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Pulse+: DetNet Routing Under Delay-diff
Constraint

Shizhen Zhao, Ximeng Liu, Tianyu Zhu, Xinbing Wang

Abstract—Deterministic Networking (DetNet) is a rising tech-
nology that offers deterministic delay & jitter and extremely
low packet loss in large IP networks. To achieve determinism
under failure scenarios, DetNet requires finding at least two
paths with close end-to-end delay, i.e., a delay-diff constraint,
for mission-critical flows. However, how to find two routing
paths subject to the delay-diff constraint remains open. We
study the DetNet routing problem in two scenarios. First, given
a primary path, we propose Pulse+, which finds a secondary
path whose end-to-end delay is within a range determined by
the end-to-end delay of the primary path and the delay-diff
requirement. Second, we propose CoSE-Pulse+, which integrates
Pulse+ with a divide-and-conquer approach to find a pair of
paths that meet DetNet’s delay-diff constraint. Both Pulse+ and
CoSE-Pulse+ guarantee solution optimality. Notably, although
Pulse+ and CoSE-Pulse+ do not have a polynomial worst-case
time complexity, their empirical solver running time is better
than that of other algorithms. We evaluate Pulse+ and CoSE-
Pulse+ against the K-Shortest-Path and Lagrangian-dual based
algorithms using synthetic test cases generated over networks
with up to 10000 nodes. Both Pulse+ and CoSE-Pulse+ can solve
more test cases than other algorithms under a predefined time
limit. Compared to the second best algorithm, Pulse+ achieves
an average-time speedup of 5× and CoSE-Pulse+ achieves an
average-time speedup of 22×. Our code and test cases are
available at [1].

Index Terms—DetNet, Routing, Delay-diff, Bounded Jitter.

I. INTRODUCTION

Modern mission-critical real-time network applications, e.g.,
telesurgery [2], PLC remote control [3], etc., require bounded
end-to-end delay & jitter and extremely low packet loss rate
even under extreme scenarios with network failures. However,
existing internet is designed on a best-effort basis, and thus
may not be able to support such applications with stringent
Quality-of-Service (QoS) requirements. To deal with the above
challenges, DetNet Architecture [4] was proposed to offer
bounded delay and bounded delay jitter guarantee. DetNet
aims to achieve bounded delay through explicit routes, and
guards against network failures using service protection. How-
ever, it remains an open problem to find routing paths that meet
DetNet’s stringent delay requirements.

We briefly describe the routing requirements of DetNet as
follows. Shared risk link group (Srlg) is a widely adopted
concept to guard against network failures. An Srlg contains a
set of links that share a common physical resource (cable,
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conduit, node, etc.). An Srlg is typically considered as an
independent failure domain, and a failure of an Srlg will cause
all links in this Srlg to fail simultaneously. To achieve service
protection in DetNet, we need to find at least two paths that do
not share any Srlg. We focus on finding two paths in this paper.
With two paths, DetNet packets are replicated at the source
and then transmitted along both paths and finally de-duplicated
at the destination. To ensure deterministic delay under path
failures, the end-to-end delay of both paths cannot differ
too much. This introduces a delay-diff constraint to DetNet’s
routing problem. Unfortunately, existing routing algorithms
either do not support the delay-diff constraint or incur high
computational complexity.

We solve DetNet’s routing problem in two steps. First, given
a delay diff δ and a primary path with end-to-end delay d, we
solve the Delay-Range Constrained Routing (DRCR) problem
to find an Srlg-disjoint secondary path whose end-to-end delay
is within [d− δ, d+ δ]. Second, given a delay upper bound U
and a delay diff δ, we solve the Srlg-disjoint DRCR problem
to find two Srlg-disjoint paths at the same time such that both
paths’ end-to-end delays are no larger than U and their delay
diff is no larger than δ. Notably, both of the DRCR and the
Srlg-disjoint DRCR problems are NP-Complete.

The main challenges of the DRCR and the Srlg-disjoint
DRCR problems come from the delay lower bound introduced
by DetNet’s delay-diff requirement. If there were no delay
lower bound, the DRCR problem degenerates to the classical
Delay Constrained Routing (DCR) problem. Although the
DCR problem is NP-Complete [5], many algorithms have been
proposed to solve the DCR problem with efficacy and these
algorithms can be generally grouped into four categories: 1)
the K-Shortest-Path (KSP) approaches; 2) the Lagrangian-
dual approaches [5]–[7], 3) the dynamic programming ap-
proaches [6], [8]–[10] and 4) the Pulse approaches [11]–[13].
We tried to extend these approaches to handle the delay lower
bound. Unfortunately, both the KSP and the Lagrangian-dual
approaches may have to explore a large number of paths
before finding a valid path, and thus can be slow in practice;
the dynamic programming approaches cannot avoid routing
loops when a delay lower bound exists. The pulse approach is
promising, but if we directly apply it to the DRCR problem,
the optimal solution may be incorrectly skipped. The Srlg-
disjoint DRCR problem is even more difficult than the DRCR
problem. In addition to the challenges faced by the DRCR
problem, the Srlg-disjoint DRCR problem may also encounter
a “trap” problem, i.e., many paths found do not have an Srlg-
disjoint path. Although researchers have proposed “conflict
set” to solve the trap problem [14], [15], existing conflict-set
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solvers cannot handle delay constraints.
We propose Pulse+ and CoSE-Pulse+, to solve the DRCR

problem and the Srlg-disjoint DRCR problem with optimality
guarantee. The detailed contributions are as follows:
(1) For the DRCR problem, we propose Pulse+, the first Pulse-
like algorithm that handles delay lower-bound constraints.
Similar to Pulse, Pulse+ is a deep-first-search based path-
finding algorithm, with pruning strategies to improve search
efficiency. The novelties of Pulse+ are two folds: 1) we
show that the “dominance check” pruning strategy adopted
by the original Pulse is incompatible with the delay lower-
bound constraint, and then prove that after disabling this
pruning strategy, Pulse+ guarantees solution optimality; 2) we
mutate the deep-first-search order to “Large-Delay-First” and
show that the Large-Delay-First sorting strategy improves the
searching efficiency of Pulse+.
(2) For the Srlg-disjoint DRCR problem, we propose CoSE-
Pulse+, the first algorithm that finds two paths with similar
end-to-end delay. The key challenge of solving the Srlg-
disjoint DRCR problem is that many paths do not have an
Srlg-disjoint path with similar end-to-end delay and getting
“trapped” by these infeasible paths would dramatically in-
crease the solver running time. We solve the above challenges
from two aspects: 1) we adopt “conflict set” to overcome the
“trap” problem and propose the first conflict-set-finding algo-
rithm that can handle delay constraints, i.e., Conflict-Pulse+;
2) we develop a divide-and-conquer approach to ensure that
all possible paths are explored and prove that the resulting
CoSE-Pulse+ algorithm guarantees solution optimality.
(3) We generate synthetic test cases based on real Internet
topologies and randomly-generated topologies with up to
10000 nodes, and evaluate Pulse+ and CoSE-Pulse+ against
Delay-KSP, Cost-KSP and Lagrangian-KSP algorithms. Both
Pulse+ and CoSE-Pulse+ can solve more test cases than other
algorithms under a predefined time limit, and the completion-
rate improvement becomes more prominent as the network
size increases. Compared to the second best algorithm, Pulse+
achieves an average-time speedup of 5× and CoSE-Pulse+
achieves an average-time speedup of 22×.

II. BACKGROUND

In order to support time-sensitive applications in large IP
networks, DetNet was proposed to offer a strict guarantee on
end-to-end delay, delay jitter and packet loss [4]. Experimental
implementation has been conducted in two of China’s real
networks, including CENI and YZNET [3]. In this section,
we give an overview of DetNet’s design and pinpoint its
challenges.

A. Bounded Delay & Jitter with Explicit Routes

To avoid temporary interruptions caused by the convergence
of routing and bridging protocols, the RFC of DetNet suggests
establishing explicit routes for DetNet flows [4]. Explicit
routes can be established in various ways, e.g., with RSVP-
TE [16], with Segment Routing (SR) [17], via an SDN ap-
proach [18], etc. In order to meet DetNet’s QoS requirements,
for each explicit route, 1) the DetNet flows along this route

must be rate limited; 2) each node needs a finite buffer to
avoid packet loss, while guaranteeing finite latency at each
hop; 3) the end-to-end latency must be within a predefined
range. Rate limiting can be implemented using traffic policing.
There are also many buffer-management approaches, e.g.,
CQF [19], CSQF [20], etc., that offer deterministic latency
at each hop. However, how to find a path that meets a delay
range requirement remains open.

B. Low Packet Loss Upon Failures with Service Protection

Network failures are common and packet loss could severely
hurt the determinism of packet deliveries. DetNet proposes
Service Protection to mitigate or eliminate packet loss due
to network failures [4]. The simplest approach for Service
Protection is 1+1 path protection. In 1+1 protection, two paths
are used to route DetNet flow packets. At the source node,
there is a Packet Replication Function (PRF) that duplicates
the mission-critical packets onto two egress ports that forward
the packets to both paths. At the destination node, the received
packets are de-duplicated using a Packet Elimination Function
(PEF).

In order to guarantee reliable recovery in case of packet loss,
an efficient approach is to ensure that the delay diff between
the two paths is smaller than the smallest time gap between
adjacent packets (See Section 2.2 in [21] for the detailed
explanation). This approach could guarantee low delay diff
and in-order packet delivery even if one packet in the fast
path is lost. However, the main challenge is on the algorithm
side: finding two paths with similar end-to-end lantency.

