
LubeRDMA: A Fail-safe Mechanism of RDMA
Shengkai Lin

jefflin@sjtu.edu.cn
Qinwei Yang

yinwai@sjtu.edu.cn
Zengyin Yang

zengyiny@163.com

Yuchuan Wang
yuchuan.wang@gmail.com

Shizhen Zhao
shizhenzhao@sjtu.edu.cn

ABSTRACT
Recent years have witnessed a wide adoption of Remote Direct
Memory Access (RDMA) to accelerate distributed systems. As the
scale of distributed applications keeps increasing, network failures
become more prominent. Although some link/switch failures can
be circumvented by in-network rerouting, failures like NIC failure
are still fatal in RDMA networks and may cause the entire system
to fail.

To address this issue, we propose a fail-safe mechanism of RDMA
called LubeRDMA. The core idea is to leverage multiple RDMA
NICs on a server and treat them as backups for each other. We
introduce a vRDMA model that abstracts a failure-resilient RDMA
network to the application. With this model, we achieve RDMA
fault tolerance and recovery. In our evaluation, we demonstrate
that LubeRDMA efficiently handles RDMA failures while having a
minimal impact on RDMA performance.

CCS CONCEPTS
•Computer systems organization→Redundancy; Fault-tolerant
network topologies; • Networks→ Data center networks.

KEYWORDS
RDMA, fault-tolerant, backup RNIC, virtual RDMA

ACM Reference Format:
Shengkai Lin, Qinwei Yang, Zengyin Yang, Yuchuan Wang, and Shizhen
Zhao. 2024. LubeRDMA: A Fail-safe Mechanism of RDMA. In The 8th Asia-
Pacific Workshop on Networking (APNet 2024), August 03–04, 2024, Syd-
ney, Australia. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3663408.3663411

1 INTRODUCTION
RDMA enables efficient data transfer between local and remote
memory without involving CPUs, and has been widely adopted
to accelerate large-scale distributed applications in data centers
and high-performance computing (HPC) clusters. RDMA offers
high throughput, low latency, and low CPU overhead to network
applications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APNet 2024, August 03–04, 2024, Sydney, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1758-1/24/08
https://doi.org/10.1145/3663408.3663411

However, as the application scale increases, RDMA failures be-
come more and more detrimental to the application-level perfor-
mance. Especially for gang scheduled tasks, e.g., distributed AI train-
ing, even a single broken RDMA connection could fail the entire task
and the failure rate increases with the application size. Although
one could adopt a checkpoint mechanism to restart the failed appli-
cations, such an application-layer failure recovery method incurs
significant overhead. Onemay improve the RDMA failure-resiliency
by rerouting the failed network links/switches, however, such a
rerouting strategy cannot handle failures like NIC failure.

We propose LubeRDMA, a fail-safe mechanism of RDMA. The
intuition behind LubeRDMA is to utilize multiple physical RDMA
NICs (RNICs) on a server and treat them as backups for each other.
In the event of a failure on the default path, LubeRDMA seamlessly
switches to the backup RNIC (also the backup path) until the de-
fault path recovers without impacting the applications. We require
LubeRDMA to be application-transparent, meaning that the RDMA
applications are not required to change. We implement LubeRDMA
in the RDMA userspace library [16].

To realize this intuition, three major challenges need to be ad-
dressed. Firstly, considering that RDMA resources and operations
are designed to be managed by applications, how to manage Lu-
beRDMA resources and operations in an application-transparent
manner. Secondly, as the performance and overhead is still the core
concerns of RDMA applications, how to minimize the overhead and
impact on performance while providing fault tolerance capability.
Lastly, applications expect that the execution order and the issue
order of RDMA data transfer are the same (described in §2.1), how to
ensure the execution order when switching traffic between RNICs.

LubeRDMA addresses all three of these challenges. We propose
the shadow control verbs to manage both the default and backup
RDMA resources without complicating applications (§3.1). We then
propose the vRDMAmodel, which abstracts a failure resilient RDMA
network to applications while eliminating the default path overhead
(§3.2). Finally, we realize RDMA fault tolerance and recovery in the
vRDMA model and minimize the path switching overhead (§3.3
and §3.4).

The paper is organized as below: We first provide the overview
of RDMA, the motivation, intuition and challenges of LubeRDMA
in §2. Then we introduce the design of LubeRDMA in §3. The
evaluation of LubeRDMA is presented in §4. Finally, we discuss the
common concerns in §5.

This work does not raise any ethical issues.

https://doi.org/10.1145/3663408.3663411
https://doi.org/10.1145/3663408.3663411
https://doi.org/10.1145/3663408.3663411


APNet 2024, August 03–04, 2024, Sydney, Australia Lin et al.

2 BACKGROUND
2.1 RDMA Overview
RDMA allows applications to transfer data between local and re-
mote memory without the participation of CPU. The RDMA work-
flow can be summarized as follows: the application initiates a work
request (WR) for data transfer to the RNIC; the RNIC then processes
the WR and provides the results (work completion, WC) to the com-
pletion queue (CQ); finally, the application queries the CQ for the
transfer results. In this paper, our focus is on the Reliable Connec-
tion (RC) transport mode of RDMA, which is the most commonly
used mode in real-world applications.

