
On the Design of Scheduling Algorithm for
End-to-End Backlog Minimization in Wireless

Multi-hop Networks
Shizhen Zhao and Xiaojun Lin

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN, USA

Email: {zhao147, linx}@purdue.edu

Abstract—In this paper, we study the problem of link schedul-
ing for multi-hop wireless networks with per-flow delay con-
straints. Specifically, we are interested in algorithms that max-
imize the asymptotic decay-rate of the probability with which
the maximum end-to-end backlog among all flows exceeds a
threshold, as the threshold becomes large. We provide both
positive and negative results in this direction. By minimizing the
drift of the maximum end-to-end backlog in the converge-cast
on a tree, we design an algorithm, Largest-Weight-First(LWF),
that achieves the optimal asymptotic decay-rate for the overflow
probability of the maximum end-to-end backlog as the threshold
becomes large. However, such a drift minimization algorithm
may not exist for general networks. We provide an example in
which no algorithm can minimize the drift of the maximum end-
to-end backlog. Finally, we simulate the LWF algorithm together
with a well known algorithm (the back-pressure algorithm) and a
large-deviations optimal algorithm in terms of the sum-queue (the
P-TREE algorithm) in converge-cast networks. Our simulation
shows that our algorithm significantly performs better not only
in terms of asymptotic decay-rate, but also in terms of the actual
overflow probability.

I. INTRODUCTION

In this paper, we study the link scheduling problem for
multi-hop wireless networks to improve the end-to-end delay
performance. In such networks, each flow transmits packets
from source to destination in a multi-hop fashion. We assume
that each flow has a fixed route from the source to destination.
Due to wireless interference, there are both intra-flow con-
straints (i.e., links at different hops of a flow may interfere with
each other) and inter-flow interference (i.e., links of different
flows may interference with each other) in the system. Further,
packets from multiple flows may compete for the service at a
common link. Hence, it becomes a challenging problem to
determine how link transmissions and packet transmissions
should be scheduled in order to minimize some notion of end-
to-end delay, subject to interference constraints.

When one is only concerned about the stability of the
system, it is well-known that the back-pressure algorithm [1]
is throughput-optimal, i.e., it can stabilize a multi-hop wireless
system under the largest set of offered-load vectors. However,
stability only means that the backlog in the system remains
finite, and is inadequate for many delay-sensitive applications
that require stringent end-to-end delay guarantees. In fact, it
has been observed that the back-pressure algorithm can have

very poor end-to-end delay performance [7]. Therefore, it is
important to study finer performance metrics for the end-to-
end delay and design scheduling algorithms that are optimal
for these metrics. We note that characterizing the end-to-
end delay in multi-hop wireless networks is usually a very
challenging problem. Although there has been a considerable
body of works on the delay performance of single-hop wireless
networks (e.g., [8][9]), results on the end-to-end delay perfor-
mance for multi-hop wireless networks are more limited [6].
In multi-hop networks, the packet arrivals at downstream links
are the departures from upstream links. Hence, the statistics of
the arrival processes at downstream links are often unknown
beforehand. As a result, the end-to-end delay performance in
multi-hop systems is much more difficult to characterize and
optimize than single-hop systems.

As is typical in the literature [8][13], we use the end-to-
end backlog of a flow, i.e., the total backlog of the flow over
all links along its path, as a measure for its end-to-end delay
performance. Most existing results either focus on minimizing
the end-to-end backlog of a single flow or on the total end-
to-end backlog among all flows. For the single flow case (and
therefore the system can be viewed as a tandem network), the
work in [2] provides a scheduling algorithm that is sample-
path optimal for minimizing the end-to-end backlog. Such
sample-path optimality results attain the strongest sense of
optimality. However, they are also the most demanding, and
hence their applicability is the most restrictive. In fact, for
more general topologies with multiple competing flows, e.g., a
tree topology with converge-cast, one can show that there may
not even exist sample-path optimal algorithms [5]. Alternately,
the works in [11][12] study the expected value of the total
end-to-end backlog among all flows . These studies typically
provide upper- and lower-bounds of the expected total end-to-
end backlog. However, it is usually difficult to identify which
algorithm attains the smallest expected end-to-end backlog.
Finally, one may use large-deviations theory to characterize
and compare the exponential decay rate with which the prob-
ability that some function of the end-to-end backlog exceeds
a threshold approaches zero, when the overflow threshold
becomes large. Our prior work [6] has applied such a large-
deviations approach to a tree-network with converge-cast for
minimizing the large-deviations decay rate of the probability

that the sum of the end-to-end backlog over all flows exceeds
a large threshold. There, we propose the P-TREE algorithm,
which is shown to be large-deviations optimal. Both the P-
TREE algorithm and the algorithm in [2] share the same
intuition: for either a single flow or for a converge-cast on
a tree topology, one should give priority to links closer to the
destination, which helps to reduce the total end-to-end backlog
more quickly.

