On the Design of Scheduling Algorithms for
End-to-End Backlog Minimization in Multi-hop
Wireless Networks

Shizhen Zhao and Xiaojun Lin
School of ECE, Purdue University, West Lafayette, IN, USA
Email: {zhaol47, linx} @purdue.edu

Abstract—In this paper, we study the problem of link schedul-
ing for multi-hop wireless networks with per-flow delay con-
straints. Specifically, we are interested in algorithms that max-
imize the asymptotic decay-rate of the probability with which
the maximum end-to-end backlog among all flows exceeds a
threshold, as the threshold becomes large. We provide both
positive and negative results in this direction. By minimizing the
drift of the maximum end-to-end backlog in the converge-cast
on a tree, we design an algorithm, Largest-Weight-First(LWF),
that achieves the optimal asymptotic decay-rate for the overflow
probability of the maximum end-to-end backlog as the threshold
becomes large. However, such a drift minimization algorithm
may not exist for general networks. We provide an example in
which no algorithm can minimize the drift of the maximum end-
to-end backlog. Finally, we simulate the LWF algorithm together
with a well known algorithm (the back-pressure algorithm) and a
large-deviations optimal algorithm in terms of the sum-queue (the
P-TREE algorithm) in converge-cast networks. Our simulation
shows that our algorithm significantly performs better not only
in terms of asymptotic decay-rate, but also in terms of the actual
overflow probability.

I. INTRODUCTION

In this paper, we study the link scheduling problem for
multi-hop wireless networks to improve the end-to-end delay
performance. In such networks, each flow transmits packets
from source to destination in a multi-hop fashion. We assume
that each flow has a fixed route from the source to destination.
Due to wireless interference, there are both intra-flow con-
straints (i.e., links at different hops of a flow may interfere with
each other) and inter-flow interference (i.e., links of different
flows may interference with each other) in the system. Further,
packets from multiple flows may compete for the service at a
common link. Hence, it becomes a challenging problem to
determine how link transmissions and packet transmissions
should be scheduled in order to minimize some notion of end-
to-end delay, subject to interference constraints.

When one is only concerned about the stability of the
system, it is well-known that the back-pressure algorithm [1]
is throughput-optimal, i.e., it can stabilize a multi-hop wireless
system under the largest set of offered-load vectors. However,
stability only means that the backlog in the system remains
finite, and is inadequate for many delay-sensitive applications
that require stringent end-to-end delay guarantees. In fact, it
has been observed that the back-pressure algorithm can have
very poor end-to-end delay performance [7]. Therefore, it is

important to study finer performance metrics for the end-to-
end delay and design scheduling algorithms that are optimal
for these metrics. We note that characterizing the end-to-
end delay in multi-hop wireless networks is usually a very
challenging problem. Although there has been a considerable
body of works on the delay performance of single-hop wireless
networks (e.g., [8][9]), results on the end-to-end delay perfor-
mance for multi-hop wireless networks are more limited [6].
In multi-hop networks, the packet arrivals at downstream links
are the departures from upstream links. Hence, the statistics of
the arrival processes at downstream links are often unknown
beforehand. As a result, the end-to-end delay performance in
multi-hop systems is much more difficult to characterize and
optimize than single-hop systems.

As is typical in the literature [8][13], we use the end-to-
end backlog of a flow, i.e., the total backlog of the flow over
all links along its path, as a measure for its end-to-end delay
performance. Most existing results either focus on minimizing
the end-to-end backlog of a single flow or on the total end-
to-end backlog among all flows. For the single flow case (and
therefore the system can be viewed as a tandem network), the
work in [2] provides a scheduling algorithm that is sample-
path optimal for minimizing the end-to-end backlog. Such
sample-path optimality results attain the strongest sense of
optimality. However, they are also the most demanding, and
hence their applicability is the most restrictive. In fact, for
more general topologies with multiple competing flows, e.g., a
tree topology with converge-cast, one can show that there may
not even exist sample-path optimal algorithms [5]. Alternately,
the works in [11][12] study the expected value of the total
end-to-end backlog among all flows . These studies typically
provide upper- and lower-bounds of the expected total end-to-
end backlog. However, it is usually difficult to identify which
algorithm attains the smallest expected end-to-end backlog.
Finally, one may use large-deviations theory to characterize
and compare the exponential decay rate with which the prob-
ability that some function of the end-to-end backlog exceeds
a threshold approaches zero, when the overflow threshold
becomes large. Our prior work [6] has applied such a large-
deviations approach to a tree-network with converge-cast for
minimizing the large-deviations decay rate of the probability
that the sum of the end-to-end backlog over all flows exceeds
a large threshold. There, we propose the P-TREE algorithm,

which is shown to be large-deviations optimal. Both the P-
TREE algorithm and the algorithm in [2] share the same
intuition: for either a single flow or for a converge-cast on
a tree topology, one should give priority to links closer to the
destination, which helps to reduce the total end-to-end backlog
more quickly.

In this paper, we study a different but important setting
compared to these prior studies (especially [6]). Specifically,
we are interested in the maximum end-to-end backlog among
all flows. Note that in many scenarios the maximum end-
to-end backlog among all flows is practically more useful
than the total sum. For example, consider again a converge-
cast on a tree where all nodes send packets to the root of
the tree. This setting can model, e.g., a video surveillance
system where all cameras send captured video to a central
monitoring station, or a cellular uplink with multi-hop relays
where all mobiles send data to the base-station in a multi-
hop fashion. Suppose that we need to ensure that the delay
of every video frame or every packet is small. In this case,
it is more important to minimize the maximum end-to-end
backlog among all flows, rather than the sum of the backlog
of all flows. Unfortunately, the maximum end-to-end backlog
turns out to be more challenging to minimize than the sum
of the end-to-end backlog among all flows. As in [2][6], in
order to minimize the end-to-end backlog of a single flow,
one needs to give priority to links closer to the destination. On
the other hand, to minimize the maximum end-to-end backlog,
one needs to give priority to flows whose end-to-end backlog
is large. The key difficulty is that these two priorities are not
always consistent with each other! In another prior work [13],
these two priorities are asymptotically attained together in the
limit by a sequence of scheduling algorithms, which are then
shown to be asymptotically optimal in the large-deviations
sense. However, in practice the algorithms approaching the
limit can have large overflow probabilities when the overflow
threshold of interest is not very large. Hence, it remains a
challenge to find algorithms for minimizing the maximum end-
to-end backlog among multiple flows that are not only large-
deviations optimal, but also have good performance at small
overflow thresholds of interest.