Another approach to guarantee such packet-delivery deter-
minism is adding a Packet Re-ordering Function (PROF) at the
receiver side. The PROF would require additional buffering
to store the received packets and additional computation to
de-duplicate & re-order the recieved packets. However, this
approach will not only increase the implementation complex-
ity, but also hurt the end-to-end latency. In addition, having
an increased end-to-end latency can be detrimental to some
mission-critical applications, such as remote surgery.

III. MATHEMATICAL MODEL

We model a network using a directed graph G = (V,E),
where V is the set of nodes and E is the set of directed links.
Each directed link e ∈ E is associated with a delay d(e) and a
cost c(e). We use From(e) and To(e) to denote the two ends of
the link e. Given a source node s ∈ V and a destination node
t ∈ V, s ̸= t, a link sequence P = [e1, e2, ..., eh] is called
a path from s to t if and only if From(e1) = s,To(e1) =
From(e2), ...,To(eh−1) = From(eh),To(eh) = v. A path P is
called elementary if no vertex is repeated in the path. We
are interested in finding elementary paths to avoid routing
loops. (The IP based forwarding will fail if a path contains
a loop.) The delay and cost of a path P are denoted by
d(P ) =

∑
e∈P d(e) and c(P ) =

∑
e∈P c(e), respectively.

We use Shared risk link group (Srlg) to model network
failures. Let R be the set of Srlgs in the network G = (V,E).
Each Srlg r ∈ R contains a set of links that share a common
physical resource (cable, conduit, node, etc.). Thus, a failure
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of r will cause all links in this Srlg fail simultaneously. Each
link e ∈ E may belong to multiple Srlgs. We use Ω(e) ⊆ R
to denote the set of Srlgs that contain the link e. Then, for
each path P , Ω(P ) = ∪e∈PΩ(e) represents all the Srlgs
that contain at least one link in P . To guard against network
failures in DetNet, we study two problems as follows.
Delay-Range Constrained Routing (DRCR) Problem:
Given two distinct nodes s, t ∈ V and a delay range [L,U ],
find a min-cost path subject to the delay range constraint:

min
P

c(P ) =
∑
e∈P

c(e),

s.t. P is an elementary path from s to t,

L ≤ d(P ) =
∑
e∈P

d(e) ≤ U.

(1)

This formulation applies to the scenarios where we have a
primary path Pa and want to find an Srlg-disjoint path Pb with
end-to-end delay satisfying d(Pa) − δ ≤ d(Pb) ≤ d(Pa) + δ,
where δ is the maximum allowable delay diff. Such a formu-
lation was also adopted in [22].
Srlg-disjoint DRCR Problem: Given two distinct nodes
s, t ∈ V , a delay upper bound U and a delay diff δ, find
a pair of Srlg-disjoint primary and secondary paths such that
the primary path has the minimum cost and the delay diff of
the two paths does not exceed δ, i.e.,

min
Pa,Pb

c(Pa) =
∑
e∈Pa

c(e),

s.t. Pa, Pb are two elementary paths from s to t,
d(Pa) ≤ U, d(Pa)− δ ≤ d(Pb) ≤ min{U, d(Pa) + δ},
Ω(Pa) ∩ Ω(Pb) = ∅.

(2)
This formulation is used if we want to find the primary path
and the secondary path at the same time. Note that the delay-
diff constraints can be also formulated using integer linear
programming (ILP) [21]. However, the ILP-based formulation
incurs significant computational complexity and could only
handle very small network topologies.
Remark on the objective function of (2): In DetNet, there are
still many best effort packets, which can tolerate delay jitters
and packet loss. Since 1+1 protection is expensive as it doubles
the traffic in the network and introduces extra processing cost,
in practice 1+1 protection is only enabled for mission-critical
packets. As a result, the primary path is used all the time, while
the secondary path is only used for mission-critical packets.
Therefore, we decide to optimize the cost of the primary path,
rather than optimizing the sum cost of both paths.
Remark on the generality of finding Srlg-disjoint paths:
In some circumstances, one may care about finding link-
disjoint or node-disjoint paths instead of Srlg-disjoint paths.
We argue that finding link-disjoint or node-disjoint paths is
a special case of finding Srlg-disjoint paths. Specifically, if
every Srlg contains only one link, then finding Srlg-disjoint
paths degenerates to finding link-disjoint paths; if every node
in G, except the source node s and the destination node t,
corresponds to an Srlg, and each Srlg u ∈ V, u ̸= s, t contains

all the ingress and egress links of u, then finding Srlg-disjoint
paths degenerates to finding node-disjoint paths.
Remark on Algorithmic Complexity: Both the DRCR and
the Srlg-disjoint DRCR problems are NP-Complete. By set-
ting L = 0, the DRCR problem degenerates to the Delay
Constrained Routing (DCR) problem, which was proven to be
NP-Complete in [5]. Thus, the DRCR problem is also NP-
Complete. In addition, given a DCR problem instance, if we
create a side link e′ from s to t with d(e′) ≤ U and a large
c(e′) >

∑
e∈E c(e), let this link e′ form a separate Srlg, and

set δ = U , then this DCR problem instance will reduce to
an Srlg-disjoint DRCR problem instance. Therefore, the Srlg-
disjoint DRCR problem is also NP-Complete.

Since the DRCR and the Srlg-disjoint DRCR problems are
NP-Complete, it is impossible to design polynomial algorithms
unless P = NP . The objective of this paper is thus to design
computational efficient algorithms for these two problems, and
demonstrate that they are empirically efficient to support large
DetNets with thousands of nodes and links.

IV. ALGORITHM DESIGN PRINCIPLES

Due to the presence of the delay-diff constraint, there
exists no algorithm that meets the routing requirement of
DetNet. (See Section X for a more detailed literature review).
Fortunaltely, the exisiting literature could still offer some
insights and helps identify a few promising directions.

A. DRCR Problem

To the best of our knowledge, there exists only one pa-
per [22] that directly studied the DRCR problem. However, the
algorithm proposed in [22] is merely a heuristic solution with
no optimality guarantee. Nevertheless, if there were no lower-
bound constraint on the end-to-end delay, the DRCR problem
degenerates to the classical DCR problem1. Existing solutions
to the DCR problem can be grouped into 4 categories. We
examine these solutions one by one to identify promising
algorithm-design directions for the DRCR problem.
1) K-Shortest-Path (KSP) approaches [23]: The key idea
is to examine all the paths with cost ordered from low to
high, and the first path that meets the delay constraint gives
the optimal solution. This approach is efficient if the KSP
algorithm can terminate with a small k value. However, when
the delay bound is tight (i.e., U − L is small), finding a
path that meets the delay constraint may take a large number
of iterations, which makes the KSP algorithm prohibitively
expensive. (See Appendix B-A1 in our technical report [24].)
2) Lagrangian-dual approaches [5]–[7]: The key idea is
to run the KSP algorithm based on a combined weight
function wλ(e) = c(e) + λd(e), where c(e) and d(e) are
the delay and the cost of the link e. By properly choosing
λ, the Lagrangian-dual approach could dramatically reduce
the number of iterations required to find the optimal path.
The Lagrangian-dual approach is effective in dealing with the
delay upper bound. However, as we apply this approach to
handle delay lower bound in the DRCR problem, we may

1Also known as the Constrained Shortest Path (CSP) problem in literature.
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need to use a negative value for λ in certain cases. When λ is
negative, the weight function wλ(e) may become negative and
the KSP algorithm no longer applies. (See Appendix B-A2 in
our technical report [24].)
3) Dynamic programming approaches [6], [8]–[10]: For a
given destination node t, let ψ(u, T ) be the minimum cost of
all the paths from u to t whose end-to-end delay is no larger
than T . Then, ψ(u, T ) = mine=(u,v){ψ(v, T − d(e)) + c(e)}.
Then, starting from ψ(t, 0) = 0, we can compute each ψ(u, T )
and the corresponding min-cost path from u to t using dynamic
programming. When there is no delay lower bound, all the
min-cost paths found must be elementary, i.e., every node is
visited at most once. Otherwise, by removing a cycle from the
resulting path, a lower cost path can be found. Unfortunately,
when a delay lower-bound exists, such approaches cannot
guarantee the optimal path to be elementary. Hence, we decide
not to pursue this direction.
4) Pulse approaches [11]–[13]: These approaches use depth
first search or KSP search to find a solution to the DCR
problem, and adopts several pruning strategies to accelerate
the search. Such approaches are the most efficient in solving
the DCR problems among all the approaches. However, when a
delay lower bound exists, some pruning strategies in Pulse may
fail, which reduces the pruning efficiency. Nevertheless, Pulse
offers a promising framework for solving DRCR problems,
and the challenge is to develop new optimization techniques
to improve the pruning efficiency.

B. Srlg-disjoint DRCR Problem

To the best of our knowledge, finding Srlg-disjoint path
pairs with delay requirements has never been studied be-
fore. Nevertheless, if we remove the delay constraint, the
degenerated problem did receive much attention in the past
decades. We examine different solutions to find the promising
algorithm-design directions and identify the corresponding
challenges.
1) Primary-Path-First approaches [25], [26]: These ap-
proaches first compute a primary path without considering the
need to find a secondary path, and then try to find an Srlg-
disjoint path by removing those links affected by the primary
path. If there exists no Srlg-disjoint path, these approaches
may try a different primary path or stop based on certain
criterion. In this paper, we tried two such approaches, one
uses the KSP algorithm to find primary paths (see Appendix
B-A1 in our technical report [24]) and another one uses the
Lagrangian-dual algorithm to find primary paths. Despite of
the simplicity of these approaches, they may suffer from
the so-called trap problem [14], i.e., many primary paths do
not have an Srlg-disjoint path due to some special network
structure (see an example in Section VI-A) and blindly trying
different primary paths can be highly inefficient.
2) Conflict-Set based approaches [14], [15], [27]: The
concept of “conflict set” was proposed in [14] to solve the
trap problem. Given a primary path Pa, if there exists no Srlg-
disjoint path, one can always find a small Srlg set T ⊆ Ω(Pa),
such that every primary path whose Srlg set contains T does
not have an Srlg-disjoint path. This set T is called a “conflict

set”. If we could avoid finding primary paths whose Srlg
set contains a conflict set, then it would be much easier to
find an Srlg-disjoint path. Here, the key is to compute the
conflict set. Unfortunately, existing solutions [14], [15], [27]
only focused on the unconstrained routing scenarios without
delay constraints, and thus cannot be used to find conflict sets
for the Srlg-disjoint DRCR problem.