To utilize RDMA, the application need to allocate RDMA resource
on both the sender and receiver sides using control verbs. It should
open a device (i.e., RNIC) which will be used for communication
and obtain a context. Within this context, the application allocates
various RDMA resources. First, it allocates a Protection Domain
(PD) to isolate resources. Then, it registers a Memory Region (MR)
that can be read/write by the RNIC, and gets a local key (lkey) as
well as a remote key (rkey). The keys are used to access the MR
later by local and remote RNIC. Finally, a Completion Queue (CQ),
and a Queue Pair (QP) are created. When creating the QP, the user
should specify the local group ID (GID) index, which is associated
with the source IP and protocol version (RoCE v1 or RoCE v2). Note
all allocated resources are unique to their respective contexts and
is isolated between RNICs.

Once the resources have been allocated, the application proceeds
to exchange important information. This includes the QP informa-
tion (QPinfo, including the QP ID, QP number), as well as the MR
information (MRinfo, consisting of memory address and rkey). This
exchange typically occurs through a TCP connection. Following
this, the applicationmodifies the QP to apply the local configuration
and the received remote QP information. After the modification,
the QP transitions into ready-to-send (RTS) state and is ready to
transfer data.

Once a QP is ready, the application can utilize it for RDMA op-
erations using several data verbs. For SEND/RECEIVE operation,
known as two-sided operation, the application must first post a re-
ceive WR to the receive queue on the receiver and then posts a send
WR to the send queue on the sender. In the case of a READ/WRITE
operation, which is a one-sided operation, the receiver’s participa-
tion is not required. The application simply needs to post a send
WR (with READ/WRITE operation) to the send queue.

The send WR, with operation like SEND, WRITE, causes actual
data transfer. These WRs are completed when the local RNIC re-
ceives an ACK from the remote RNIC. The ACK indicates that the
remote RNIC has received the data. On the other hand, the receive
WR, with operation like RECEIVE, simply waits for incoming data
transfer. TheseWRs are completed when the received data has been
written to the memory.

The completion of a WR (i.e., work completion, WC) is reported
to the CQ associated with the QP. The application can then retrieve
theWC by polling the CQ. In RC transport mode, the RNIC executes
the WRs one by one, and the completion order is the same as the
execution order as well as the application posting order.

If a WR fails, the current QP immediately enters the error state.
As a result, all theWRs that have been posted to the QP but have not

Server Server Server Server

ToR Switch ToR Switch ToR Switch ToR Switch

Spine Switch Spine Switch Spine Switch Spine Switch

Core Switch Core Switch

Server Server Server Server

Access
Paths

In-network
Paths

Figure 1: Example of a data center network [1]. One red line
stands for 4 black lines.

been executed go to fail, and their corresponding WCs are reported
to the CQ. While the QP is in an error state, any attempt to post
WRs will result in an error. The QP must be modified back to RTS
state before any further WRs can be processed.

2.2 Single Point of Failure on Access Paths
In recent years, the significance of large-scale distributed applica-
tions, particularly deep learning applications [19, 25], has been in-
creasingly recognized. These applications commonly rely on RDMA
networks to achieve high-performance and low-overhead commu-
nication.

However, as these larger applications require larger-scale net-
works, the RDMA network failures are inevitably more frequent.
To mitigate the impact of network failures on applications, it is
typically desirable for the network to be able to withstand non-fatal
failures, which are failures that can be circumvented. An effective
approach to achieve this is to utilize multiple paths and consider
them as backups for one another. Fortunately, in modern data cen-
ter networks, it is quite common to have multiple paths between
servers [1, 8, 9]. This allows for the possibility of tolerating the
network failures. The paths of end-to-end traffic can be divided
into two parts, as shown in Figure 1: in-network paths, which refer
to the paths between access switches, and access paths, which refer
to the paths between servers and access switches.

For in-network paths, failures can be circumvented through
the use of dynamic routing mechanisms. If a failure occurs on the
default path, the switch can route subsequent packets to an alternate
path with the same destination.

However, for access paths, existing RDMA solutions are unable to
leverage the multiple paths (i.e., the multple RNICs). Consequently,
access links become single point of failure (SPOF), whose failures
directly impact RDMA functionality and disrupt applications.

Current distributed applications typically handle RDMA fail-
ures in application layer. They employ two methods, namely fault
recovery and fault tolerance, neither of which are optimal solutions.

Application fault recovery employs mechanisms such as check-
pointing [2, 3, 12–14, 17, 21] or logging [20, 24] to recover failed
applications and minimize overhead. However, these solutions in-
troduce CPU and storage overhead due to checkpointing/logging
and the subsequent recovery process. Moreover, they inevitably
result in wasted machine time, thereby increasing costs [18].