In this paper, we provide both positive and negative results
for this open problem. On the positive side, we provide
a new large-deviations optimal algorithm, called Largest-
Weight-First (LWF), for minimizing the maximum end-to-end
backlog among all flows of a converge-cast on a tree topology.
Our proposed algorithm intelligently combines together the
two priorities that we discussed above in a non-asymptotic
manner. As a result, the LWF algorithm is not only large-
deviations optimal, but also significantly reduces the overflow
probability in small thresholds of interest. To the best of
our knowledge, this is the first such optimal algorithms for
minimizing the maximum end-to-end backlog among all flows
in any converge-cast scenario.

The optimality of LWF is shown based on one of our earlier
results in [3] that, under suitable conditions, an algorithm that
minimizes the drift of a Lyapunov function at every time in

every fluid sample paths (FSP) is also large-deviations optimal
for minimizing the probability that the Lyapunov function
value exceeds a large threshold. Taking the maximum end-
to-end backlog among all flows as the Lyapunov function,
we show that the LWF algorithm minimizes its drift for a
converge-cast on a tree at every time in every FSP. Therefore,
it must be large-deviations optimal. Given that no sample-
path optimal algorithms exist for such a general converge-
cast setting, our result illustrates the potential power and
flexibility with the drift minimizing criterion. (We caution,
however, that it is not straightforward at all to find such
drift minimizing algorithms and to verify the drift minimizing
property, which we will elaborate below and in Section III
Further, the algorithm and the techniques that we use are both
new.)

Given the success of the LWF algorithm in converge-cast
scenarios, we are then interested in developing similar optimal
algorithms for more general problem settings. In particular, we
would like to know whether we can find algorithms (similar
to LWF) that minimize the drift of the maximum end-to-end
backlog in more general settings. It is along this direction
that we report a negative, but fundamental, result. We find a
tree topology that is not a converge-cast, where we show that
there exist no algorithms that can possibly be drift-minimizing
at every time in every FSP! Hence, these results indicate
that, while the drift-minimizing criterion is more flexible and
powerful than the sample-path optimality criterion, it also has
its own limitations. For more general settings, we may have
to search for other criteria to design large-deviations optimal
scheduling algorithms.

The rest of the paper is organized as follows. Section II
defines the system model. We propose the LWF algorithm for
converge-cast networks and prove its optimality in Section III.
Then, the negative result for more general networks is reported
in Section IV. Simulation results are provided in Section V.
In Section VI, we conclude.

II. SYSTEM MODEL
A. Model

We model the topology of a wireless multi-hop network by
a graph G = G(V, €) where V is the set of nodes and £ is the
set of directed edges that represent physical links. There are
F single-path flows in the network. Each flow f corresponds
to a fixed path, which consists of a subset of the physical links
that it transverses. However, for ease of exposition, we will
also view a path as a subgraph of G, consisting of the nodes
and the edges belong to the path. Let the subgraph be denoted
by Py. Let the path collection F = [Py, f = 1,2,...,F] be
the collection of all Py’s. A network (G, F) is defined as a
network topology G equipped with a path collection F.

The transmission on one physical link may interfere with
other physical links. We consider the following one-hop in-
terference! model: each physical link interferes with all other

I'The results in this paper can also be generalized to the K-hop interference
model

physical links that share a common node. This means that
among those physical links that are adjacent to a common
node, at most one of them can transmit at a time. This model
has also been used in [2][6]. Let R; be the capacity of physical
link [, i.e., R; is the amount of data that can be transmitted
over link [in a time slot if [is active and no other interfering
links are active.

Consider network (G, F). For each flow f, we label the link
at the i-th hop from the destination node as llf,z' =1,2,...,ny,
where 7 is the total number of links in its path P;. Note that,
with such a convention, Z{ is the link next to the destination
node, while l{; ; is the link next to the source node. Packets of

flow f arrive at link lf travel multiple hops to [! then depart

from the system We use Pf(lf) to denote the path starting
from link l and ending at the its destination node. Obviously,
Pyl ;) = Py. Note that, it is possible to assign multiple
labels to the same physical link if the link is used by more
than one flows. In the rest of the paper, it is more convenient
to view these multiple labels on the same physical link as
separate logical links, one for each flow. For flow f, the logical
link at the ¢-th hop from its destination is l{ . The capacity of
each logical link is the same as its underlying physical link.
Two logical links interfere with each other if and only if they
share the same physical link 0r thelr corresponding physical
links interfere. We denote by 5) the set of all logical links
in network (G, F). For each logical link li , We use I(Zlf)
denote the set of all logical links interfering with lzf . In the
rest of the paper, when we refer to links with labels, we will
mean logical links.

Let Af(t) be the amount of data offered to the source
node of flow f at time ¢. We assume that Ay(¢) is uniformly
bounded by M, i.e., Af(t) < M for any ¢, f. Moreover, we
assume that Af(t) is i.i.d.? across time. Let Ay = E[Af(t)]
denote the arrival rate, and \ = s, f = 1,2,..,F]. The
capacity region of (G,F) is defined as the largest set of
offered load X that the network can support. We are interested
in the case that the arrival rate vector X is strictly inside
of the capacity region. We use X f (t) to denote the queue
length of flow f at link lf Let Ef () denote the actual
amount of data transmitted over link l at time ¢. Obviously,
Elf (t) < mln{Xf(t), R,s}. The queue length at link l'if is then
updated in the following way.

Ef(t),ifi=1,2,..,n5 — 1

X/ +EL,) -
f(t) ifi =njy.