V. DRCR ALGORITHM

We propose Pulse+ to solve the DRCR problem in this
section. Let Pmin delay

s→t be the elementary path from s to t with
the minimum delay and let Pmin cost

s→t be the elementary path
from s to t with the minimum cost. Clearly, the end-to-end
delay of the first path is no larger than that of the second path,
i.e., d(Pmin delay

s→t ) ≤ d(Pmin cost
s→t ).

All the DRCR problems can be grouped into the following
six cases according to the relationship between the delay upper
bound U , delay lower bound L, the min-delay path’s delay
d(Pmin delay

s→t ) and the min-cost path’s delay d(Pmin cost
s→t ):

Case 1 (Infeasible):L ≤ U < d(Pmin delay
s→t ) ≤ d(Pmin cost

s→t ).
It is impossible to find a path with delay smaller than the
minimum delay d(Pmin delay

s→t ).
Case 2 (Degenerated Case): L ≤ d(Pmin delay

s→t ) ≤ U <
d(Pmin cost

s→t ). All paths can meet the delay lower bound. Thus,
the delay lower bound can be ignored and this case can be
solved by the original Pulse algorithm [11].
Case 3 (Trivial): L ≤ d(Pmin delay

s→t ) ≤ d(Pmin cost
s→t ) ≤ U . The

min-cost path Pmin cost
s→t is optimal.

Case 4 (Non-trivial): d(Pmin delay
s→t ) < L < U < d(Pmin cost

s→t ).
Case 5 (Trivial): d(Pmin delay

s→t ) < L < d(Pmin cost
s→t ) < U . The

min-cost path Pmin cost
s→t is optimal.

Case 6 (Non-trivial): d(Pmin delay
s→t ) < d(Pmin cost

s→t ) < L < U .

A. Review of the Pulse Algorithm

In Case 2, the DRCR problem degenerates to the Delay
Constrained Routing (DCR) problem:

min
P

c(P ) =
∑
e∈P

c(e) s.t. d(P ) =
∑
e∈P

d(e) ≤ U. (3)

The DCR problem has been studied in the literature. Among
all the algorithms proposed, Pulse [11] performs the best. The
pulse algorithm (see Algorithm 1) adopts a branch-and-bound
method to find the optimal solution of (3). It defines global
variables tmp min cost and P opt

s→t to track the best path found,
and then performs depth first search using a stack. In the depth
first search, lines 5-11 check the path found and update the best
path found so far; lines 12-14 adopt three pruning strategies
to cut some search branches; lines 15-17 iterate through all
the egress links of the node u and add the new branches
to the stack. The optimal path P opt

s→t must be an elementary
path. Otherwise, P opt

s→t will contain at least one cycle, and by
removing this cycle from P opt

s→t, we could obtain another path
with lower end-to-end cost.

We delve into the details of the three pruning strategies
below. The first strategy “d(Ps→u)+d(P

min delay
u→t ) > U” prunes

branches by feasibility. It indicates that it is impossible to
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Algorithm 1: Pulse Algorithm [11]
Data: A network G(V,E), a source node s, a

destination node t, and a delay upper bound U .
Result: The optimal path P opt

s→t from s to t.
1 Use tmp min and P opt

s→t to track the best path found.
Initialize tmp min = +∞.

2 Use a stack S to store all the branches to be explored.
Initialize S = {empty path}.
// Use deep first search to find P opt

s→t.
3 while S is not empty do
4 Let path Ps→u = S.pop(). Let u be the end node

of Ps→u. Set u = s if Ps→u is empty.
5 if u == t then
6 if d(Ps→u) ≤ U and c(Ps→u) < tmp min then
7 tmp min = c(Ps→u);

8 P opt
s→t = Ps→u;

9 end
10 continue;
11 end

// Cut branches when possible.

12 if d(Ps→u) + d(Pmin delay
u→t ) > U or

c(Ps→u) + c(Pmin cost
u→t ) ≥ tmp min or

CheckDominance(u, Ps→u) == true then
13 continue;
14 end

// Add new branches.
15 for every egress link e of the node u do
16 S.push(Ps→u ∪ {e});
17 end
18 end
19 return P opt

s→t;
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Figure 1. Illustration of Pulse-like Algorithms. The index on each link
indicates the search order.

obtain a path with end-to-end delay no larger than U through
this branch. The second strategy “c(Ps→u) + c(Pmin cost

u→t ) ≥
tmp min” prunes branches by optimality. It indicates that it
is impossible to obtain a path with lower cost through this
branch. The third strategy “CheckDominance(u, Ps→u) ==
true” prunes branches by dominance. Given two paths P 1

s→u,
P 2
s→u from s to u, P 1

s→u dominates P 2
s→u if and only if

d(P 1
s→u) ≤ d(P 2

s→u) and c(P 1
s→u) ≤ c(P 2

s→u). Then, if we
have searched the branch P 1

s→u, searching the branch P 2
s→u

cannot yield a better solution and thus can be skipped.
Illustration of Pulse-like Algorithms: The original Pulse
algorithm can be easily generalized to meet different routing
design objectives. Figure 1 illustrates the two key components
in the design of Pulse-like algorithms. First, we need to
determine a deep-first-search order for all the paths from the
source to the destination. With exhaustive deep-first-search,
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Figure 2. Dominance check is unsafe for DRCR.

the solution is guaranteed to be optimal. Second, we need to
find an efficient approach to cut a branch (path) as early as
possible to accelerate deep first search.

B. Pulse+: Handling the Delay Range

We propose Pulse+, an enhanced Pulse algorithm, to com-
pute the optimal solutions for the general DRCR problems.
In this section, we detail the key difficulties encountered and
the optimization techniques proposed for Pulse+. (We also
studied the KSP-based approach and the Lagrangian-Dual
based approach in this paper. Since these two approaches
are less efficient than Pulse+, we put the detailed design in
Appendix B-A of our technical report [24] for reference.)

1) Dominance Check is Unsafe: The efficiency of the
Pulse-like algorithms heavily relies on the pruning strategies.
The original Pulse algorithm adopts three pruning strategies,
i.e., “d(Ps→u)+d(P

min delay
u→t ) > U”, “c(Ps→u)+c(P

min cost
u→t ) ≥

tmp min” and “CheckDominance(u, Ps→u) == true”. The
first two pruning strategies are still valid, but the third one
may prune a branch incorrectly for the DRCR problem and
result in a sub-optimal solution.

We use two examples in Figure 2 to demonstrate the
incorrectness of the Dominance check strategy. In the two
examples, we need to find a min-cost path from A to E, such
that the end-to-end delay is 8 (or the delay range is [8, 8]).
Suppose that we have explored the branch P1 = A→ D → C,
and we are to examine the path P2 = A→ B → C. In Figure
2(a), d(P1) = 3 < 4 = d(P2), c(P1) = 3 < 4 = c(P2),
and thus P2 will be pruned by the dominance check. Clearly,
after pruning P2, we can no longer find a path from A to
E that meets the delay range constraint. Note that the path
A→ B → C → E meets the end-to-end delay requirement.

The example in Figure 2(a) hints us to modify the domi-
nance check as follows. Given two paths P 1

s→u, P
2
s→u from

s to u, P 1
s→u dominates P 2

s→u if and only if d(P 1
s→u) =

d(P 2
s→u) and c(P 1

s→u) ≤ c(P 2
s→u). Unfortunately, this modi-

fied dominance check is still incorrect. Consider the example
in Figure 2(b). Suppose that we are to examine P2 = A →
B → C after exploring P1 = A → D → C. Since
d(P1) = 4 = d(P2), c(P1) = 3 < 4 = c(P2), P2 will
be pruned by the dominance check, and then we can no
longer find the optimal solution A → B → C → D → E.
Apparently, this optimal solution is attained by concatenating
P2 and C → D → E. However, C → D → E cannot be
concatenated with P1 because the node D has already been
visited by P1.

Admittedly, if the two paths P 1
s→u and P 2

s→u con-
tain the same set of nodes and satisfy d(P 1

s→u) =
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Algorithm 2: Pulse+ Algorithm
Data: A network G(V,E), a source node s, a

destination node t, and a delay range [L,U ].
Result: The optimal path P opt

s→t from s to t.
1 Use tmp min and P opt

s→t to track the best path found.
Initialize tmp min = +∞.
// Sort egress links to accelerate

Pulse+.
2 For every node v ∈ V , sort all the egress links of v

from lowest to highest based on the weight
w(e) = d(e) + d(Pmin delay

To(e)→t ).
// Use depth first search to find

P opt
s→t.

3 Use a stack S to store all the branches to be explored.
Initialize S = {empty path}.

4 while S is not empty do
5 Let path Ps→u = S.pop(). Let u be the end node

of Ps→u. Set u = s if Ps→u is empty.
6 if u == t then

// Validate the path found.

7 if L ≤ d(Ps→u) ≤ U then
8 if c(Ps→u) < tmp min then
9 tmp min = c(Ps→u);

10 P opt
s→t = Ps→u;

11 end
12 end
13 continue;
14 end

// Cut branches when possible.