Application fault tolerance aims to prevent the failure of a worker
from causing the entire application to fail. This is achieved by dy-
namically evicting the failed worker and replacing it with a new



LubeRDMA: A Fail-safe Mechanism of RDMA APNet 2024, August 03–04, 2024, Sydney, Australia

one from the cluster [4, 10, 11, 18, 23, 26, 27]. Compared to fault re-
covery solutions, fault tolerance methods help reduce overhead and
costs. However, when it comes to handling network failures, these
fault tolerance methods still incur unnecessary overhead when it
comes to removing and restarting workers, instead of leveraging
multiple paths and bypassing the failures.

2.3 Intuition and Challenges
Based on the analysis above, the intuition of LubeRDMA is clear: it
utilizes multiple RNICs on a physical host to tolerate failures on the
access paths. In addition to the RNIC specified by the application
(called default RNIC), LubeRDMA uses other RNICs as backups.
In the event of network failures on the default RNIC, LubeRDMA
seamlessly switches to the backup RNICs without impacting the
application. It first reposts the failed WR to the backup RNIC and
then uses the backup RNIC for subsequent WRs until the default
path recovers. LubeRDMA does not aim to replace application fault
recovery and tolerance but rather to reduce their frequency and
the associated overhead on RDMA failures.

However, despite the simplicity of LubeRDMA’s intuition, there
are three major challenges that need to be addressed:

Challenge #1 As all the RDMA resources and operations are
designed to be managed by the application, the challenge is to
manage LubeRDMA resources and operations in an application-
transparent manner.

Challenge #2 To enable RDMA fault tolerance, some extra op-
erations, like buffering the outstanding WRs, switching between
RNICs, are needed. However, it is crucial for LubeRDMA to priori-
tize performance and minimize both the overhead and impact on
performance, regardless of whether network failures occur or not.

Challenge #3 As the WR execution order should be the same as
the application posting order, it is necessary to keep the execution
order when switching between RNICs.

3 DESIGN
We describe the design of LubeRDMA, a fail-safe mechanism of
RDMA, in this section. The overall architecture of LubeRDMA is
shown in Figure 2.

We implemented the core logic of LubeRDMA within the RDMA
userspace library [16], which we refer to as LubeLib. This involves
integrating the LubeRDMA logic into control verbs and data verbs,
while ensuring that the verbs remain unchanged from the appli-
cation’s perspective. LubeRDMA can be used by simply chang-
ing the RDMA library called by the application (e.g., update the
LD_LIBRARY_PATH in Linux). As shown in Figure 2, LubeRDMA
only addes logic on the control flow, and the data flow (i.e., memory-
RNIC-memory) remains unchanged.

To exchange the LubeRDMA-managed resource information
among hosts, we employ a LubeDaemon on each host. This Lube-
Daemon functions as a distributed key-value storage system (e.g.,
etcd [5] in our implementation), serving a similar purpose as the
TCP connection established by the application. LubeLib, on the
other hand, communicates with the LubeDaemon via a Unix Do-
main Socket.

Applica�on

Host

QP2

QP0
QP1

RNIC2RNIC0 RNIC1

LubeLib

LubeDaemon 

Applica�on
Memory
Region

WR
buffer

CQ0
CQ1
CQ2

vRNIC

vQP vCQ

TCP

RDMA

ibv_post_send 
ibv_post_recv ibv_poll_cq 

Figure 2: Basic architecture of LubeRDMA. The blue boxes
and the green boxes denote the resources managed by the
application and LubeLib, respectively. The black arrows and
the red arrows denote the data flows and the control flows,
respectively.

We then introduce the shadow control verbs to utilize the backup
RDMA resource in §3.1; the vRDMA model to enabling fault toler-
ance and recovery in §3.2; the RDMA fault tolerance in §3.3; and
the fault recovery in §3.4.

3.1 Utilizing the Backup RNIC
To utilize backup RNICs in LubeRDMA, each group of default
RDMA resources (including MR, QP, etc.) is equipped with its own
backup RDMA resources. While the RNIC may be shared among
processes, the RDMA resources remain independent to prevent
control interference.

To manage backup RDMA resources for backup RNICs without
complicating the applications, we propose the shadow control verbs.
When an application initializes the default RDMA resources, Lu-
beRDMA implicitly performs the same operations on the backup
RNICs, which we refer to as shadow control verbs. The pointers
to the backup RDMA resources are stored within the data struc-
ture of the default resources, thus they can be used later by Lu-
beRDMA. This mechanism allows LubeLib to create andmanage the
backup RDMA resources (green boxes in Figure 2) in an application-
transparent manner. The detailed process is as below.

First, the application calling ibv_open_device to open the RNIC
specified by the application (known as the default RNIC). Simulta-
neously, LubeLib opens backup RNICs, which are specified using
environment variables. The order of the backup RNICs also deter-
mines their priority as backups.