X7 (t+1 :{
S =X)+ a0 -
(D

Then, the total end-to-end backlog of flow f, X,(t) =

ny
> Xif(t), is governed by
i=1

Xp(t+1) = Xp(t) + As(t) — B (¢).)

2This assumption can be relaxed. The key requirement for the results in
this paper to hold is that the arrival processes satisfy a sample-path large-
deviations principle. As an example, the finite-state irreducible Markov chains
satisfy the sample-path large deviations principle. See Section II-E in [3] for
related discussion.

B. Design Objective

In this paper, we are interested in designing a schedul-
ing algorithm to minimize the maximum end-to-end backlog
among all flows. Specifically, we want to minimize the steady-
state probability that the max-backlog over all flows exceeds
a threshold B, i.e.,

P mex {Xy(4+0)} > B 3)

This is extremely useful in practice. For example, for
multiple flow real-time data transmission applications, such
as video streaming, visual web conference, e.t.c., it is very
important to keep the end-to-end backlog small to meet the
harsh delay constraints. Unfortunately, this quantity is in
general mathematically intractable. Instead, since the above
probability is small, we can instead focus on its asymptotic
decay rate when B becomes large. Specifically, we can define
the following two quantities:

T
1= lgri)loréf 3 log (]P’ [m}gx {X¢(+00)} > B}) 4)

1
—J £ limsup — log (IP’ [max {Xf(+00)} > B]) 5)
B—oo B f
Our objective is to find a scheduling algorithm that maxi-
mizes [and J.

III. END-TO-END BACKLOG MINIMIZATION IN
CONVERGE-CAST NETWORK

In this section, we are interested in a converge-cast scenario
on a tree topology. For a converge-cast, the root O of the tree
is the destination node of all flows in the network. To avoid
any confusion, we use G (V,) to denote the tree topology,
and Fr to denote the path collection for converge-cast. We
will propose a large-deviations optimal algorithm for such a
converge-cast network (Grp, Fr) to minimize the maximum
end-to-end backlog among all flows.

A. Largest-Weight-First Algorithm

We first propose the Largest-Weight-First (LWF) algorithm
for the converge-cast network (Gr,Fr). For each logical
link I/ € SéGT’fT), we define the usage efficiency nlf (t) &
X/ ®

min , 1}. We assign a weight at link llf for flow f as

i

_m(t ZXf

We then use a greedy algorithm to compute a feasible sched-
ule. Specifically, we first schedule the link with the largest
weight, and delete this link and all the other links that interfere
with this link. Then, we schedule the link with the largest
weight from the remaining links, and again delete this link
and all the other links that interfere with this link. We repeat
this process until there is no remaining link. Recall that link
l{ is closest to the destination O, and I} ; 1s closest to the

(6)

source of flow f. In Eqn. (6), a link closer to the destination
tends to have a larger weight than another upstream link from
the same flow. Further, links from flows with larger end-to-
end backlog will also tend to have larger weights. Hence,
the weight definition in the LWF algorithm can be viewed
as a way to combine two priorities, i.e., giving priority to
those flows with larger end-to-end backlog and to those links
closer to the destination. Note that giving priority to the
flow with the largest end-to-end backlog is natural since we
want to minimize the maximum end-to-end backlog among all
flows. Further, the idea that giving priority to links closer to
destination can help drain packets faster has been reported for
a simple linear topology with only one flow [2]. Our proposed
algorithm can be viewed as a generalization to the multi-flow
setting, which combines these two ideas together. However,
we note that when there are two different priorities, they may
not always be compatible with each other. Hence, it is not
at all clear why (6) is the right way to combine these two
priorities. The proof of optimality presented next also requires
new techniques and follows very different lines as the prior
work[2][6].

The LWF algorithm can be formally described in Algorithm
1. In this algorithm, we use v(*) = [y(t),l € S(GT)] 10
denote the scheduling decision at time ¢. v,(t) = 1 if the
logical link [is scheduled, and ~y;(¢) = 0 otherwise.

=

At time slot ¢, calculate the weight for each logical link /.
Let & = SéGT’fT), 7(_%) =0.
while &, # () do
Find a logical link [€ &, with the largest weight.
Set vi(t) =1, & =&\ (Z(1) U {l}).
end

N S R W

The scheduling decision is given by fy(_;f)
Algorithm 1: Largest-Weight-First(LWF) algorithm

To implement the LWF algorithm, we need the queue-length
information for all links. Hence, the LWF algorithm can best
be viewed as a centralized algorithm that uses a separate
control channel to gather queue-length information, compute
the schedule, and then distribute the decision back to each
link. This is a reasonable setting when such a central station
and control channel is available, e.g., in a cellular system
with multi-hop relays. In our analysis, we assume that the
LWEF algorithm has the up-to-date queue-length information
for every link in every time slot. This assumption simplifies the
analysis, and the results can be viewed as an upper bound for
other more practical settings. Further, as readers will see in the
simulation section, even when such an assumption is relaxed,
the LWF algorithm still performs very well in practice.

B. Mathematical Preliminaries

1) Capacity Region: For networks with tree topology under
the one-hop interference model, the c fpacity region is in a
simple form. Suppose that llf1 1,l£ 2 l"“ are all the logical

links adjacent to node v, then the interior of the capacity region

can be represented by a set of linear inequalities,

)\fk

< 1, for any node wv. @)
k=1 ul*
a3

Later in this section, we will also be interested in the
capacity regions of a subnetwork of (Gr, Fr). Consider the
following subnetwork of (G, Fr) given by a subset of flows
A C {1,2,..,F} and a vector z4 = [zf, f € A, where
each z; is an integer between 1 and ny;. For each flow
f € A, the route in the subnetwork is given by a sub-
path of P; starting from the zy-th hop and ending at the
root O, i.e., Py (lf). The subnetwork path collection is then
given by {Pf(l)| f € A}. The subnetwork topology is a
graph consisting of all links traversed by at least one path
Pf(l), f € A, and all vertices adjacent to these links, which
can be represented by fu Pyl ;) (Recall that we view Py(-)

as a graph. A finite union of graphs is defined as follows.
Given G; = {V;, E;}, the union of G; is UG; = (UV;,UE};)).
In the rest of the paper, we will use C (/{, z4) to denote the
capacity region of the above subnetwork and use intC (A, z 4)
to denote its interior. Further, we use £(A, z4) to denote the
set of all logical links of the above subnetwork.