15 if Ps→u should be pruned then
16 continue;
17 end

// Add new branches.
18 for every egress link e of the node u do
19 if the node To(e) is not visited in Ps→u then
20 S.push(Ps→u ∪ {e});
21 end
22 end
23 end
24 return P opt

s→t;

d(P 2
s→u), c(P

1
s→u) ≤ c(P 2

s→u), then P 1
s→u will dominate

P 2
s→u. However, this pruning strategy requires memorizing

(delay, cost) pairs for all the visited node sets and the total
number of different node sets grows exponentially with respect
to the network size, making it scale poorly.

Based on the above considerations, we decide to remove the
“dominance check” pruning strategy in the Pulse+ algorithm.
Thus, the detailed pruning strategy of Pulse+ (see the box in
line 15 of Algorithm 2) becomes

d(Ps→u) + d(Pmin delay
u→t ) > U

or c(Ps→u) + c(Pmin cost
u→t ) ≥ tmp min

(4)
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Figure 3. LDF accelerates Pulse+ search.

2) Visited Node Tracking is Necessary: Unlike the DCR
problem, given a path Ps→t with duplicated nodes and L ≤
d(Ps→t) ≤ U , we cannot remove cycles from Ps→t to obtain
a lower-cost path, as the resulting path may violate the delay
lower bound. As a result, if we do not enforce that each node
can only be visited once, the resulting optimal path may not
be an elementary path. Take Figure 2(b) for example. If we
allow visiting a node more than once, the optimal solution
would be A → D → C → D → E, which has an end-
to-end cost of 7. In contrast, the optimal elementary path is
A→ B → C → D → E, which has an end-to-end cost of 8.
According to the above analysis, we decide to explicitly track
the visited nodes and make sure that no node is visited more
than once (see line 19 in Algorithm 2).

3) Largest-Delay-First Searching Strategy: Having re-
moved the “dominance check” pruning strategy, the pruning
efficiency can be impaired dramatically. We thus propose
the Largest-Delay-First (LDF) Searching strategy to improve
the pruning efficiency for Pulse+. At the beginning, since
tmp min = +∞, we can only rely on the feasibility pruning
strategy “d(Ps→u) + d(Pmin delay

u→t ) > U” to cut branches. The
LDF searching strategy explores egress links with higher end-
to-end delay to the destination (w(e) = d(e) + d(Pmin delay

To(e)→t ))
first. The high-priority branches in the Pulse+ search either
can be cut by the feasibility pruning strategy, or yield paths
with end-to-end delay close to the delay upper bound U . As
a result, the tmp min value can be effectively reduced in the
early stages of the Pulse+ DFS search, and then the opti-
mality pruning strategy “c(Ps→u) + c(Pmin cost

u→t ) ≥ tmp min”
becomes more effective. Note that we use a stack to perform
DFS, and a stack is last-in-first-out. Hence, to implement LDF,
we need to sort all the egress links of a node u ∈ V in an
increasing order of the end-to-end delay from a link e to the
destination node t (see line 2 in Algorithm 2).

We use a randomly selected test case to illustrate why LDF
searching strategy could accelerate Pulse+ search. This test
case is generated in a network with 4000 nodes and 99779
links. In order to quantify the progress of Pulse+ search, we
introduce a new concept called searching space size (S3) for
every partial path Ps→u in the stack S (see line 3 in Algorithm
2). The first partial path in S is an empty path. An empty
path means that Pulse+ needs to explore the whole searching
space. Therefore, we set S3(empty path) = 1. Every partial
path Ps→u may generate a number of sub-paths in lines 18-
21 of Algorithm 2. We set S3(Ps→u ∪ {e}) = S3(Ps→u)/n,
where n is the number of sub-paths of Ps→u. We say Ps→u
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Figure 4. Strategies to reduce the number of iterations.

is explored if and only if all of its sub-paths are explored. In
Figure 3(a), we plot the total searched space size of all the
explored partial paths versus the number of iterations of the
while loop (lines 4-23 in Algorithm 2). We can see that the
searched space size increases much faster after enabling the
LDF searching strategy. As a result, Pulse+ with LDF requires
fewer number of iterations to find the optimal solution (see
Figure 3(b)).

We generate DRCR test cases (see Section VII-A1), each
of which belongs to either Case 4 or Case 6. For each test
case, we record the number of iterations in Pulse+ search
and summarize the average value and the percentile values in
Figure 4. We can see that enabling LDF reduces the number
of iterations by about 40%.
Another approach to accelerate Pules+: LDF is not the only
approach to accelerate Pules+. In Appendix B-B of our techni-
cal report [24], we offer a joint-pruning approach, which could
achieve even higher pruning and searching efficiency than
LDF. However, the joint-pruning approach requires calculating
a cost function beforehand, which incurs significant overhead.
(For each test case, this overhead accounts for nearly 90%
of the total computation time.) After weighing the pros and
cons, we set LDF as the default search acceleration strategy
for Pulse+.

4) Algorithmic Complexity and Optimality Guarantee: The
algorithmic complexity of Pulse+ comes mainly from the
while loop (lines 3-18 in Algorithm 2). In each while loop, the
complexity of lines 4-14 is O(1) and the complexity of lines
15-17 is O(degmax), where degmax is the max node degree of
the network. Let Kpulse+ be the total number of iterations in
the while loop. Then the algorithmic complexity of Pulse+
is O(Kpulse+degmax). In theory, Kpulse+ grows exponentially
with respect to the network size. Nevertheless, thank to the
high pruning efficiency, the values of Kpulse+ do not grow that
fast in practice. We will numerically study Kpulse+ in Section
VII-B.

In addition, Theorem 1 guarantees the optimality of Pulse+.
Theorem 1: (See Appendix A-C for the proof) For any

DRCR problem instance, the solution generated by Pulse+
is optimal.

VI. SRLG-DISJOINT DRCR ALGORITHM

We propose CoSE-Pulse+, to solve the Srlg-disjoint DRCR
problem in this section. As discussed in Section IV-B, the
key to CoSE-Pulse+ is the design of a conflict-set finding
algorithm subject to delay constraints, which is described first
below.

A. Conflict-Pulse+: Find a Conflict Set

1) Why do We Need Conflict Sets?:
Definition 1: (Conflict Set) Given a path Pa, its conflict set

T is a subset of Ω(Pa) such that every path P whose Srlg set
Ω(P ) contains T cannot find an Srlg-disjoint path.

The concept of conflict (Srlg) set was proposed to solve
the ”trap” problem encountered in the link/Srlg-disjoint path
finding problems, especially when the delay diff is small
(which is common in DetNet). When trap happens, we get
”trapped” in an infeasible solution space and cannot step out
without tremendous searching.

A

ED

CB

F
(x, y)

x is delay 
y is cost 

link(1, 1)

(1, 1)

(1, 1)

(1, 1)
(1, 100)(1, 100)

A low-cost sub-network

High-cost links

Figure 5. The Trap Problem and the Conflict Srlg Set.

Figure 5 shows an example of the trap problem. In this
example, each Srlg only contains one link and thus we can use
a link to represent an Srlg. The objective is to find two Srlg-
disjoint paths from A to F such that the primary path attains
the minimum cost. One natural idea is to find a sequence of
primary paths with end-to-end cost sorted from low to high,
and test if it is possible to find an Srlg-disjoint path. However,
this approach can be extremely inefficient for the example in
Figure 5. Note that the links CD and BE have very high
cost, the low-cost paths from A to F would be of the form
A → D → E → F (D → E actually consists of multiple
links in the low-cost sub-network in Figure 5). However, none
of the paths of the form A→ D → E → F can find an Srlg-
disjoint path. In this example, we are ”trapped” in an infeasible
solution space and have to do many iterations to step out.

In Figure 5, the Srlg set {AD,EF} forms a conflict Srlg
set. No path containing {AD,EF} could find an Srlg-disjoint
path. Having found a number of Conflict (Srlg) Sets, if we
could avoid finding an primary path Pa such that Ω(Pa)
contains a conflict set, we could avoid the “trap” and
accelerate the search of a feasible pair of primary and
secondary paths.

2) How to Find a Conflict Set for an Active Path Pa?: The
problem of finding a conflict set has been studied in [14],
[15], [27]. However, their approaches cannot handle delay
constraints. Specifically, if a primary path Pa only has Srlg-
disjoint path, but this path violates the delay constraint, then
the existing conflict set finding algorithms in [14], [15], [27]
will fail to find a conflict set, because these algorithms could
incorrectly identify a Srlg-disjoint path for Pa.



8

According to Definition 1, given a conflict set T , if for every
Srlg r ∈ T , we disable all the links in r, then we cannot find
an Srlg-disjoint path for Pa. Based on this insight, we design
Conflict-Pulse+. Conflict-Pulse+ performs a pulse-like search
for a path that meets the delay constraints. Whenever a path
Ps→t is found, we pick an Srlg r ∈ Ω(Ps→t) ∩ Ω(Pa) and
disable all the links in r. After exploring all the searching
branches, all the chosen Srlgs form a conflict set. Due to space
constraint, we put the detailed design of Conflict-Pulse+ in
Appendix A-B.

B. CoSE-Pulse+: Solve Srlg-Disjoint DRCR
Based on the concept of the conflict (Srlg) set, we propose

CoSE (Conflict Srlg Exclusion)-Pulse+ to find Srlg-disjoint
paths with delay constraints. CoSE-Pulse+ adopts a similar
divide-and-conquer approach as CoSE [15]. The key differ-
ence is that CoSE uses the shortest path algorithms, e.g.,
Dijkstra [28], A∗ [29], etc., to compute primary/secondary
paths, while CoSE-Pulse+ uses variants of the Pulse+ algo-
rithm to compute primary/secondary paths that meet the delay
constraints and conflict sets to avoid the “trap” problem.