Next, the application allocates PD and MR, creates CQ and QP.
For each of these operations, LubeLib performs the same actions,
such as allocating the same addresses as MR for the backup RNICs.
To exchange the backup MRinfo and QPinfo with peers, LubeLib
sends the mapping of <default MRinfo → backup MRinfo> and <de-
fault QPinfo→ backup QPinfo> to the LubeDaemon after creating
the resources. The LubeDaemon, functioning as a distributed key-
value storage, stores this information.



APNet 2024, August 03–04, 2024, Sydney, Australia Lin et al.

Applica�on Send 
WR buffer 

WR0
WR1
WR2
WR3
WR4
WR5
WR6

tail

head

...

QP0 QP1

RNIC0 RNIC1

WR buffer

CQ0 CQ1

vQP vCQ

ibv_post_send ibv_poll_cq 

Send 
WR buffer

QP1

Applica�on

QP0 QP1

RNIC0 RNIC1

WR buffer

CQ0 CQ1

vQP vCQ

ibv_post_recv ibv_poll_cq 

Receive
WR buffer

QP1

Receive
WR buffer 

WR0
WR1 tail

head

...

Figure 3: The control flow of send WRs (left graph) and receive WRs (right graph) in LubeRDMA. The green arrows denote the
control flow without network failures, while the red and orange arrows denote the control flow with network failures.

Subsequently, the application calls ibv_modify_qp to configure
the QP and modify it to RTS state. LubeLib performs the same
configuration on the backup QPs. As the configuration depends on
the peer QPinfo, LubeLib queries the LubeDaemon to obtain this
information.

Finally, all the QPs enter RTS state and are ready to perform
RDMA operations. LubeLib snapshots the attributes of all the QPs
for potential fault recovery (as described in §3.4).

3.2 vRDMA Model
To realize application-transparent RDMA fault tolerance, we then
propose the vRDMA model.

In the vRDMA model, the RDMA resources used by the ap-
plication, such as QP and CQ, are virtual resources provided by
LubeRDMA. These virtual resources are abstractions of multiple
actual resources and do not actually exist, as depicted in Figure 2.
This design enables LubeRDMA to proactively handle RDMA fail-
ures and seamlessly switch between the different RNICs, ensuring
that the application remains unaffected by any RDMA failures.

The WR buffer is the core component of the vRDMA model, as
illustrated in Figure 3. It functions to keep track of the outstanding
WRs. By utilizing this buffer, LubeLib can access theWRs and repost
them if necessary.

In order to minimize the overhead associated with enqueuing
and dequeuing WRs in the WR buffer, as well as to maintain the
order of the WRs, we implements the WR buffer as a preallocated
ring buffer. The newly postedWRs are enqueued at the head pointer,
while the completed WRs are dequeued from the tail pointer. This
design is effective because the WR completion order is consistent
with the order in which they were posted, as explained in §2.1.

When no network failure occurs, the control flow of LubeRDMA
is depicted by the green arrows in Figure 3 and described as below.

When the application posts send WRs (with operation such as
SEND, WRITE) to the vQP, LubeLib enqueues them into the send
WR buffer and posts them to one of the actual QPs. When there are
no network failures, the WR is posted to the default QP.

When the application posts receive WRs (with operations such
as RECEIVE) to the vQP, LubeLib enqueues them into the receive
WR buffer and then posts them to all of the actual QPs. This is done
to prepare for any potential incoming data transfer. LubeRDMA

implicitly aligns the tail pointer of the receive queue of the ac-
tual QPs each time the application attempts to post receive WRs.
This process dequeues any unnecessary WRs in the backup QPs,
preventing the receive queue of the backup QPs from overflowing.

When the application polls for WC, LubeLib polls all the CQs in
order. If no network failure occurs, the successful WCs are polled
from the default CQ. The WC is then reported to the application,
and the corresponding WR is dequeued from the WR buffer.

3.3 RDMA Fault Tolerance
LubeRDMA is designed to tolerate RDMA network failures by seam-
lessly switching traffic to the backup RNIC. Considering that send
WRs are responsible for transmitting data to the remote RNIC, it is
enough for LubeRDMA to primarily handling the failures of send
WRs. Send WRs can fail at two stages: when posting the WR to the
QP, and when the RNIC fetches and executes the WR.

While the naive idea to handle these failures is to simply repost
the fail send WR to the backup QP, it can introduce unnecessary
overhead. This is because that a fail WR implies that all subsequent
WRs posted to the same QP will also fail. If we only address the
current failed WR without considering the future failed WRs, it can
lead to a continuous triggering of the fault tolerance logic, resulting
in additional overhead.

To reduce the overhead, LubeRDMA employs a repost-and-reset
mechanism, which handles not only the current fail WR, but also
all the posted WRs at once. When failure happens in either stage
discussed above, the detailed processes are as below (red arrows in
Figure 3).

First, LubeLib reposts all the outstanding send WRs, which are
stored in the WR buffer, to the backup QP. The WR buffer ensures
that the order of the repostedWRs remains consistent with the order
in which the application posted them. These reposted WRs are then
executed by the backup RNIC. LubeLib marks the backup QP as
in-use, and subsequent send WRs from the application will directly
use the backup QP, depicted as the orange arrows in Figure 3.