2) Fluid Sample Paths: Given B and T', define the follow-
ing scaled quantities in the time interval [—T, 0] as

B(T+t)
Z Ap(r),zl P (1) = Xf(B(T +1)),
1 . 1 B(T+t)
wf (1) = GXp(B(T +1).el (1) = 5 X:j El(r). ®

fort =5 —T,m = 0,1,..., BT, and by linear interpolation
otherwise. Due to the assumption of bounded arrivals and de-
partures, (a? (t), 27 (t), 28 (1), e P (1)), f = 1,2, F,i =
1,2,...,ny are all Lipschitz continuous. Fix T and take any se-
quence of such scaled processes as B — oo. There must exist a
subsequence that converges uniformly over the compact inter-
val [—T,0]. Any such limit is called a ﬂuid sample path(FSP).
In other words, (af(t),: f(t),zs(t),e (t)) is called an FSP if
there exists a subsequence of (af (1), :vf Bt),x Ty B(t),el B (1))
that converges to it uniformly over [T,0]. Note that in
general, there may exist more than one FSPs out of the same
sequence of scaled processes.

Using the scaled quantities, the probability in (3) can be

rewritten as P

,,,,,,

11. Our interest is

its decay-rate as B — oo. Since the arrival process is i.i.d.,
the scaled arrival process a”(t) satisfies a large deviation
principle with some rate function I7'(-) (Chapter 1.2 in [14]).
This means that, for any set I' of arrival sample paths, the

probability that () falls into I' satisfies: Blim +P(aB(t) €
—00
) = —inlﬂ IT(a). In the typical large-deviation literature,
ac

if we can additionally verify that the mapping from a®(t)
to x?(t) is continuous under a given scheduling algorithm,

we can then apply the contraction principle [14] and obtain
the decay-rate of the overflow probability by finding the
"most likely path to overflow". However, there are significant
difficulties in applying this approach in multi-hop network.
First, it is usually very hard to verify the continuity of the
mapping from a®(t) to Ty B(t). Second, finding such "most
likely path to overflow" involves solving a high-complexity
multi-dimensional calculus-of-variations problem. In this pa-
per, we use a different approach which is first proposed in [3]
to circumvent these difficulties. The result of [3] propose a
drift minimizing criterion, which is sufficient for an algorithm
to attain the largest decay-rate. We will go into details in
Section III-C.

Since the convergence to an FSP is uniform, the FSP
(af(t),x{(t),xf(t),e{(t)) is also Lipschitz continuous, and
therefore, its derivative exists almost everywhere (a.e.)
over [~T,0]. Define the Lyapunov function V(x(t)) £
maxy ¢(t). It is easy to check that V'(x(t)) is also Lipschitz
continuous, and thus is differentiable a.e. with respect to ¢.
Denote by Z the set of all time instances where the FSP or the
Lyapunov function V' (z(t)) is not differentiable with respect
to t. Then Z is of measure 0. In the rest of this paper, we will
restrict our analysis to those ¢ ¢ Z, and we call such a time
instant a regular time.

At any regular time ¢, we define ay(t) = “ay(t) and
W (t) = E : (). Then, we can derive the following equations
for an FSP from equation (1) and (2) (refer to [6] for detailed
derivation):

. t0-{

'u'7f+1(t)_luzf(t)7 lf/L:15277nf_1a
ap(t) = pl(t), ifi=ny.
©)

Dp(0) = g 1) —] 1) (10)

Eqn. (9) and (10) can be interpreted as the limits of (1) and
(2) as B — oo. As for V(z(t)), define M(t) = {f|zs(t) =
max {x (t)}} as the set of flows that have the largest end-
to-end backlog in the FSP at time ¢. Then,

GV(©) = max {ag(0) - (1))

11
dt M(t) (b

In addition, we have the following lemma that imposes
additional constraints for u{ (t).

Lemma 1. (Proposition 1 in [6]) Under any algorithms, any
FSP (ay(t), 2! (), xs(t), el (t)) must satisfy the following flow
constraint for each flow f:

. B f _
,u{(t)g{ ifi=1,2,..,ny—1 and x;(t) =0,

/1{+1(t)7
if i=ny; and x!(t) = 0.

ay(t),

(12)
For each node v, suppose that lzf1 , lzf;, . are all the links

that are adjacent to node v. Then, any FSP must also satisfy
the following node constraints:

lfU?)

Yo I

Z i <1, for all nodes v, (13)
R,
7'k:

ul >0, forall i,f. (14)

Lemma 1 can be viewed as follows. The variables ;rf (t) can
be viewed as the service rate of link lf The first part of (12)
states that when the backlog z; () is 0, we need the upstream
link l 1 to serve as many packets as the downstream link l
A srmrlar interpretation holds for the second part of (12). In

(13), & (f) can be viewed as the fraction of time that link lf
l

activated. The sum of the fraction of time must be no greater
than 1 for mutually interfering links around each node v.

C. Optimality of the LWF Algorithm

We will use the techniques of [3] to prove that the LWF
algorithm achieves the largest asymptotic decay-rate of the
maximum end-to-end backlog overflow probability. We would
like to prove the following result.

Theorem 2. The LWF algorithm achieves the optimal decay-
rate for the maximum end-to-end backlog among all flows, i.e.,
for any scheduling algorithm m, we have

lim sup % log (IP’LWF [f . {X¢(400)} > B])

max
B—oo =12

Ly

B—oo

< liminf % log (]P’7r [{Xf(+00)} > B}) (15)

max
1,2,...F
where PLWE and P™ denote the stationary distribution under
algorithm LWF and 7, respectively.