In this paper, we study a different but important setting
compared to these prior studies (especially [6]). Specifically,
we are interested in the maximum end-to-end backlog among
all flows. Note that in many scenarios the maximum end-
to-end backlog among all flows is practically more useful
than the total sum. For example, consider again a converge-
cast on a tree where all nodes send packets to the root of
the tree. This setting can model, e.g., a video surveillance
system where all cameras send captured video to a central
monitoring station, or a cellular uplink with multi-hop relays
where all mobiles send data to the base-station in a multi-
hop fashion. Suppose that we need to ensure that the delay
of every video frame or every packet is small. In this case,
it is more important to minimize the maximum end-to-end
backlog among all flows, rather than the sum of the backlog
of all flows. Unfortunately, the maximum end-to-end backlog
turns out to be more challenging to minimize than the sum
of the end-to-end backlog among all flows. As in [2][6], in
order to minimize the end-to-end backlog of a single flow,
one needs to give priority to links closer to the destination. On
the other hand, to minimize the maximum end-to-end backlog,
one needs to give priority to flows whose end-to-end backlog
is large. The key difficulty is that these two priorities are not
always consistent with each other! In another prior work [13],
these two priorities are asymptotically attained together in the
limit by a sequence of scheduling algorithms, which are then
shown to be asymptotically optimal in the large-deviations
sense. However, in practice the algorithms approaching the
limit can have large overflow probabilities when the overflow
threshold of interest is not very large. Hence, it remains a
challenge to find algorithms for minimizing the maximum end-
to-end backlog among multiple flows that are not only large-
deviations optimal, but also have good performance at small
overflow thresholds of interest.

In this paper, we provide both positive and negative results
for this open problem. On the positive side, we provide
a new large-deviations optimal algorithm, called Largest-
Weight-First (LWF), for minimizing the maximum end-to-end
backlog among all flows of a converge-cast on a tree topology.
Our proposed algorithm intelligently combines together the
two priorities that we discussed above in a non-asymptotic
manner. As a result, the LWF algorithm is not only large-
deviations optimal, but also significantly reduces the overflow
probability in small thresholds of interest. To the best of
our knowledge, this is the first such optimal algorithms for
minimizing the maximum end-to-end backlog among all flows
in any converge-cast scenario.

The optimality of LWF is shown based on one of our earlier

results in [3] that, under suitable conditions, an algorithm that
minimizes the drift of a Lyapunov function at every time in
every fluid sample paths (FSP) is also large-deviations optimal
for minimizing the probability that the Lyapunov function
value exceeds a large threshold. Taking the maximum end-
to-end backlog among all flows as the Lyapunov function,
we show that the LWF algorithm minimizes its drift for a
converge-cast on a tree at every time in every FSP. Therefore,
it must be large-deviations optimal. Given that no sample-
path optimal algorithms exist for such a general converge-
cast setting, our result illustrates the potential power and
flexibility with the drift minimizing criterion. (We caution,
however, that it is not straightforward at all to find such
drift minimizing algorithms and to verify the drift minimizing
property, which we will elaborate below and in Section III.
Further, the algorithm and the techniques that we used are
both new.)

Given the success of the LWF algorithm in converge-cast
scenarios, we are then interested in developing similar optimal
algorithms for more general problem settings. In particular, we
would like to know whether we can find algorithms (similar
to LWF) that minimize the drift of the maximum end-to-end
backlog in more general settings. It is along this direction
that we report two negative, but important, results. First, we
show that the LWF algorithm is not drift minimizing for a
tree topology that is not a converge-cast. In fact, we show that
it is not even throughput optimal in such a setting. Second
(and perhaps more importantly), we find a tree topology that
is not a converge-cast, where we show that there exist no
algorithms that can possibly be drift-minimizing at every time
in every FSP! Hence, these results indicate that, while the
drift-minimizing criterion is more flexible and powerful than
the sample-path optimality criterion, it also has its own limi-
tations. For more general settings, we may have to search for
other criteria for designing large-deviations optimal scheduling
algorithms.

