions based on day-ahead decisions. Both factors lead to
higher costs for AARO. Finally, at scaling factor of 1.3, VDS-
ED is able to guarantee reliability, while AARO-ED fails. In
summary, we conclude that VDS-ED achieves a higher level
of reliability than the AARO-based ED algorithm and the
standard ED algorithm, without sacrificing much economy.

C. Computational Complexity

To provide some insights on the computational complexity,
we solve the same problem instance using our proposed VDS

algorithm and AARO, for a standard IEEE 30-bus test system
and an IEEE 118-bus test system [18]. We run the simulations
using MATLAB/CVX with Mosek solver on a workstation
with Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 16GB
Memory, and Linux CentOS. We simulate for a horizon of
T = 12 time slots and the running times are summarized in
Table IV. The results show that the computation time of our
proposed VDS algorithm is about 4 times that of AARO for
both instances, and the computation time only doubles when
the system size increases from 30 to 118 buses. Hence, this
suggests that our proposed solution can potentially scale to
large systems, thanks to the fact that the proposed formulation
of VDS-RAC and VDS-ED are convex.

TABLE IV
THE RUNNING TIME COMPARISON OF VDS AND AARO

30-bus 118-bus
AARO-RAC 0.91 sec 1.72 sec
VDS-RAC 3.92 sec 8.40 sec

VI. CONCLUSION

We study online multi-stage decisions to ensure reliable
grid operations under high renewable uncertainty. Using the
concept of safe dispatch sets, we develop a computationally
efficient algorithm that can provably guarantee grid reliability.
Our proposed solution achieves a larger safe dispatch set
compared to state-of-the-art multi-stage grid operation based
on AARO policy [9]. Our simulation results show that our
VDS algorithm outperforms AARO in both RAC and real-
time dispatch.
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APPENDIX A
PROOF OF THEOREM 10

We use I to denote the set on the right-hand-side of (22).
The key in the proof is to design a causal real-time dispatch
algorithm π that is robust given D(1:t), starting from any
P(t) = (P v

slow(t), P v
fast(t)) within the set I . (Note that any

P(t) ∈ I can balance the demand D(t) at time t.) The detailed
causal real-time dispatch algorithm is constructed as follows:

Algorithm π: At any time slot t0 > t, pick an arbitrary
dispatch decision P v

slow(t0) ∈ h(D(1:t0))
⋂
C(P v

slow(t0 − 1)),
and set P v

fast(t0) = D(t0) − P v
slow(t0). Here, h(D(1:t0)) is

defined similarly to h(D(1:t)) as:

h(D(1:t0)) =

[
max

{
P eff-vmin

slow (t0),
T

max
t1=t0

γmin
t1 (D(1:t0))

}
,

min

{
P eff-vmax

slow (t0),
T

min
t1=t0

γmax
t1 (D(1:t0))

}]
; (27)

C(P v
slow(t0−1)) is the set of slow-generator output levels that

can be reached at time t0 from its output P v
slow(t0−1) at time

t0 − 1, which is defined similar to “C(P(t− 1))” in (11) as:

C(P v
slow(t0 − 1)) = {P v

slow(t0) : −Rvdown
slow (t0 − 1) ≤

P v
slow(t0)− P v

slow(t0 − 1) ≤ Rvup
slow(t0 − 1)}. (28)

In order to show that the above algorithm π is robust given
D(1:t) and P(t), we only need to show that we can always
find such P v

slow(t0) and P v
fast(t0) within their respective limits.

Thus, it suffices to prove the following three claims: As long
as the conditions (12)-(13),(16)-(18) hold, we must have

1) h(D(1:t0)) 6= ∅ for all t0 ≥ t.
2) P v

fast(t0) = D(t0)− P v
slow(t0) ∈ [−rv-

fast(t0), rv+
fast(t0)], for

all P v
fast(t0) ∈ h(D(1 : t0)).

3) h(D(1:t0))
⋂
C(P v

slow(t0 − 1)) 6= ∅ for all t0 > t.
Further, once we can show that Claim 1 and Claim 2 hold

for t0 ≥ t, if we let t0 = t, we immediately have I 6= ∅.
Theorem 10 then follows. In the following three subsections,
we will prove the above three claims.