To prove Theorem 2, we use the result of Theorem 8 from
[3], which we restated here for reference.

Theorem 3. Let mg be a scheduling algorithm that satisfies
Assumptions 1,2,3,4,5 and 6 of [3]. Then the algorithm mg
attains the optimal decay-rate in the sense of (15).

To prove Theorem 2, we need to justify the Assumptions
1,2,3,4,5 and 6 of [3] for the LWF algorithm. Due to space
constraints, we list these assumptions (except Assumption
4) in the technical report [10]. Compared to Assumption 4,
Assumptions 1,2,3,5,6 are relatively easy to verify. We verify
Assumptions 1,2,3,5,6 for the LWF algorithm in our technical
report [10]. Next, we will focus on Assumption 4, which is
restated below.

Assumption 4. (Drift Minimization Assumption) For any

FSpP (af(t),xf(t),xf(t),e{(t)) under the algorithm T, the
following holds for all regular times t.
d
—V(z(t)) = min max {ay(t 16
(x(t)) i f€M>(<t){ OESTS B
subject to i satisfies (12)(13)(14).

In Eqn. (16), x(t), o(t) are fixed for a given FSP at the time
t. i = [ﬁf | represents a feasible scheduling decision (which
is not necessarily the same as the decision according to the
FSP). Hence, frena)(c {ay(t)— fil } is the drift of the Lyapunov

function if the scheduhng decision were [i. By taking the
minimization over all feasible fi’s, (16) essentially states that

the drift of the Lyapunov function at each time under algorithm
7o is also the minimum possible.

Theorem 4. The LWF algorithm satisfies the drift minimiza-
tion assumption.

Since we have verified that the LWF algorithm satisfies
1,2,3,5 and 6 in our technical report, then Theorem 2 follows
directly from Theorem 4. Therefore, It is sufficient to prove
Theorem 4. To begin with, we need to understand what should
be the optimal solution of (16).

1) Optimal Solution of (16): Clearly, to minimize the objec-
tive function in (16), we only need to serve flows in M(t) as
much as possible. Note that in the optimization problem (16),
minimizing the objective is equivalent to maximizing ﬂ{ (t)
for all f € M(t) since ay is fixed by the given FSP. From
constramt (12) we note that there is no constraint relating
uz and p .J > z if] (t) > 0. An intuitive explanation is
the following. x; () > 0 means that the queue length in the
original discrete time system is very large (the queue length
is approximately szf(t), and B is large). Therefore, link lif
always has enough packets to transmit. In contrast, in case of
x{(t) = 0, we need link Zif+1 to serve as many packets as
link lzf . Hence, we can intuitively view the link that has non-
zero backlog in the FSP and that is closest to the destination
of flow f as a "barrier" for flow f. To achieve the optimal
solution of (16), we only need to consider those links between
the destination and the barrier. To be specific, for each flow
f € M(t), define the barrier of flow f as

by(t) = {

Given A C M(t), let ba(t) = [bs(t),f € A]. Note that
if the growth rate of the end-to-end backlog of flow f is g,
we must have i} = aj(t) — g. Further, all i/ for i < b;
must be no less than pJ{ due to constraints in (12). Hence,
[(af(t) — g), f € A] must be supportable by the subnetwork
with topology U Pf(lf). Therefore, we can show that the

if z(t) >0,
if S[}f(t) = 0.

argr_nin{i|x{(t) > 0}, an
nf,

following value g A() gives the minimal possible growth rate
of the maximum backlog among all flows f € A. To be
precise, if 2 f(t) > 0 for some f € A, then

ga(t) 2 inf {g|((as(t) = 9)*) ;4 € C(AbAM) } -
Otherwise, if zf(t) = 0 for all f € A, then

ga(t) 2 inf {g = 0/((as(t) — 9)") s €

Here, (u)* £ max{u,0}.

Consider g (t) for M(t). For simplicity, we use the
notation g(t) to stand for gaq)(t). The following lemma
states that g(t) attains the optimality in (16). See our technical
report[10] for the detailed proof.

C(A b))}
(18)

Lemma 5. ¢(t) is the optimal solution of the optimization

problem (16), i.e.,
A1)} = g(t).

uIrIaltlli}ies fIGn./a}((t){af (t)
(12)(13)(14)

2) Proof of the Optimality of LWF Algorithm: Next, we will
show that the LWF algorithm achieves the minimum drift g(¢).
The key difficulty is that the LWF algorithm does not know
the value of «(t) before hand. However, by excavating some
inherent properties of the LWF algorithm, we could show that
the LWF algorithm always achieve the optimality.

Given an FSP, assume that x(t) is the service rate under the
LWF algorithm. Denote by My(¢) the set of flows in M (t)
that have the maximum growth rate, i.e.,

d
{remgar = max {Goro}],
where La¢(t) = as(t) —] (t).

Then, all flows in M (¢) have the same end-to-end backlog
and the same derivative in the corresponding FSP. If x¢(t) =
4 2 4(t) = 0 for one flow f € M(t), thenzy(t) = La,(t) =
0 holds for all flows. In this case, the max growth rate under
the LWF algorithm is 0. Note that g(¢) < 0 because of Lemma
5. However, g(t) > 0 since the backlog is zero (see (18)).
Hence, g(t) = 0 and Theorem 4 holds trivially. Hence, we
next focus on the case z(t) > 0 or Lz(t) > 0 for all
f e Mo(t).

Consider gy, +)(t) for Mg (t). Again, for simplicity, we use
go(t) to stand for guq,(¢)(t). It is easy to check that go(t) <
g(t).

Recall we have defined the barrier for flow f € M(t). Now
we need to introduce the concept of potential barrier by (t)
for f € Mo(t). V;(t) is the first link that has the potential
to become a barrier for flow f € My(t), which is formally
defined as follows:

Mo(t) =

b (t) = argmln{ |z (t) > 0 or —2/ (t) > 0}. (19)

dt i
Since we already assume that 4 (t) > 0 or 4x(t) > 0 for
each flow f € My(t), it is easy to check that the potential
barrier is well defined. Further, let by, = [, f € Mo].