Second, LubeLib resets the QP from the error state. The reset
operation clears all the WRs and WCs in the QP and prevents
subsequent failed WCs (which have already been reposted) from
continuously disrupting LubeLib.



LubeRDMA: A Fail-safe Mechanism of RDMA APNet 2024, August 03–04, 2024, Sydney, Australia

Standard Lube-1bkup Lube-2bkup
(a) Initialization time

0

50

100

Ti
m

e 
(m

s)

1.0 1.5 2.0
(b) Latency (μs)

0.00

0.25

0.50

0.75

1.00

C
D

F

Standard
Lube

0 10 20 30 40
(c) Time (s)

0

50

100

Th
ro

ug
hp

ut
 (G

bp
s)

RNIC down

WR fail & using backup

RNIC up

Lube
Standard

Figure 4: (a) The initialization time (with its standard deviation) of standard RDMA, LubeRDMA with 1 and 2 backup RNICs. (b)
The latency CDF for standard RDMA and LubeRDMA. (c) The throughput per second of standard RDMA and LubeRDMA. In
the throughput test, we intentionally turn down and up the RNIC to show the fault tolerance and recovery of LubeRDMA.
Lube is short for LubeRDMA, and standard is short for standard RDMA.

It is worth noting that although the above description primarily
focuses on handling failures on the default path, the same mech-
anism applies if both the default path and the first backup path
fail. LubeLib attempts the backup paths in the priority order (as
described in §3.1). If all the paths fail, the failure will be reported
to the application.

3.4 RDMA Fault Recovery
When the network failure on the default path is resolved, Lu-
beRDMA switches back to using the default QP, which is called
fault recovery. This is necessary because, considering the system
architecture, the application-specified default RNIC is typically the
optimal choice for communication.

Fault recovery is necessary on both the sender and receiver sides,
as the QPs on both sides may become unavailable during network
failures. On the receiver side, an RNIC failure can result in a change
in the GID index, rendering the QP with an incorrect GID index
unable to send or reply any data. On the sender side, in addition
to the GID index issue, a failed send WR can also cause the QP to
enter the error state. In such cases, the QP is unable to transmit or
receive data until it is reset and recovered.

LubeRDMA adopts a wait-and-retry mechanism for fault recov-
ery. When a failure occurs or a retry is attempted, LubeLib records
the timestamp and waits for a user-defined time interval (e.g., 3 sec-
onds) before the next retry. This helps prevent excessively frequent
retry attempts.

LubeLib retries the default QP when it polls a send or receive
WC from the backup CQ (indicating possible failures on the default
path) and has waited for at least the time interval. If the default QP
is not in RTS state, the retry process first modifies the default QP
back to RTS state by the QP attributes snapshot taken at starting
(as described in §3.1), along with the new GID index. If the QP suc-
cessfully transitions back to RTS state, LubeLib reposts the receive
WRs to the default QP for potential incoming data transfer. Then,
LubeLib switches the in-use QP back to the default QP, and the
subsequent WRs will be posted to the default QP. If the subsequent
WRs encounter failures again, they will be handled again by the
failure tolerance described in §3.3.

Discussion. There are still some shortcomings in the recovery
mechanism: Firstly, it only works for two-sided operations such

as SEND and RECV. This is because only two-sided operation in-
vokes the data verbs on both sides, allowing for the detection of
default path recovery. Secondly, the retry-based mechanism still
has nonnegligible overhead for high-speed communication. Lastly,
when LubeLib switches communication back to the default RNIC,
there is a possibility that newly posted WRs may be executed be-
fore the former WRs, which are still queuing in the backup RNIC,
thus disrupt the WR execution order. We would like to leave the
improvement in future work.

4 EVALUATION
In this section, we present the evaluation results of LubeRDMA.
Although the evaluation is still ongoing, the current results provide
an overview of the performance of LubeRDMA.

Our testbed consists of two servers equipped with Intel Xeon
Silver 4110 CPU (32 cores, 2.10GHz) and 128 GB memory. Each
server ia equipped with a dual-port Mellanox Connect-X5 100 Gb
NIC and a dual-port BlueField-2 100Gb NIC, located on different
NUMA (Non-Uniform Memory Access) nodes. The Connect-X5
NICs are directly connected to each other, as are the BlueField-2
NICs, using 100 Gb copper cables. The RNICs are configured to
operate in RoCEv2 mode. We install MLNX_OFED v5.8 on both
servers. The two RNICs serve as backup of each other.

We have developed LubeLib based on rdma-core v48 [16], and
LubeDaemon based on etcd v3.5.11 [5].

4.1 Control-plane Overhead
We conduct experiments to evaluate the initialization time of Lu-
beRDMA. We time the typical initialization operations, including
opening the device, allocating a PD, registering a MR, creating a CQ,
creating a QP, and modifying the QP to RTS state, for LubeRDMA
and standard RDMA. Specifically, we compare LubeRDMA with 1
backup RNIC and 2 backup RNICs, against standard RDMA.