CoSE-Pulse+ defines a set of sub-problems I = (In,Ex),
where I.In is the set of Srlgs that must be included, and
I.Ex is the set of Srlgs that must be excluded (see line
1 in Algorithm 3). Then, the original problem is the sub-
problem I = {∅, ∅}. For each sub-problem I = (In,Ex),
CoSE-Pulse+ first uses AP-Pulse+ (this algorithm is similar
to Pulse+, and thus we put the details in Appendix A-A) to
find a primary path Pa such that d(Pa) ≤ U , I.In ⊆ Ω(Pa),
I.Ex ∩ Ω(Pa) = ∅, and Ω(Pa) does not contain any conflict
set found (see line 8 in Algorithm 3). If there exists an
Srlg-disjoint path Pb for Pa, CoSE-Pulse+ updates the best
path pair found so far. Otherwise, CoSE-Pulse+ computes a
conflict Srlg set T and uses this set to create new problem in-
stances (see lines 17-27 in Algorithm 3). More specifically, let
{r1, r2, ..., rN} be the set of Srlgs in T but not in I.In. Since
{r1, r2, ..., rN} ⊆ T ⊆ Ω(Pa) and I.Ex ∩ Ω(Pa) = ∅, we
must have I.Ex∩{r1, r2, ..., rN} = ∅. Then, we can divide the
sub-problem I = (In,Ex) into I1 = (I.In, I.Ex∪{r1}) and
I

′

1 = (I.In∪{r1}, I.Ex); I
′

1 can be further divided into I2 =
(I.In∪{r1}, I.Ex∪{r2}) and I

′

2 = (I.In∪{r1, r2}, I.Ex); I
′

2

can be further divided into I3 = (I.In∪{r1, r2}, I.Ex∪{r3})
and I

′

3 = (I.In ∪ {r1, r2, r3}, I.Ex); and so on. Note that
I

′

N = (I.In∪{r1, r2, ..., rN}, I.Ex) is an infeasible instance,
because the conflict set T ⊆ I

′

N .In. Hence, we obtain N
sub-instances I1, I2, ..., IN for the sub-problem I . Note that
there is a corner case where Conflict-Pulse+ fails to compute
a conflict set. In this case, we simply use a trivial conflict
set, which contains all the links of Pa (see line 22). After
exploring all the sub-problems in Q, CoSE-Pulse+ either finds
an optimal Srlg-disjoint path pair, or concludes that such an
Srlg-disjoint path pair does not exist.

1) Algorithmic Complexity and Optimality Guarantee: As
shown in Algorithm 3, for each problem instance, CoSE-
Pulse+ calls AP-Pulse+ in line 8, calls Pulse+ in line 12
and calls Conflict-Pulse+ in line 17. Let Kcose-pulse+ be the
total number of iterations of AP-Pulse+, Pulse+ and Conflict-
Pulse+ for all the problem instances. Then, the algorithmic

Algorithm 3: CoSE-Pulse+
Data: A network G(V,E), a source-destination pair

(s, t), a delay upper bound U and a delay diff δ.
Result: The optimal primary path P opt

a and an
Srlg-disjoint path Pb.

1 Introduce a special Srlg re = {e} for each link e.
2 Define a problem instance as I = (In,Ex), where

I.In is the set of Srlgs that must be included, and
I.Ex is the set of Srlgs that must be excluded.

3 Use T to denote the conflict sets found. Init T = ∅.
4 Define a problem instance queue Q. Init Q = {(∅, ∅)}.
5 Use tmp min and P opt

a to track the best primary path
found. Use P opt

b to track the secondary path. Init
tmp min = ∞.

6 while Q is not empty do
7 Let I = Q.pop();
8 Try using the AP-Pulse+ algorithm to find a

min-cost path Pa from s to t such that
d(Pa) ≤ U , I.In ⊆ Ω(Pa), I.Ex ∩ Ω(Pa) = ∅,
and T ⊊ Ω(Pa) for any T ∈ T .

9 if Pa is not found or c(Pa) ≥ tmp min then
10 continue;
11 end
12 Try using Pulse+ to find an Srlg-disjoint path Pb

from s to t such that Ω(Pa) ∩ Ω(Pb) = ∅ and
d(Pa)− δ ≤ d(Pb) ≤ min{U, d(Pa) + δ}.

13 if Pulse+ returns a feasible Srlg-disjoint path Pb

then
14 tmp min = c(Pa), P

opt
a = Pa, P

opt
b = Pb;

15 continue;
16 end
17 Use Conflict-Pulse+ to find a conflict set T for Pa.
18 if T is not empty then
19 Add T to T ;
20 Let {r1, ..., rN} be the Srlgs in T but not in

I.In;
21 else
22 Let {r1, ..., rN} = {re : e is a link of Pa};
23 end
24 for n = 1, 2, ..., N do
25 Construct a new problem instance

In = (I.In ∪ {r1, r2, ..., rn−1}, I.Ex ∪ {rn});
26 Q.push(In)
27 end
28 end
29 Return P opt

a and P opt
b .

complexity of CoSE-Pulse+ is O(Kcose-pulse+degmax). We will
numerically study Kcose-pulse+ in Section VII-B.

Theorem 2 guarantees the optimality of CoSE-Pulse+.

Theorem 2: (See Appendix A-D for the proof) For any Srlg-
Disjoint DRCR problem instance, the solution generated by
CoSE-Pulse+ is optimal.
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VII. EVALUATION

A. Generate Test Problem Instances

1) DRCR Cases:: We generate non-trivial DRCR test cases
(see Section V) below.
Generate Topologies: We do not find any open source data for
DetNet topologies. Although there are experimental deploy-
ments of DetNet in China’s CENI and YZNET networks, we
do not have the detailed topologies. In this paper, we use the
topologies in Topology Zoo [30], an ongoing project to collect
data network topologies from all over the world. Up to now,
Topology Zoo contains hundreds of different topologies, and
we pick 7 topologies (Cogentco, GtsCe, Interoute, Kdl, Pern,
TataNld and VtlWavenet2008) of different sizes with |V | =87-
754 for evaluation. These topologies contain hundreds of
nodes and links, which are similar in size to the CENI
network2.

CENI is just an experimental network in China. If DetNet
starts offering service to public customers, the scale of DetNet
will quickly increase. Indeed, there is a recent Internet Draft
discussing how to scale DetNet so that multiple domains can
be stitched to form a large DetNet [31]. In order to test the
performance of our algorithm in large scale networks, we
generate random topologies with different number of nodes
and different node degrees. The generated topologies have 6
different sizes: 1) |V | = 1000; 2) |V | = 2000; 3) |V | = 4000;
4) |V | = 6000; 5) |V | = 8000; 6) |V | = 10000. For
each size, the topologies have 3 different node degrees: 1)
degree = ln |V |; 2) degree = 2 ln |V | 3) degree = 3 ln |V |.
In order to reduce the randomness of the experimental results,
we generate 10 topologies for any given values of |V | and
degree.
Generate Source-destination Pairs and Delay Ranges: For
each topology, we randomly select a number of connected
source-destination pairs (s, t). For each pair (s, t), we use
Dijkstra algorithm to compute the min-delay path Pmin delay

s→t

and the min-cost path Pmin cost
s→t , and then assign different delay

ranges [L,U ] randomly to form problem instances that belong
to either of the two non-trivial cases. To meet DetNet’s routing
requirement, we set L ≈ 0.9U .

2) Srlg-Disjoint DRCR Cases:: We generate both trap cases
and non-trap cases below.
Generate Topologies: We use the topologies in DRCR for
the Srlg-disjoint DRCR problem and add Srlgs to the links.
We add Srlgs in two styles: the star style and the non-
star style [27]. The star style is generally applied in optical
networks while the non-star style can be used in other forms
of network, such as the overlay network. We adopt different
strategies to generate Srlgs of the two forms. For the star style,
we randomly select the egress links of a node to be in a Srlg
and the size of a Srlg is randomly determined based on the
average degree of the topology. For the non-star style, we
randomly select links in all the links to be in a srlg until every
link is in at least one Srlg. The size of each Srlg is a random
number in a given range, e.g. [1, 40] in our implementation.

2CENI contains 88 backbone network nodes, 133 edge network test nodes,
and four cloud data centers [3].

Generate Source-destinations Pairs and Delay Ranges: For
each topology, we randomly select a number of connected
source-destination pairs (s, t). For each pair (s, t), we use the
Dijkstra algorithm to compute the min-delay path Pmin delay

s→t ,
and assign the delay upper bound as U = 2.5d(Pmin delay

s→t ).
Then we use CoSE-Pulse+ to test whether the test instance has
a feasible solution (Other algorithms, such as KSP, may run
indefinitely when a problem instance does not have a feasible
solution.) and classify the test cases into trap and non-trap
scenarios.
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Figure 6. Trap Probability in Srlg-disjoint DRCR.

Trap problem in Srlg-disjoint DRCR. We conduct exper-
iments to test the probability of encountering traps in the
Srlg-Disjoint DRCR problems. As shown in Figure 6, the
trap probability increases as the delay diff decreases. Recall
from Section II-B that the primary and secondary paths in
DetNet cannot have a large delay diff; otherwise the PEF may
not guarantee deterministic delay in case of network failures.
In our evaluation of Srlg-Disjoint DRCR problems, we set
the delay diff of each flow as 1ms and the end-to-end delay
upper bound in the range of [50ms, 200ms]. In this case, about
10% of all test cases encounter trap problem. We will evaluate
different algorithms for both the trap and the non-trap cases.