We consider the FSP together with the original discrete-
time system. Let (a (1), B (1), 7 (t), el'B(t)) be the se-
quence of scaled processes that converge uniformly to
(as(t),z (t) zf(t)7e (t)). We then find the following result
which is the key in the proof of the optimality of the LWF
algorithm.

Lemma 6. For any 0 < e < 1, there exists 6(¢) > 0. For

any fixed 0 < 4 < E) , there exist B((S) > 0, such that for all

B > B(9) and all tlme slots tg € (B(t+T+96), B(t+1+20)),
we have

1) The weight of any logical link l{ ¢ E(Mo,bly,) is

strictly smaller than the weight of any logical link

f € My(t), ie., qf(to) < (Jg{/ (to)-
2) Conszder one specific link lb, f € My(t), let I’(lf}_)

be the set of all the logical links in E(Mo,bly,,)
that interfere with link lb,.

7 (lff) U{w, f} should be scheduled at time instance t.
Moreover, if all the links in I’(lb,f) interfere with

Then at least one link in

each other, then the usage efficient of any link l{ €

I’(l{:,) U{lg, Y(if it is scheduled) must satisfy 7]{ (to) >
1-— ef. !

The rigorous proof of Lemma 6 has to deal with the original
discrete-time system, which is shown in our technical report
[10]. However, it is easier to explain the intuition in the sense
of FSP. In the immediate future of time ¢, those potential
barrier links always have none zero backlog. Therefore, in
the original discrete-time system, their backlog must be larger
than their capacity, and thus their usage efficiency must
be 1. Hence, the weight of each potential barrier links is
approximately equal to the maximum end-to-end backlog. For
those logical links not in £(Mo, b’y), it is easy to check that
their weights are strictly smaller than the maximum end-to-
end backlog. Because, either the corresponding flow is not in
M, or it is in My, but at least the backlog of the potential
barrier link must be subtracted from the weight of the link.
Therefore, they must have smaller weights than those potential
barrier links as is stated in part (1). The results in part (2) are
direct corollaries of part (1). For the first part of (2), if none
of the links in Z' (ll{,) is scheduled, link lb, will have larger

weight than the rest of its interfering links not in (Mo, Upg,)-
Then link lf should be scheduled. As for the second part
of (2), applymg the same argument, we know that for link
l{ ezl

i) to be activated, it must have weight larger than

¥

that of l{:, . Note that if we ignore the usage efficiency term,
!

the weight of link lf and l{;, are comparable because they are
both approximately equal to the maximum end-to-end backlog
in FSP, and further, link 11{’ has usage efficiency equal to 1.

Hence, lf must also have usage efficiency close to 1, otherwise
it cannot be scheduled.

Now we are ready to prove Theorem 4. By contradiction,
suppose that the LWF algorithm does not minimize the drift.
Then, we must have ay(t) — Al(t) = max {agp(t) —

fremt)
Al (0} > g(t) > go(t), and thus, as(t) — go(t) > ff (¢)
for any [€ Mo(t) From the definition of go(¢), we can
then obtain (1] (), f € Mot)) € intC(Mo(t), bage(s) (t))-
Noting that b, () < b (), it is easy to check from the defini-
tion that intC’(Mo(tLbMo(t)(t)) € int C(Mo (1), bpy, 1y (1))
Therefore, (,u{(t)j € Mo(t)) € intC(Mo(t), ‘o) (1))

in the subtree Py Y, Pf(lb, (1))- Letall

of its interfering links in &(Mo, by, (1)) be l{ll,lf;,. .,llfi.

Then according to Eqn. (7), there exist € > 0 such that

Consider a leaf link lZf

f* Y fr
Mo N e (20)
Rl{: k=1 Rlif:

For the above ¢, according to Lemma 6, we know that for

0<d< @ and B > B(8) > 0, in the time period (B(t+T+
9), B(t+T+26)) at least one of the links lf* ,l{l , lf, . ,lZf:’
should be scheduled. On the other hand, these links interfere
with each other. Then, exactly one of these links must be
scheduled at one time instance. Further, their usage efficiency
is larger than 1 — €. Hence, we can show that(refer to [10] for
details)

f* Yy fr
T T 1)
Rlif: k=1 Rl{]’;

Finally, since the derivatives of the backlog of links (except
potentlal barrier links) in £(Mo, by,) stay at zero, we have

pl =l pf = pl k= 1,2,y Then, Eqn. (21)
contradicts to Eqn. (20).

Therefore, the LWF algorithm satisfies the drift minimiza-
tion assumption, and thus achieves the largest decay rate for

the overflow probability of the maximum end-to-end backlog.

IV. DRIFT MINIMIZATION IN GENERAL NETWORKS

In the previous section, we establish the large-deviations
optimality of LWF in minimizing the maximum end-to-end
backlog for converge-cast by showing that LWF satisfies the
drift minimization assumption. Naturally, our next question
is that whether we can develop drift-minimizing algorithm
(similar to LWF) that is optimal for more general network
topologies and traffic profiles. In this direction, we will show
some negative, but fundamental, results. First, we can show
that LWF is not drift minimizing even for a tree topology that
is not a converge-cast (like Fig. 1. Refer to our technical report
[10] for more details). Then, a natural question is whether there
exists other algorithms that can minimize the drift for general
networks. Unfortunately, we will prove next that no algorithm
could minimize the drift in the network show in Fig. 1. Hence,
in order to design optimal scheduling algorithms, we must find
new criterions (other than drift minimizing).

‘ﬂl/

(o I—0—2—o

Fig. 1. A counter example of LWF algorithm.

The network shown in Fig. 1 is a tandem network with four
nodes and three links. Two flows are active in this network.
The routes of the two flows are (1,0) and (1, 2) respectively.
Assume that the capacity of each link is 1, i.e., at each time
slot, one link can transmit at most one packet. We have the
following result.

Theorem 7. For the network in Fig. 1, no algorithm can
minimize the drift in every regular time for every FSP.