Figure 4 (a) shows the results. It can be observed that allocating
additional RDMA resources does increase the initialization time.
With a standard RDMA setup, the initialization time is 27 ms. When
utilizing one backup RNIC, the initialization time increases to 67.8
ms. With two backup RNICs, the time further increases to 91.8 ms.



APNet 2024, August 03–04, 2024, Sydney, Australia Lin et al.

Discussion.Currently, the RDMA initialization overhead is caused
by allocating backup RDMA resources. The overhead can be min-
imized by employing multiple threads for resource initialization.
We leave this implementation in future work.

4.2 Data-plane Performance
In this section, we evaluated the latency and throughput of Lu-
beRDMA and demonstrated its fault tolerance and recovery capa-
bilities. To measure the performance, we utilized the ib_write_lat
and ib_write_bw tools from the perftest package [15].

RDMA Latency. Figure 4 (b) shows the CDF graph of RDMA
latency for LubeRDMA and standard RDMA. The average latency
of LubeRDMA is measured to be 1.38 𝜇s, while the standard RDMA
latency averaged at 1.23 𝜇s. These results indicate that the vRDMA
model has a slight impact on RDMA latency.

Discussion. The data-plane overhead is primarily caused by the
enqueuing and dequeuing operations of the WR buffer. This over-
head can be reduced by utilizing multi-threads to perform these
operations. We leave this to future work.

RDMA Throughput.We then evaluate the throughput of Lu-
beRDMA and demonstrate its fault tolerance and recovery abilities,
as shown in Figure 4 (c). Prior to the RNIC down, the thoughput
of LubeRDMA is the same as that of standard RDMA, reaching 91
Gbps. At the 15th second, we intentionally turned down the sender
RNIC, causing the throughput to drop to 0.1 After about 2 seconds,
the RNIC eventually reports a fail WC. It is important to note that
the 0 throughput observed during this period was caused by the
packet retransmission conducted by the RNIC.

With standard RDMA, the failure is reported to the application,
finally leading to the termination of the test. In contrast, LubeRDMA
switches to the backup RNIC upon receiving the WR failure. The
throughput restores to 89 Gbs, albeit slightly lower due to the cross-
NUMA overhead. Once the default RNIC recovers, the traffic is
switched back to it, and the throughput returns to its previous
level.

5 DISCUSSION
QP overhead. The creation of additional QPs in LubeRDMA for
backup purposes does not negatively impact RDMA performance
as reported in previous research studies [22]. This is because the
backup QPs in LubeRDMA are typically inactive, resulting in no
cache misses on the RNICs and, therefore, no impact on perfor-
mance.

GPUDirect RDMA (GDR) [7]. GDR allows direct access of
GPU memory by the RNIC, effectively reducing the RDMA over-
head associated with GPUs. The usage of GDR does not alter the
application’s usage of RDMA as described in §2.1, thus LubeRDMA
is compatible with GDR.

Large-scale key-value storage. Currently, LubeRDMA relies
on distributed key-value storage for initialization. However, as
reported by etcd [6], larger cluster sizes can impact the storage’s
performance and potentially introduce overhead during LubeRDMA
initialization. We plan to evaluate and address this issue in future
work.

1The throughput seems to decrease slowly because each data point is the average
throughput of last 1 second.

6 CONCLUSION
In this paper, we introduce LubeRDMA, a fail-safe mechanism for
RDMA. LubeRDMAutilizesmultiple RNICs on a server and employs
them as backups for one another. LubeRDMA offers fault tolerance
and recovery capabilities for RDMA while minimizing impact on
RDMA performance.

ACKNOWLEDGMENTS
We sincerely thank anonymous reviewers for their helpful com-
ments. This work was supported by the NSF China (No. 62272292).

REFERENCES
[1] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre, Paramvir

Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,
Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad, Vivek Ette, Igal Figlin, Daniel
Firestone, Mathew George, Ilya German, Lakhmeet Ghai, Eric Green, Albert
Greenberg, Manish Gupta, Randy Haagens, Matthew Hendel, Ridwan Howlader,
Neetha John, Julia Johnstone, Tom Jolly, Greg Kramer, David Kruse, Ankit
Kumar, Erica Lan, Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu, Chen Liu,
Guohan Lu, Yuemin Lu, Xiakun Lu, Vadim Makhervaks, Ulad Malashanka,
David A. Maltz, Ilias Marinos, Rohan Mehta, Sharda Murthi, Anup Namdhari,
Aaron Ogus, Jitendra Padhye, Madhav Pandya, Douglas Phillips, Adrian Power,
Suraj Puri, Shachar Raindel, Jordan Rhee, Anthony Russo, Maneesh Sah, Ali
Sheriff, Chris Sparacino, Ashutosh Srivastava, Weixiang Sun, Nick Swanson,
Fuhou Tian, Lukasz Tomczyk, Vamsi Vadlamuri, Alec Wolman, Ying Xie, Joyce
Yom, Lihua Yuan, Yanzhao Zhang, and Brian Zill. 2023. Empowering Azure
Storage with RDMA. In 20th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 23). USENIX Association, Boston, MA, 49–67.
https://www.usenix.org/conference/nsdi23/presentation/bai