The rest of the paper is organized as follows. Section II
defines the system model. We propose the LWF algorithm
for converge-cast networks and prove its optimality in Section
III. Then, the negative results for more general networks are
reported in Section IV. Simulation results are provided in
Section V. In Section VI, we conclude.

II. SYSTEM MODEL

A. Model

We model the topology of a wireless multi-hop network by
a graph G = G(V, E) where V is the set of nodes and E is the
set of directed edges that represent physical links. There are
F single-path flows in the network. Each flow f corresponds
to a fixed path, which consists of a subset of the physical links
that it transverses. However, for ease of exposition, we will
also view a path as a subgraph of G, consisting of the nodes
and the edges belong to the path. Let the subgraph be denoted
by Pf . Let the path collection F = [Pf |f = 1, 2, ..., F] be
the collection of all Pf ’s. A network (G,F) is defined as a
network topology G equipped with a path collection F .

The transmission on one physical link may interfere with
other physical links. We consider the following one-hop in-
terference1 model: each physical link interferes with all other
physical links that share a common node. This means that
among those physical links that are adjacent to a common
node, at most one of them can transmit at a time. This model
has also been used in [2][6]. Let Rl be the capacity of physical
link l, i.e., Rl is the amount of data that can be transmitted
over link l in a time slot if l is active and no other interfering
links are active.

Consider network (G,F). For each flow f , we label the link
at the i-th hop from the destination node as lfi , i = 1, 2, ..., nf ,
where nf is the total number of links in its path Pf . Note that,
with such a convention, lf1 is the link next to the destination
node, while lfnf

is the link next to the source node. Packets of
flow f arrive at link lfnf

, travel multiple hops to lf1 , then depart
from the system. We use Pf (l

f
i) to denote the path starting

from link lfi and ending at the its destination node. Obviously,
Pf (l

f
nf
) = Pf . Note that, it is possible to assign multiple

labels to the same physical link if the link is used by more
than one flows. In the rest of the paper, it is more convenient
to view these multiple labels on the same physical link as
separate logical links, one for each flow. For flow f , the logical
link at the i-th hop from its destination is lfi . The capacity of
each logical link is the same as its underlying physical link.
Two logical links interfere with each other if and only if they
share the same physical link or their corresponding physical
links interfere. We denote by E(G,F)

L the set of all logical links
in network (G,F). For each logical link lfi , we use I(lfi) to
denote the set of all logical links interfering with lfi . In the
rest of the paper, when we refer to links with labels, we will
mean logical links.

Let Af (t) be the amount of data offered to the source
node of flow f at time t. We assume that Af (t) is uniformly
bounded by M , i.e., Af (t) ≤ M for any t, f . Moreover, we
assume that Af (t) is i.i.d.2 across time. Let λf = E[Af (t)]

denote the arrival rate, and �λ = [λf , f = 1, 2, ..., F]. The
capacity region of (G,F) is defined as the largest set of
offered load �λ that the network can support. We are interested
in the case that the arrival rate vector �λ is strictly inside
of the capacity region. We use Xf

i (t) to denote the queue
length of flow f at link lfi . Let Ef

i (t) denote the actual
amount of data transmitted over link lfi at time t. Obviously,
Ef

i (t) ≤ min{Xf
i (t), Rlfi

}. The queue length at link lfi is then
updated in the following way.

1The results in this paper can also be generalized to the K-hop interference
model

2This assumption can be relaxed. The key requirement for the results in
this paper to hold is that the arrival processes satisfy a sample-path large-
deviations principle. As an example, the finite-state irreducible Markov chains
satisfy the sample-path large deviations principle. See Section II-E in [3] for
related discussion.

Xf
i (t+1) =

{
Xf

i (t) + Ef
i+1(t)− Ef

i (t), if i = 1, 2, ..., nf − 1,

Xf
i (t) +Af (t)− Ef

i (t), if i = nf .
(1)

Then, the total end-to-end backlog of flow f , Xf (t) =
nf∑
i=1

Xf
i (t), is governed by

Xf (t+ 1) = Xf (t) +Af (t)− Ef
1 (t). (2)

B. Design Objective

In this paper, we are interested in designing a schedul-
ing algorithm to minimize the maximum end-to-end backlog
among all flows. Specifically, we want to minimize the steady-
state probability that the max-backlog over all flows exceeds
a threshold B, i.e.,

P

[
max
f

{Xf (+∞)} ≥ B

]
(3)