We note that Theorem 7 is quite strong. It holds even when
we include the possibility of non-causal algorithms. The basic
idea of proving Theorem 7 is to construct a sequence of FSPs,

and then find a contradiction if we want to minimize the drift
for every FSP. To proceed, we need the following lemma.

Lemma 8. Given any FSP for the network shown in Fig.
1. Let a(t) = [a1(t) az(t)]” denote the arrival process in
FSP and let o(t) = La(t). Assume that a:{(()) =0,f =
1,2, = 1,2 and that algorithm 7 can minimize the drift at
every regular time of the FSP. Then if |a1(t) — ag() <4
almost everywhere(a.e.) in [0, T], we must have z3(t) = z3(t)
and z}(t) = 23(t) = 0 in [0, T).

The condition |a1(t) — aa(t)| < 1 states that the rates of
the two flows do not differ too much. If such an assumption is
satisfied, then there exists service rate p satisfying constraints
(12)(13)(14), such that oy (t) — pi(t) = aa(t) — p?(t). Under
this assumption, the drift-minimizing FSP will be able to
balance the end-to-end backlog for the two flows. The detailed
proof is shown in our technical report [10].

Now we are ready to prove Theorem 7.

Proof: We prove by contradiction. Assume that there
exists an algorithm 7 that minimizes the drift for the above
network at every regular time in every FSP.

The actual arrival process is a random process defined on
Arfw, t)] For
A2 ((JJ, t) ’

space 2 x N. We represent it by A(w,t) = [
} can be seen as

each w € 2, A(w) = {A(w,t),t =0,1,2,...
a 2 X 0o matrix.
For convenience, we define two matrices M; and M>s.

10101010
M [10000000]’
100000O0O
Ma [10101010]'

Using these two matrices, we construct a sequence of
realizations of the arrival process as follows, where the k-th

(k=1,2,...) realization wy, is given by
A(wg) = [MyMy -+ My MyMy -+ My My M, -+ My -+].
k k k

We assume that there are no packets in the network at the
initial time(tf = 0). Next, we define scaled versions of the
system based on Eqn. (8). Here, we let 7' = 16. Define a
matrix B = {By, ;},k = 1,2,...,5 = 1,2,..., where By, ; =
kj. It is easy to check that, for any fixed j, as k — oo,

a®ri (wy,) converge uniformly to a piecewise linear function
al)(t) = (J)(t) aéj)(t)} , and it is easy to check that (refer
to [10] for details)

af(t) = 4a0(t) = { 3o df B << T
- = 1 e T(20+1) T(i+1)
3 lf T S t < f’

: d Logf T < p < TQiHD
O‘g])(t) = *aéy)(t) = Ei . T(2i_+1) ° T(i+1)
dt 3 if TR < < TE

where ¢t = 0,1,...,5 — 1.
Note that this FSP satisfies the conditions in Lemma 8.

Therefore, zi(t) = z3(t) and 21(t) = 2%(t) = 0 in
[0,7] under algorithm m. By solving Eqn. (16), we can
infer the queue evolution of the drift-minimizing FSP as
xgj)(T) = xéj)(T) = T (refer to [10] for details). Note
that kli_ii)ioxf;k’j (Wi, T) = x(17)(T). Therefore, for any j, there
exists k;, such that
xfkj'] (wi,, T) > %T.

Now, we consider another sequence of scaled arrival pro-
cesses a’hii (wk,,t), where k; is chosen according to the
value that leads to Eqn. (22). Let a(*) (t) = [ag*)(t) ag*)(t)} ,
where ag*)(t) = aé*)(t) = &t.

We can show that a* (wg,,t) converges uniformly to
a(*)(t) as j — oo (refer to [10] for details) such that

2ol = ol 0) = S0 = o

t) = —
D)= Sal(0) = .
For this FSP, drift-minimization would lead to xg*) (T) =

(22)

xg*)(T) = 0 (refer to [10] for details). Note that
lim 2, 7 (wi;, T) = acl*)(T) = 0. Therefore, there exists
J]— 00

J, such that ;"7 (wy,, T) < T
This contradicts to Eqn. (22) Hence, the result of the
theorem must hold. [|

V. SIMULATION

In this section, we present our simulation results for the
topology shown in Fig. 2.(a). This topology contains 10 nodes,
with one node as the root, 2 nodes at depth 1, 5 nodes at
depth 2, and 2 nodes at depth 3. The number near each link
represents its capacity. There are 7 flows in the network. The
number of packets arrived at each flow per time slot admits
to Poisson distribution. The number near each flow indicates
the arrival rate. One can verify that the resulting offered-load
vector has already exceeded 0.9 of the optimal capacity region
according to Eqn. (7).

We are interested in the overflow probability of the max-

X5} 2 B

We simulate the system under three different scheduling
algorithms: LWF, back-pressure, and P-TREE.

We give a brief overview about these algorithms. In back-
pressure algorithm[1], the weight of each logical link is given
by the difference between the backlog at this hnk and its
subsequent link. For example, the weight of link l at time
instance ¢ is X/ T(t) — le 1(t)(Here, we use the convention
that X/ (t) = 0). And then we schedule those logical links that
maximizes the total weight. As for the P-TREE algorithm[6],
it is a large-deviations optimal algorithm for minimizing the
total backlog of all flows, which gives priority to those links
nearer to the destination and links that have larger capacity.

In our analysis of the LWF algorithm, we have assumed per-
fect queue-length information in every time slot. However, in
practice, the delivery of queue-length information may suffer

imum end-to-end backlog, i.e., P . m

s

Destination

Flow 1 .
(rate: L.S/),1

Flow 5
2 (rate:0.5)
Flow 2» 4 & Flow 6\’
(rate: 1. 5), s (rate:1.1)

Flow 3 Flow 4
& (rate:1.2)(rate: 1) > Flow 7

(rate:1)

(a) Network topology.