[2] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas
Tzoumas. 2017. State management in Apache Flink®: consistent stateful dis-
tributed stream processing. Proc. VLDB Endow. 10, 12 (Aug. 2017), 1718–1729.
https://doi.org/10.14778/3137765.3137777

[3] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere,
Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha Smelyanskiy, and Mu-
rali Annavaram. 2022. Check-N-Run: a Checkpointing System for Training Deep
Learning Recommendation Models. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). USENIX Association, Renton, WA,
929–943. https://www.usenix.org/conference/nsdi22/presentation/eisenman

[4] Elastic Horovod 2024. Elastic Horovod. https://horovod.readthedocs.io/en/latest/
elastic_include.html.

[5] etcd 2024. etcd. https://etcd.io/.
[6] etcdscale 2024. What is maximum cluster size? https://etcd.io/docs/v3.5/faq/

#what-is-maximum-cluster-size.
[7] gdr 2024. GPUDirect RDMA. https://docs.nvidia.com/cuda/gpudirect-rdma/

index.html.
[8] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding

network failures in data centers: measurement, analysis, and implications. SIG-
COMM Comput. Commun. Rev. 41, 4 (Aug. 2011), 350–361. https://doi.org/10.
1145/2043164.2018477

[9] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Pad-
hye, and Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale. In
Proceedings of the 2016 ACM SIGCOMM Conference (Florianopolis, Brazil) (SIG-
COMM ’16). Association for Computing Machinery, New York, NY, USA, 202–215.
https://doi.org/10.1145/2934872.2934908

[10] Changho Hwang, Taehyun Kim, Sunghyun Kim, Jinwoo Shin, and KyoungSoo
Park. 2021. Elastic Resource Sharing for Distributed Deep Learning. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
21). USENIX Association, 721–739. https://www.usenix.org/conference/nsdi21/
presentation/hwang

[11] Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and Mosharaf Chowdhury.
2023. Oobleck: Resilient Distributed Training of Large Models Using Pipeline
Templates. In Proceedings of the 29th Symposium on Operating Systems Principles
(, Koblenz, Germany,) (SOSP ’23). Association for Computing Machinery, New
York, NY, USA, 382–395. https://doi.org/10.1145/3600006.3613152

[12] Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. 2021. CheckFreq:
Frequent, Fine-Grained DNN Checkpointing. In 19th USENIX Conference on
File and Storage Technologies (FAST 21). USENIX Association, 203–216. https:
//www.usenix.org/conference/fast21/presentation/mohan

[13] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: a timely dataflow system. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,

https://www.usenix.org/conference/nsdi23/presentation/bai
https://doi.org/10.14778/3137765.3137777
https://www.usenix.org/conference/nsdi22/presentation/eisenman
https://horovod.readthedocs.io/en/latest/elastic_include.html
https://horovod.readthedocs.io/en/latest/elastic_include.html
https://etcd.io/
https://etcd.io/docs/v3.5/faq/#what-is-maximum-cluster-size
https://etcd.io/docs/v3.5/faq/#what-is-maximum-cluster-size
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://doi.org/10.1145/2043164.2018477
https://doi.org/10.1145/2043164.2018477
https://doi.org/10.1145/2934872.2934908
https://www.usenix.org/conference/nsdi21/presentation/hwang
https://www.usenix.org/conference/nsdi21/presentation/hwang
https://doi.org/10.1145/3600006.3613152
https://www.usenix.org/conference/fast21/presentation/mohan
https://www.usenix.org/conference/fast21/presentation/mohan


LubeRDMA: A Fail-safe Mechanism of RDMA APNet 2024, August 03–04, 2024, Sydney, Australia

Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY,
USA, 439–455. https://doi.org/10.1145/2517349.2522738

[14] Bogdan Nicolae, Jiali Li, Justin M. Wozniak, George Bosilca, Matthieu Dorier,
and Franck Cappello. 2020. DeepFreeze: Towards Scalable Asynchronous Check-
pointing of Deep Learning Models. In 2020 20th IEEE/ACM International Sym-
posium on Cluster, Cloud and Internet Computing (CCGRID). 172–181. https:
//doi.org/10.1109/CCGrid49817.2020.00-76

[15] perftest 2024. linux-rdma/perftest. https://github.com/linux-rdma/perftest.
[16] rdma-core 2024. rdma-core. https://github.com/linux-rdma/rdma-core.
[17] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August. 2005. SWIFT:

software implemented fault tolerance. In International Symposium on Code Gen-
eration and Optimization. 243–254. https://doi.org/10.1109/CGO.2005.34

[18] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao Jia, Minjia
Zhang, Ravi Netravali, and Guoqing Harry Xu. 2023. Bamboo: Making Pre-
emptible Instances Resilient for Affordable Training of Large DNNs. In 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 23).
USENIX Association, Boston, MA, 497–513. https://www.usenix.org/conference/
nsdi23/presentation/thorpe