A. Claim 1
h(D(1:t0)) 6= ∅ is equivalent to the four inequalities below:

1) P eff-vmin
slow (t0) ≤ P eff-vmax

slow (t0); (29)
2) P eff-vmin

slow (t0) ≤ γmax
t2 (D(1:t0)), for all t2 ≥ t0; (30)

3) γmin
t1 (D(1:t0))} ≤ P eff-vmax

slow (t0), for all t1 ≥ t0; (31)

4) γmin
t1 (D(1:t0))} ≤ γmax

t2 (D(1:t0)), for all t1, t2 ≥ t0, (32)

which follow from (12), (13), and (16)- (18), respectively. The
detailed proof is straightforward but lengthy, and is available
in our technical report [16].

B. Claim 2
Since P v

slow(t0) ∈ h(D(1:t0)), we must have that

γmin
t0 (D(1:t0)) ≤ P v

slow(t0) ≤ γmax
t0 (D(1:t0)).

Note that γmin
t0 (D(1:t0)) = D(t0) − rv+

fast(t0) and
γmax
t0 (D(1:t0)) = D(t0) + rv-

fast(t0), we then have
P v

fast(t0) = D(t0)− P v
slow(t0) ∈ [−rv-

fast(t0), rv+
fast(t0)].

C. Claim 3
In order to show that h(D(1:t0))

⋂
C(P v

slow(t0 − 1)) 6= ∅,
it suffices to show that the following two inequalities

max

{
P eff-vmin

slow (t0),
T

max
t1=t0

γmin
t1 (D(1:t0))

}
(33)

≤ P v
slow(t0 − 1) +Rvup

slow(t0 − 1), and

min

{
P eff-vmax

slow (t0),
T

min
t1=t0

γmax
t1 (D(1:t0))

}
(34)

≥ P v
slow(t0 − 1)−Rvdown

slow (t0 − 1).

hold for any P v
slow(t0−1) ∈ h(D(1:t0−1)). In the following,

we only prove (33), while (34) can be proved similarly. To
prove (33), it suffices to prove:

max

{
P eff-vmin

slow (t0),
T

max
t1=t0

γmin
t1 (D(1:t0))

}
−Rvup

slow(t0 − 1)

≤ max

{
P eff-vmin

slow (t0 − 1),
T

max
t1=t0−1

γmin
t1 (D(1:t0 − 1))

}
(35)

To prove (35), it suffices to prove the following inequalities:

P eff-vmin
slow (t0) ≤ P eff-vmin

slow (t0 − 1) +Rvup
slow(t0 − 1), (36)

γmin
t1 (D(1:t0)) ≤ γmin

t1 (D(1:t0 − 1)) +Rvup
slow(t0 − 1),

for all t1 ≥ t0. (37)

Eqn. (36) can be proved as follows:

RHS of (36) = max

{
max

t0−1<t′≤T
{P vmin

slow (t′)−
t′−1∑

s=t0−1
Rvup

slow(s)},

max
t≤t′≤t0−1

{P vmin
slow (t′)−

t0−2∑
s=t′

Rvdown
slow (s)}

}
+Rvup

slow(t0 − 1)

≥ max

{
max

t0−1<t′≤T
{P vmin

slow (t′)−
t′−1∑
s=t0

Rvup
slow(s)},

max
t≤t′≤t0−1

{P vmin
slow (t′)−

t0−1∑
s=t′

Rvdown
slow (s)}

}
= P eff-vmin

slow (t0)

(by simple algebra and Rvup
slow(t0 − 1), Rvdown

slow (t0 − 1) ≥ 0).
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Eqn. (37) can be proved as follows:

γmin
t1 (D(1:t0))

= max
D(t1)∈Dt1|D(1:t0)

{D(t1)} −
t1−1∑
s=t0

Rvup
slow(s)− rv+

fast(t1)

≤ max
D(t1)∈Dt1|D(1:t0−1)

{D(t1)} −
t1−1∑
s=t0

Rvup
slow(s)− rv+

fast(t1)

(since Dt1|D(1:t0) ⊂ Dt1|D(1:t0−1))

= γmin
t1 (D(1:t0 − 1)) +Rvup

slow(t0 − 1).

The result of the theorem then follows.
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