100 ‘ == back-pressure
Yo, -x- LWF(perfect queue-length)

.é\ ’.. = P-TREE
E -4- LWF(imperfect queue-length)
S,
o 10 °+ 1
=
o
2
o
®

-4
S L]
3 10

0 20 40 60 80 100 120
max backlog

(b) Simulation result.

Fig. 2. Comparison between LWF, back-pressure, and P-TREE algorithms.

from delay and loss. Therefore, we simulate the performance
of the LWF algorithm both with and without perfect queue-
length information. In the latter case, the weight of each logical
link / is based on the queue-length information r; time slots
before, where r = [r;] is a set of random variables uniformly
distributed in [0,20].

In Fig. 2.(b), we plot the
P L_rlngx 7{Xf(t)} > B| vs the threshold B with the

y-axis in the log scale. We observe that our LWF algorithm
performs best not only in terms of decay rate, but also in
terms of actual overflow probability. The performance of
P-TREE algorithm and back-pressure algorithm are both
significantly worse. This is because, in our network setting,
while flow 1 and flow 2 have the same rate, they are at
different depth: flow 1 is at depth 1, and flow 2 is at depth 3.
In P-TREE algorithm, priority is given to flow 1 as it is closer
to destination. Similarly, in the back-pressure algorithm, the
link I} is more likely to have larger weight, since flow 1
only has one hop. Hence, flow 1 again has a higher priority.
For both P-TREE and back-pressure, giving priority to flow
1 hurts the packet transmission of flow 2. Therefore, their
performance are poor in terms of the maximum end-to-end
backlog. Finally, note that the LWF algorithm with imperfect
queue-length information still performs very well. This
indicates that although our theoretical analysis is based on
the assumption of perfect queue-length information, the
insights of the algorithm obtained can still be effective even
in practical settings with imperfect queue-length information.
Additional simulation results (including a comparison with
[13]) is available in our technical report [10].

overflow probability

VI. CONCLUSION

We study the scheduling problem for multi-hop wireless
network under one-hop interference model. We first focus
on the case of converge-cast on a tree topology. Using a
large-deviation framework, we design a new LWF algorithm
and show that it is large-deviations optimal for minimizing
the maximum end-to-end backlog across flows. We prove the
large-deviation optimality of the LWF algorithm by showing
that it minimizes the drift at every time in every FSP. Then, we
study large-deviations optimal algorithms in a more general
setting. We provide a negative result that drift minimizing
algorithms do not exist for some topologies. Finally, the
simulation results indicate that the proposed LWF algorithm
significantly outperforms other algorithms in the literature not
only in terms of the asymptotic decay rate, but also in terms
of the actual overflow probability.

Acknowledgement:The work has been partially supported by
NSF through grants CNS-0643145, CNS-0721477 and CNS-
0721484, and by the Purdue Research Foundation.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability Properties of Constrained

Queueing Systems and Scheduling Policies for Maximum Throughput in

Multihop Radio Networks,” IEEE Transactions on Automatic Control,

vol. 37, no. 12, pp. 1936-1949, December 1992.

L. Tassiulas and A. Ephremides, “Dynamic Scheduling for Minimum

Delay in Tandem and Parallel Constrained Queueing Models,” Annals

of Operation Research, vol. 48, pp. 333-355, 1993.

[3] V.J.Venkataramanan and X. Lin, “On the Queue-Overflow
Probability of Wireless Systems: A New Approach Combining
Large Deviation — with Lyapnov ~ Functions,” submitted to
IEEE Trans. Info. Theory, 2009. [online]. Available:
https://engineering.purdue.edu/%7elinx/publications.html.

[4] C. Joo, X. Lin, and N. B. Shroff, “Understanding the Capacity Region
of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless
Networks,” IEEE/ACM Transactions on Networking, vol. 17, no. 4, pp.
1132-1145, August 2009.

[5] S. Hariharan and N. B. Shroff, “On Optimal Dynamic Scheduling for
Sum-Queue Minimization in Trees,” IEEE WIOPT, May 2011

[6] V. J. Venkataramanan and X. Lin, “Low-Complexity Scheduling Algo-
rithm for Sum-Queue Minimization in Wireless Convergecast,” in IEEE
INFOCOM, Shanghai, China, April 2011.

[7] L. Bui, R. Srikant, and A. L. Stolyar, “Novel Architectures and Algo-
rithms for Delay Reduction in Back-Pressure Scheduling and Routing,”
in IEEE INFOCOM Mini-Conference, April 2009.

[8] L. Ying, R. Srikant, A. Eryilmaz, and G. E. Dullerud,“A Large Devia-
tions Analysis of Scheduling in Wireless Networks,” IEEE Transactions
on Information Theory, vol. 52, no. 11, pp. 5088-5098, November 2006.

[9] V.J. Venkataramanan and X. Lin, “On Wireless Scheduling Algorithms
for Minimizing the Queue-Overflow Probability.” IEEE Transactions on
Networking, vol. 18, no. 3, June 2010.

[10] S. Zhao and X. Lin, “Scheduling Algorithm for End-to-
End Backlog Minimization in Wireless Multi-hop Networks,”
Technical Report, Purdue University, 2011. [Online]. Available:
http://web.ics.purdue.edu/%7ezhao147/.

[11] M. J. Neely, “Delay Analysis for Max Weight Opportunistic Scheduling
in Wireless Systems,” IEEE Transactions on Automatic Control, vol. 54,
no. 9, pp. 2137-2150, Sept. 2009.

[12] M. J. Neely, “Delay Analysis for Maximal Scheduling with Flow

Control in Wireless Networks with Bursty Traffic,” IEEE Transactions

on Networking, vol. 17, no. 4, pp. 1146-1159, August 2009.

V. J. Venkataramanan, X. Lin, L. Ying and S. Shakkottai, “On Schedul-

ing for Minimizing End-to-end Buffer Usage Over Multihop Wireless

Networks,” in IEEE INFOCOM, San Diego, CA, March 2010.

[14] A. Dembo and O. Zeitouni, “Large Deviations Techniques and Applica-
tions,” 2nd ed. New York: Springer-Verlag, 1998.

[2

—

[13]