B. Solving DRCR Problems

We compare Pulse+ with another three algorithms designed
for the DRCR problem: 1) Cost-based KSP (see Appendix B-
A1 in our technical report [24]), 2) Lagrangian-Dual based
KSP (see Appendix B-A2 in our technical report [24]) and
3) Delay-based KSP (see Appendix B-A1 in our technical
report [24]). We have tried our best to optimize the code for
all these algorithms to improve efficiency. For example, we
have adopted the A* algorithm to accelerate the shortest path
search, which benefits all the KSP-based algorithms (see our
source code in [1] for details). We use these these algorithms
to solve all the problem instances. All experiments use a
single thread of the AMD Ryzen 5600 @3.60GHz CPU on
an Ubuntu workstation. Note that different test cases have
different running times. Here, we calculate the percentile
values and summarize the results in Figure 7. We can see that
Pulse+ can finish all the test cases within 200 milliseconds,
while other algorithms cannot with a time limit of 10 seconds
(LagrangianKsp, CostKsp, DelayKsp achieve completion rates
of 95%, 75%, and 24% respectively). In Figure 9(a), we
summarize the completion rate versus the network size for
all the algorithms. Compared to CostKsp and DelayKsp, we
can see that as the network size increases, the advantage
of Pulse+ becomes more evident than other algorithms. For
LagrangianKsp, the completion rate only decreases slightly
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Figure 7. Percentile Values of the Solver Running Time for DRCR problems
(µs).

with respect to the network size. However, the tail solver run-
ning time of LagrangianKsp is much higher than Pulse+. For
each algorithm, we calculate the average solver running time
(excluding the problem instances that cannot be solved in 10
seconds) as below: Pulse+ takes 10ms, LagrangianKsp takes
53ms, CostKsp takes 227ms, and DelayKsp takes 429ms.

Why Pulse+ Perform Better? According to Section
V-B4 and Appendix B-A2 of our technical report [24],
the algorithmic complexities of Pulse+, DelayKSP,
CostKSP and LagrangianKsp are O(Kpulse+degmax),
O(Kdelay-kspNHmax(log |V |+degmax)), O(Kcost-kspNHmax(log
|V | + degmax)) and O(KlagNHmax(log |V | + degmax)),
respectively. Here |V | is the network size and Hmax is
the number of hops of the longest path from source to
destination. We numerically evaluate all the K’s in Figure
10(a). Statistically speaking, Klag is smaller than Kdelay-ksp+
and Kcost-ksp+. This explains why LagrangianKsp performs
better than DelayKSP and CostKSP. For Pulse+, the
polynomial part degmax is much smaller than the polynomial
part NHmax(log |V | + degmax) of LagrangianKsp, while
the median value of Kpulse+ is about 2-3 orders larger
than that of Klag. This explains why the median solver
running time of Pulse+ is similar to that of LagrangianKsp
(see Figure 7). In addition, the tail of Klag is larger than
Kpulse+, which explains why the tail solver running time
of LagrangianKsp is much larger. In the worst case, both
Pulse+ and LagrangianKsp need to explore all the paths
from the source to the destination. Fortunately, the overhead
of exploring a path in Pulse+ is much smaller than that in
LagrangianKsp, because Pulse+ does not need to sort the
paths. This could be another reason that Pulse+ runs faster
than LagrangianKsp in the worst case.

In the above evaluation, all the algorithms are actually
proposed by ourselves. In the literature, there is indeed an
algorithm proposed by Celso that aims at solving the DRCR
problem [22]. However, Celso’s algorithm cannot guarantee
optimality. We test Celso’s algorithm on the 7 topologies
chosen from the Zoo dataset. As shown in Table I, we can
see that Celso’s algorithm yields sub-optimal solutions for a
majority of the test cases. (Celso’s algorithm achieves 100%
accuracy in the Pern topology. The reason is that the Pern
topology only contains 4 loops and is much simpler than other
topologies.) Moreover, the solver running of Celso’s algorithm
is over 100× longer than that of Pulse+. Therefore, Pulse+ is
better than Celso’s algorithm in terms of both optimality and
solver running time.

Topology Cogentco GtsCe Interoute Kdl Pern TataNld VtlWavenet2008
Accuracy of Celso 75/740 128/1344 107/408 38/1012 88/88 78/410 6/12

Average solving time of Celso (µs) 13227.01 11715.26 11329.48 75008.63 9281.61 13845.19 9487.25
Average solving time of Pulse+ (µs) 80.39 77.04 62.1 218.82 59.73 66.18 41.75

Table I
COMPARISON OF PULSE+ AND CELSO’S ALGORITHM.
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Figure 8. Percentile Values of the Solver Running Time for Srlg-disjoint
DRCR problems (µs).

C. Solving Srlg-disjoint DRCR Problems

We compare CoSE-Pulse+, Cost-KSP, Lagrangian-KSP
(Algorithm 8 in Appendix B-A2 of our technical report [24])
and Delay-KSP. Again, we set a time limit of 10 seconds for
each problem instance. The experiment results are summarized
in Figure 8 and Figure 9(b). CoSE-Pulse+ successfully solves
all the test cases within 10 seconds. In contrast, the overall
completion rates of LagrangianKsp, CostKsp, and DelayKsp
are only 77%, 53%, and 39%, respectively. Moreover, as the
network scale increased, the completion rates also decrease.
For each algorithm, the average solver running time (excluding
the problem instances that cannot be solved in 10 seconds) is
summarized below: CoSE-Pulse+ takes 28ms, LagrangianKsp
takes 630ms, CostKsp takes 867ms, and DelayKsp takes
1490ms.
Why CoSE-Pulse+ Perform Better? According to
Section VI-B1 and Appendix B-A2 of our technical
report [24], the algorithmic complexities of CoSE-
Pulse+ and LagrangianKsp are O(Kcose-pulse+degmax)
and O(KlagNHmax(log |V |+degmax)). From Figure 10(b), we
can see that the median values of Kcose-pulse+ and Klag are on
the same order and the tail of Kcose-pulse+ is much smaller. In
addition, the polynomial part degmax of CoSE-Pulse+ is much
smaller than the polynomial part NHmax(log |V | + degmax)
of LagrangianKsp. Therefore, CoSE-Pulse+ runs much faster
than LagrangianKsp, as depicted in Figure 8.

D. Memory Consumption of Pulse+ and CoSE-Pulse+

In Pulse+, we use a stack S to store all the branches to be
explored (see line 3 in Algorithm 2). The number of branches
to be explored can be huge. Thus, readers may worry about
the memory consumption of Pulse+ and CoSE-Pulse+.

We evaluate the memory consumption of Pulse+ and CoSE-
Pulse+ for all the test cases generated in Section VII-A.
For each topology size, we average over all the test cases
to obtain the average memory consumption of Pulse+ and
CoSE-Pulse+. As shown in Figure VII-D, the average memory
consumption of Pulse+ and CoSE-Pulse+ is under 100 MB,
which is acceptable for today’s computers. Note that, Pulse+
and CoSE-Pulse+ can be also implemented using recursive
calls. However, the overhead of recursive calls would be much
higher. That is why we use a stack to eliminate recursion.
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Figure 9. Completion rates of different algorithms. The time limit is 10
seconds for each test case.

100 101 102 103 104 105 106 107

Iteration Number

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Pulse+
CostKsp

DelayKsp
LagrangianKsp

(a) CDFs of Kpulse+, Kdelay-ksp+,
Kcost-ksp+ and Klag for the DRCR
problem.

101 103 105 107 109

Iteration Number

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Cose-Pulse+
CostKsp

DelayKsp
LagrangianKsp

(b) CDFs of Kcose-pulse+,
Kdelay-ksp+, Kcost-ksp+ and
Klag for the Srlg-disjoint DRCR
problem.

Figure 10. Compare the total number of iterations.

E. Computing DetNet Routing Paths in Batches

In the previous sections, we evaluate the solver running time
for one request at a time. In practice, multiple DetNet flows
may arrive roughly at the same time and are processed in one
batch. The DetNet controller should be able to compute paths
for all the DetNet flows in a short time.

We perform a batch test for different solvers. First, we
generate three 1000-node topologies using the same approach
in Section VII-A. Then, for each topology, we randomly
generate 50 DetNet flows for both the DRCR problem and
the Srlg-disjoint DRCR problem. For each DetNet flow, we set
a limit of 10 seconds. If a solver cannot compute a solution
for a DetNet flow within 10 seconds, it will skip this flow.
After finishing all the 50 test cases, we record the total solving
time and the completion rate for each solver. The batch test
is repeated 3 times, each with a different topology, and the
results are averaged over the 3 runs. As shown in Figure VII-E,
Pulse+ and CoSE-Pulse+ can finish all the test cases with the
least amount of time, with over 10× speedup compared to the
second best algorithm.

VIII. DO WE REALLY NEED DETNET?

Applications like telesurgery [2], PLC remote control [3],
etc., require deterministic end-to-end delay. However, is Det-
Net the only choice to achieve deterministic delay? Currently,
DetNet is just a Proposed Standard [4]. (According to RFC
6410 [32], two separate implementations and widespread use
are required to advance an RFC from Proposed Standard
to Internet Standard.) In contrast, current Internet already
supports priority queuing. If we assign the highest priority
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Figure 11. Memory consumption of Pulse+ and CoSE-Pulse+.
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Figure 12. Batch test for DRCR and Srlg-disjoint DRCR.

to mission-critical flows, can we also achieve deterministic
delay?