[19] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:
Open Foundation and Fine-Tuned Chat Models. arXiv:2307.09288 [cs.CL]

[20] Stephanie Wang, John Liagouris, Robert Nishihara, Philipp Moritz, Ujval Misra,
Alexey Tumanov, and Ion Stoica. 2019. Lineage stash: fault tolerance off the
critical path. In Proceedings of the 27th ACM Symposium on Operating Systems Prin-
ciples (Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing Ma-
chinery, New York, NY, USA, 338–352. https://doi.org/10.1145/3341301.3359653

[21] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu, T. S. Eugene Ng,
and YidaWang. 2023. GEMINI: Fast Failure Recovery in Distributed Training with
In-Memory Checkpoints. In Proceedings of the 29th Symposium on Operating Sys-
tems Principles (, Koblenz, Germany,) (SOSP ’23). Association for Computing Ma-
chinery, New York, NY, USA, 364–381. https://doi.org/10.1145/3600006.3613145

[22] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang Zeng, Wenxue Li, Xinchen
Wan, Peng Xie, Tao Feng, Ke Cheng, Xiongfei Geng, Tianhao Wang, Weicheng
Ling, Kejia Huo, Pingbo An, Kui Ji, Shideng Zhang, Bin Xu, Ruiqing Feng, Tao
Ding, Kai Chen, and Chuanxiong Guo. 2023. SRNIC: A Scalable Architecture
for RDMA NICs. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23). USENIX Association, Boston, MA, 1–14. https://www.
usenix.org/conference/nsdi23/presentation/wang-zilong

[23] Lei Xie, Jidong Zhai, Baodong Wu, Yuanbo Wang, Xingcheng Zhang, Peng Sun,
and Shengen Yan. 2020. Elan: Towards Generic and Efficient Elastic Training
for Deep Learning. In 2020 IEEE 40th International Conference on Distributed
Computing Systems (ICDCS). 78–88. https://doi.org/10.1109/ICDCS47774.2020.
00018

[24] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized streams: fault-tolerant streaming computation at
scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (Farminton, Pennsylvania) (SOSP ’13). Association for Computing Ma-
chinery, New York, NY, USA, 423–438. https://doi.org/10.1145/2517349.2522737

[25] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov,
Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali
Sridhar, Tianlu Wang, and Luke Zettlemoyer. 2022. OPT: Open Pre-trained
Transformer Language Models. arXiv:2205.01068 [cs.CL]

[26] Jun Zhou, Ke Zhang, Feng Zhu, Qitao Shi, Wenjing Fang, Lin Wang, and Yi Wang.
2023. ElasticDL: A Kubernetes-native Deep Learning Framework with Fault-
tolerance and Elastic Scheduling. In Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining (, Singapore, Singapore,) (WSDM
’23). Association for Computing Machinery, New York, NY, USA, 1148–1151.
https://doi.org/10.1145/3539597.3573037

[27] Siyuan Zhuang, Zhuohan Li, Danyang Zhuo, Stephanie Wang, Eric Liang, Robert
Nishihara, Philipp Moritz, and Ion Stoica. 2021. Hoplite: efficient and fault-
tolerant collective communication for task-based distributed systems. In Pro-
ceedings of the 2021 ACM SIGCOMM 2021 Conference (Virtual Event, USA) (SIG-
COMM ’21). Association for Computing Machinery, New York, NY, USA, 641–656.
https://doi.org/10.1145/3452296.3472897

https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1109/CCGrid49817.2020.00-76
https://doi.org/10.1109/CCGrid49817.2020.00-76
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/rdma-core
https://doi.org/10.1109/CGO.2005.34
https://www.usenix.org/conference/nsdi23/presentation/thorpe
https://www.usenix.org/conference/nsdi23/presentation/thorpe
https://arxiv.org/abs/2307.09288
https://doi.org/10.1145/3341301.3359653
https://doi.org/10.1145/3600006.3613145
https://www.usenix.org/conference/nsdi23/presentation/wang-zilong
https://www.usenix.org/conference/nsdi23/presentation/wang-zilong
https://doi.org/10.1109/ICDCS47774.2020.00018
https://doi.org/10.1109/ICDCS47774.2020.00018
https://doi.org/10.1145/2517349.2522737
https://arxiv.org/abs/2205.01068
https://doi.org/10.1145/3539597.3573037
https://doi.org/10.1145/3452296.3472897

	Abstract
	1 Introduction
	2 Background
	2.1 RDMA Overview
	2.2 Single Point of Failure on Access Paths
	2.3 Intuition and Challenges

	3 Design
	3.1 Utilizing the Backup RNIC
	3.2 vRDMA Model
	3.3 RDMA Fault Tolerance
	3.4 RDMA Fault Recovery

	4 Evaluation
	4.1 Control-plane Overhead
	4.2 Data-plane Performance

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