To answer this question, we perform packet-level simula-
tions. We implement DetNet routing, including the Pulse+
routing algorithm, on top of NetBench [33]. The network
topology is one of the generated topology described in Section
VII, consisting of 1000 nodes and 6998 directed edges. Each
edge has a propagation delay of 1-100µs and a bandwidth
of 100Gbps. The network has a total of 10,000 flows, with
10000p DetNet flows and 10000(1 − p) best-effort flows
(0 < p < 1). For DetNet, each switch port contains mul-
tiple gate-controlled queues and a regular queue. The gate-
controlled queues are used to handle DetNet flows, while
the regular queue is used for best-effort flows. The gate-
controlled queues open in a round-robin fashion. In each
switch cycle, only one gate-controlled queue is open. Each
cycle lasts 2.4µs, being able to transmit 20 1500-byte packets
in one cycle. To achieve deterministic delay, we specify the
queue each DetNet flow needs to enter at each switch and
ensure that all the packets in the open gate-controlled queue
can be transmitted within one cycle by proper rate limiting.
To avoid link under utilization, when an open gate-controlled
queue finishes transmitting all its packets, the packets in the
regular best-effort queue can be transmitted. For DetNet flows,
packets are generated periodically, and the Pulse+ algorithm
is used to generate paths for each DetNet flow. For best-effort
flows, shortest paths are adopted and TCP Reno is used for
congestion control.

We compare the above “DetNet with Pulse+” setting with
two other settings under the same topology and the same
number of delay-sensitive and best-effort flows.

1) “DetNet with ShortestPath”: All the flows take the
shortest paths.

2) “PriorityQueue with ShortestPath”: All the flows take
the shortest paths. Each switch port contains a high-
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Figure 13. Comparing the normalized packet delay under differnet queueing
and routing policies.

priority queue and a low-priority queue; DetNet flows
enter the high-priority queue, while best-effort flows
enter the low-priority queue.

We plot the CDF (cumulative distribution function) of the
normalized end-to-end packet delays (the end-to-end packet
delay divide the delay upper bound) for all the delay-sensitive
flows in Figure 13. It can be observed that DetNet can
indeed guarantee deterministic delay for delay-sensitive flows.
In contrast, some packets could miss its deadline under the
priority queue scheme, i.e., the normalized end-to-end delay
could be large than 1. In addition, when shortest path routing
is used with DetNet, the end-to-end delay upperbound can
be met. However, 1) many packets may arrive early, which
could hurt network determinism and more importantly, 2) the
shortest path routing has lower path diversity and thus cannot
support as many DetNet flows as Pulse+.

IX. DISCUSSION ON DETNET

Is it practical to obtain global topology information? As
mentioned in RFC 8655 [4], DetNet is designed for networks
that are under a single administrative control or within a closed
group of administrative control. This allows DetNet to obtain
global network information and use Pulse+ or CoSE-Pulse+
to compute routing solutions. Such a centralized control can
be realized using SDN technologies [34].
How to handle network changes? For sudden network
changes such as link failures, node failures, etc., 1+1 pro-
tection can be used to mitigate the impact of failures. If the
network changes is not transient, DetNet will resort to the
central controller to recompute a pair of paths using Pulse+
and CoSE-Pulse+.
How to determine the delay requirements for DetNet flows?
The actual end-to-end delay requirements are determined by
the applications, rather than the network. Given an infeasible
delay requirement, the DetNet controller is responsible to
notify the application. The application can make decisions on
whether to relax the end-to-end delay requirements or cancel
the flow.
How to schedule transmission cycles for DetNet flows?
After obtaining the routing paths for each DetNet flow, we
could use a central controller to schedule transmission cycles
following the design principles below. The packets allocated
to each cycle at each output interface cannot exceed the
maximum number of packets that can be sent in a cycle.
Otherwise, contention and deadline miss may happen. This

requirement also enforces each DetNet flow to regulate its
traffic using certain rate limiting and shaping functions [4].
How to improve DetNet flow’s admission rate? As the
number of admitted DetNet flows increases, some links may
not have sufficient resources to schedule additional DetNet
flows. In this case, we could increase the cost of the congested
links. Then, CoSE-Pulse+ or Pulse+ will avoid these links.
This simple scheme could achieve better load balance and
increase DetNet flow’s admission rate.
How to avoid link under-utilization? DetNet flows reserve
transmission cycles to achieve deterministic delay and jitter.
Due to the rate fluctuation, some cycles may not have enough
DetNet packets to send. In this case, best-effort packets can
be transmitted.

X. RELATED WORK ON DETNET ROUTING

Pulse+ and CoSE-Pulse+ meet all the routing requirements
of DetNet flows in large networks with thousands of nodes
and links. To the best of our knowledge, none of the existing
solutions could achieve this objective.

Most works on DetNet routing and scheduling did not
account for network failures [35]–[40]. The RFC standard
of DetNet proposed using multiple paths to protect against
network failures [4]. A recent paper [21] formulated the
primary/secondary path finding problem using integer pro-
gramming, but the computational complexity is too high.

From the pure algorithm design’s point of view, the
link/Srlg-disjoint path finding problems have been studied with
an objective to minimize 1) the sum cost of both paths [41]–
[44] or 2) the min cost of the two paths [14], [15], [25]–
[27], [45]. However, none of these works could handle delay
constraints.

The DRCR problem arises as a sub-problem of the Srlg-
disjoint DRCR problem. Due to the delay diff requirement,
a delay lower bound is imposed. Most existing literature
on delay constrained routing does not account for the delay
lower bound constraints [5], [7]–[13]. Although the algorithm
proposed in [22] directly handles delay lower bounds, it cannot
guarantee optimality.

The DRCR problem is similar to another line of research
works [46]–[49], i.e., the Vehicle Routing Problem with Time
Windows (VRPTW). Given a graph G(V,E), each link e ∈ E
is associated with a delay-cost pair (d(e), c(e)) and each
node v ∈ V is associated with a time window [Lv, Uv].
The objective is to deliver a service from s to t, such that
the delivery time is in [Lt, Ut]. Note that the service in the
VRPTW problem is allowed to arrive at a node v earlier than
Lv and then wait until Lv to start its next delivery. In contrast,
our DRCR problem does not allow early arrival. In DetNet,
network switches may not have enough memory to buffer the
early-arrival packets.

XI. CONCLUSION

DetNet introduces stringent routing requirements to achieve
deterministic end-to-end delay under both normal and failure
scenarios. We propose Pulse+ and CoSE-Pulse+ to solve
DetNet’s routing challenges. Pulse+ and CoSE-Pulse+ not
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only have theoretical optimality guarantee, but also exhibit
lower algorithmic complexity compared to other algorithms.
Pulse+ and CoSE-Pulse+ make it possible to achieve fast
routing computation in large-scale DetNets with thousands of
nodes and links.

APPENDIX A
A. AP-Pulse+: Active Path Search

Given a sub-problem instance I = (In,Ex) and a set T of
conflict Srlg sets, we use AP-Pulse+ to search for the min-
cost primary path Pa that satisfies the following constraints
(see line 7 in Algorithm 3):

1) No Srlg in I.Ex is included in Ω(Pa): I.Ex∩Ω(Pa) =
∅;

2) Delay constraint: d(Pa) ≤ U ;
3) All the Srlgs in I.In must be in Ω(Pa): I.In ⊆ Ω(Pa);
4) For every conflict Srlg set T ∈ T , T ⊊ Ω(Pa).
To obtain AP-Pulse+, we modify Pulse+ as follows:
1) Preparation stage: For every Srlg r ∈ I.Ex, disable all

the links contained in the Srlg r. This step ensures that
the constraint (1) is met, i.e., I.Ex ∩ Ω(Pa) = ∅.

2) Path validation (the box in line 7 of Algorithm 2):

d(Ps→t) ≤ U and I.In ⊆ Ω(Ps→t) and
T ⊊ Ω(Ps→t) for any T ∈ T .

(5)

This step ensures that the constraints (2)-(4) are met.
3) Prune strategy (the box in line 15 of Algorithm 2):

d(Ps→u) + d(Pmin delay
u→t ) > U

or c(Ps→u) + c(Pmin cost
u→t ) ≥ tmp min

or ∃T ∈ T such that T ⊆ Ω(Ps→u).

(6)

Compared to the original pruning strategy (4), the above
pruning strategy introduces the “conflict check”: If a
branch Ps→u contains a conflict Srlg set, then this
branch is skipped.

B. Conflict-Pulse+

The detailed algorithm of Conflict-Pulse+ is shown in
Algorithm 4. In Conflict-Pulse+, the conflict Srlg set T is
initialized as an empty set (see line 1). When Conflict-Pulse+
finds a path Ps→t satisfying d(Ps→t) ≤ U , it checks if this
path Ps→t is an Srlg-disjoint path of Pa. If it is, then Conflict-
Pulse+ fails to find a conflict set (see lines 10-12); otherwise,
Conflict-Pulse+ picks an Srlg r ∈ Ω(Ps→t) ∩ Ω(Pa), disable
all the links in r and insert r to T (see lines 13-15). Note
that, when Conflict-Pulse+ generates new searching branches,
only active egress links are explored (see lines 22-26). When
Conflict-Pulse+ encounters a branch with disabled links, it
will directly cut this branch (see lines 5-7). If Conflict-Pulse+
can reach line 28, then the resulting Srlg set T is a conflict
Srlg set. This is guaranteed by the following theorem.

Theorem 3: Given a primary path Pa, if Algorithm 4 reaches
line 28, the resulting set T must be a conflict set.

Proof 1: Since every Srlg r ∈ T is chosen within the set
Ω(Pa), we must have T ⊆ Ω(Pa). We next show that every

Algorithm 4: Conflict-Pulse+
Data: A network G(V,E), a source-destination pair

(s, t), a delay upper bound U and a path Pa.
Result: A conflict Srlg set T .

1 Initialize the conflict Srlg set T = ∅.
// Perform deep first search.

2 Use a stack S to store all the branches to be explored.
Initialize S = {empty path}.

3 while S is not empty do
4 Let path Ps→u = S.pop(). Let u be the end node

of Ps→u. Set u = s if Ps→u is empty.
5 if there exists a disabled link in Ps→u then
6 continue;
7 end
8 if u == t then

// Validate the path found.
9 if d(Ps→u) ≤ U then

10 if Ω(Ps→u) ∩ Ω(Pa) = ∅ then
// Fail to find a conflict

set.
11 return an empty set;
12 end
13 Pick an Srlg r ∈ Ω(Ps→u) ∩ Ω(Pa) such

that r contains the largest number of links.
14 Disable all the links in the Srlg r.
15 T.insert(r);
16 end
17 continue;
18 end

// Cut branches when possible.

19 if d(Ps→u) + d(Pmin delay
u→t ) > U then

20 continue;
21 end

// Add new branches.
22 for every egress active link e of the node u do
23 if the node To(e) is not visited in Ps→u then
24 S.push(Ps→u ∪ {e});
25 end
26 end
27 end
28 return the conflict set T ;

path P satisfying T ⊆ Ω(P ) does not have an Srlg-disjoint
path that meets the delay-range requirement, i.e., T is a conflict
set.

We prove by contradiction. Suppose that P ′
a is a path

satisfying T ⊆ Ω(P ′
a) and P ′

b is an Srlg-disjoint path of P ′
a

that meets the delay requirement. Clearly, T ∩ Ω(P ′
b) = ∅.

Consider the searching branch that yields the path P ′
b in

Algorithm 4. This branch must be able to reach its final stage
(lines 10-15). According to Algorithm 4, a branch can be only
cut in two places: lines 5-7 and lines 19-21. First, P ′

b does not
contain any link e such that e belongs to an Srlg in T . Hence,
the searching branch of P ′

b cannot be cut at lines 5-7. Second,
d(P ′

b) ≤ U . Thus, the branch of P ′
b cannot be cut at lines

19-21, either.
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When the P ′
b branch reaches the final stage, it will not enter

line 11; otherwise Algorithm 4 will fail to return a conflict set.
Then, at line 13, an Srlg r ∈ Ω(P ′

b)∩Ω(Pa) will be chosen and
added to T . This contradicts to the fact that T ∩ Ω(P ′

b) = ∅.
Hence, T must be a conflict set.
Remark: From the above proof, we can see that the Srlg
selection strategy in line 13 of Algorithm 4 is not critical for
the correctness of Theorem 3. We pick the srlg that contains
the largest number of links, because this choice could generate
a relatively small conflict set.

C. Proof of Theorem 1
Proof 2: We prove by contradiction. Suppose that the

solution P opt
s→t returned by Pulse+ is not optimal. Then, there

must exist another path P satisfying L ≤ d(P ) ≤ U , such
that c(P ) < c(P opt

s→t). Consider the searching branch along
the path P . At every intermediate node u of the path P ,
we must have d(Ps→u) + d(Pmin delay

u→t ) ≤ d(P ) ≤ U and
c(Ps→u) + c(Pmin cost

u→t ) ≤ c(P ) < c(P opt
s→t) ≤ tmp min.

Hence, it is not possible to prune the path P ’s branch based
on the strategies in (4). Hence, Pulse+ should be able to
find a solution with cost no more than c(P ). This leads to
a contradiction.

D. Proof of Theorem 2
Proof 3: We prove by contradiction. Suppose that the

solution (P opt
a , P opt

b ) returned by CoSE-Pulse+ is not optimal.
Then, there must exist another pair of Srlg-disjoint path
(Pa, Pb) satisfying d(Pa) ≤ U and d(Pa) − δ ≤ d(Pb) ≤
min{U, d(Pa) + δ}, such that c(Pa) < c(P opt

a ). Since Pa has
an Srlg-disjoint path, for every conflict set T found in CoSE-
Pulse+, we must have T ⊊ Ω(Pa).

We have assumed that CoSE-Pulse+ terminates with a
solution. Then, the total number of problem instances explored
by CoSE-Pulse+ must be finite. We denote the set of explored
problem instances by I. Let I(Pa) ⊆ I be the set of I’s such
that I.In ⊆ Ω(Pa), I.Ex ∩ Ω(Pa) = ∅. Clearly, I(Pa) is not
empty because (∅, ∅) ∈ I(Pa). Within I(Pa), there must be an
I ′ ∈ I(Pa) such that for every I ∈ I(Pa) and I ̸= I ′, I ′.In is
not contained in I.In. Consider the problem instance I ′. Let
P ′
a be the AP-Pulse+ solution of I ′. Since Pa satisfies all the

requirements of I ′, we must have c(P ′
a) ≤ c(Pa) < c(P opt

a ).
In addition, P ′

a does not have an Srlg-disjoint path; otherwise,
P opt
a would not be the optimal solution. Consider line 20 and

line 22 of the CoSE-Pulse+ algorithm. Since T ⊊ Ω(Pa)
and Pa ̸= P ′

a, there must exist a k ∈ {1, ..., N} such that
{r1, ..., rk−1} ⊆ Ω(Pa) and rk /∈ Ω(Pa). According to lines
24-26 of the CoSE-Pulse+ algorithm, a new problem instance
I ′k = (I ′.In∪{r1, ..., rk−1}, I ′.Ex∪{rk}) will be generated.
It is easy to verify that I ′k ∈ I(Pa) and I ′.In ⊆ I ′k.In. This
contradicts to the choice of I ′.
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[37] N. G. Nayak, F. Dürr, and K. Rothermel, “Routing algorithms for
ieee802.1qbv networks,” SIGBED Rev., vol. 15, no. 3, aug 2018.

[38] E. Schweissguth, D. Timmermann, H. Parzyjegla, P. Danielis, and
G. Mhl, “Ilp-based routing and scheduling of multicast realtime traffic in
time-sensitive networks,” in 2020 IEEE 26th International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2020.

[39] S.-H. Chang, H. Chen, and B.-C. Cheng, “Time-predictable routing
algorithm for time-sensitive networking: Schedulable guarantee of time-
triggered streams,” Computer Communications, vol. 172, pp. 183–195,
2021.

[40] J. Krolikowski, S. Martin, P. Medagliani, J. Leguay, S. Chen, X. Chang,
and X. Geng, “Joint routing and scheduling for large-scale deterministic
ip networks,” Computer Communications, vol. 165, p. 3342, Jan. 2021.

[41] J. W. Suurballe and R. E. Tarjan, “A quick method for finding shortest
pairs of disjoint paths,” Networks, vol. 14, pp. 325–336, 1984.

[42] J. Q. Hu, “Diverse routing in optical mesh networks,” IEEE Transactions
on Communications, vol. 51, pp. 489–494, 2003.

[43] T. Gomes, C. Simes, and L. Fernandes, “Resilient routing in optical
networks using srlg-disjoint path pairs of min-sum cost,” Telecommuni-
cation Systems, vol. 52, pp. 737–749, August 2011.

[44] J.-C. Bermond, D. Coudert, G. DAngelo, and F. Z. Moataz, “Finding
disjoint paths in networks with star shared risk link groups,” Theoretical
Computer Science, vol. 579, pp. 74–87, May 2015.

[45] B. Vass, E. Brczi-Kovcs, . Barabs, Z. L. Hajd, and J. Tapolcai,
“Polynomial-time algorithm for the regional srlg-disjoint paths prob-
lem,” in IEEE INFOCOM, May 2022.

[46] M. Desrochers, J. Desrosiers, and M. Solomon, “A new optimization al-
gorithm for the vehicle routing problem with time windows,” Operations
Research, vol. 40, pp. 342–354, 1992.

[47] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen, “An exact algorithm
for the elementary shortest path problem with resource constraints:
Application to some vehicle routing problems,” Networks, vol. 44, pp.
216–229, 2004.

[48] L. Lozano, D. Duque, and A. L. Medaglia, “An exact algorithm
for the elementary shortest path problem with resource constraints,”
Transportation Science, vol. 50, pp. 1–10, 2015.

[49] L. Costa, C. Contardo, and G. Desaulniers, “Exact branch-price-and-
cut algorithms for vehicle routing,” Transportation Science, vol. 53, pp.
946–985, 2019.

Shizhen Zhao received the bachelors degree from
Shanghai Jiao Tong University (SJTU) in 2010 and
the Ph.D. degree from Purdue University in 2015.
He is currently a Tenured Associate Professor with
the John Hopcroft Center, SJTU. Before joining
SJTU, he was with Googles Networking Team,
managing Googles hyper-scale data center networks.
He has published papers in top-tier conferences and
journals, including SIGCOMM, NSDI, SIGMET-
RICS, MOBICOM, ICNP, INFOCOM, IEEE/ACM
TRANSACTIONS ON NETWORKING, etc.

Ximeng Liu received the bachelors degree from
Xi’an Jiao Tong University. He is currently pursuing
his Ph.D. at the John Hopcroft Center for Computer
Science, Shanghai Jiao Tong University. His research
interests include traffic routing and traffic engineer-
ing.

Tianyu Zhu received the bachelors degree from
Shanghai Jiao Tong University (SJTU). He is cur-
rently a graduate student at Shanghai Jiao Tong
University. His primary research interests include
computer networks and graph algorithms.

Xingbin Wang (Senior Member, IEEE) received
the B.S. degree (Hons.) from Shanghai Jiao Tong
University in 1998, the M.S. degree from Tsinghua
University in 2001, and the Ph.D. degree from North
Carolina State University in 2006. Currently, he is a
Professor with the Department of Electronic Engi-
neering, Shanghai Jiao Tong University. He has been
a member of the technical program committees of
several conferences, including MobiCom, MobiHoc,
and INFOCOM. He has been an Associate Editor of
IEEE TRANSACTIONS ON NETWORKING and

IEEE TRANSACTIONS ON MOBILE COMPUTING.