This is extremely useful in practice. For example, for
multiple flow real-time data transmission applications, such
as video streaming, visual web conference, e.t.c., it is very
important to keep the end-to-end backlog small to meet the
harsh delay constraints. Unfortunately, this quantity is in
general mathematically intractable. Instead, since the above
probability is small, we can instead focus on its asymptotic
decay rate when B becomes large. Specifically, we can define
the following two quantities:

−I � lim inf
B→∞

1

B
log

(
P

[
max
f

{Xf (+∞)} ≥ B

])
(4)

−J � lim sup
B→∞

1

B
log

(
P

[
max
f

{Xf (+∞)} ≥ B

])
(5)

Then for large B, we have e−IB+o(B) ≤
P

[
max
f

{Xf (+∞)} ≥ B

]
≤ e−JB+o(B). Therefore, we

can instead focus on finding a scheduling algorithm that
maximizes I and J .

III. END-TO-END BACKLOG MINIMIZATION IN
CONVERGE-CAST NETWORK

In this section, we are interested in a converge-cast scenario
on a tree topology. For a converge-cast, the root O of the tree
is the destination node of all flows in the network. To avoid
any confusion, we use GT (V, E) to denote the tree topology,
and FT to denote the path collection for converge-cast. We
will propose a large-deviations optimal algorithm for such a
converge-cast network (GT ,FT) to minimize the maximum
end-to-end backlog among all flows.

A. Largest-Weight-First Algorithm

We first propose the Largest-Weight-First (LWF) algorithm
for the converge-cast network (GT ,FT). For each logical
link lfi ∈ E(GT ,FT)

L , we define the usage efficiency ηfi (t) �

min

{
Xf

i (t)

R
l
f
i

, 1

}
. We assign a weight at link lfi for flow f as

qfi (t) = ηfi (t)

nf∑
j=i

Xf
i (t). (6)

We then use a greedy algorithm to compute a feasible sched-
ule. Specifically, we first schedule the link with the largest
weight, and delete this link and all the other links that interfere
with this link. Then, we schedule the link with the largest
weight from the remaining links, and again delete this link
and all the other links that interfere with this link. We repeat
this process until there is no remaining link. Recall that link
lf1 is closest to the destination O, and lfnf

is closest to the
source of flow f . In Eqn. (6), a link closer to the destination
tends to have a larger weight than another upstream link from
the same flow. Further, links from flows with larger end-to-
end backlog will also tend to have larger weights. Hence,
the weight definition in the LWF algorithm can be viewed
as a way to combine two priorities, i.e., giving priority to
those flows with larger end-to-end backlog and to those links
closer to the destination. Note that giving priority to the
flow with the largest end-to-end backlog is natural since we
want to minimize the maximum end-to-end backlog among all
flows. Further, the idea that giving priority to links closer to
destination can help drain packets faster has been reported for
a simple linear topology with only one flow [2]. Our proposed
algorithm can be viewed as a generalization to the multi-flow
setting, which combines these two ideas together. However,
we note that when there are two different priorities, they may
not always be compatible with each other. Hence, it is not
at all clear why (6) is the right way to combine these two
priorities. The proof of optimality presented next also requires
new techniques and follows very different lines as the prior
work[2][6].

The LWF algorithm can be formally described in Algorithm
1. In this algorithm, we use �γ(t) = [γl(t), l ∈ E(GT ,FT)

L] to
denote the scheduling decision at time t. γl(t) = 1 if the
logical link l is scheduled, and γl(t) = 0 otherwise.

1 At time slot t, calculate the weight for each logical link l.
2 Let Er = E(GT ,FT)

L , �γ(t) = �0.
3 while Er �= ∅ do
4 Find a logical link l ∈ Er with the largest weight.
5 Set γl(t) = 1, Er = Er \ (I(l) ∪ {l}).
6 end
7 The scheduling decision is given by �γ(t).

Algorithm 1: Largest-Weight-First(LWF) algorithm

To implement the LWF algorithm, we need the queue-length
information for all links. Hence, the LWF algorithm can best
be viewed as a centralized algorithm that uses a separate
control channel to gather queue-length information, compute
the schedule, and then distribute the decision back to each
link. This is a reasonable setting when such a central station

and control channel is available, e.g., in a cellular system
with multi-hop relays. In our analysis, we assume that the
LWF algorithm has the up-to-date queue-length information
for every link in every time slot. This assumption simplifies the
analysis, and the results can be viewed as an upper bound for
other more practical settings. Further, as readers will see in the
simulation section, even when such an assumption is relaxed,
the LWF algorithm still performs very well in practice.

B. Mathematical Preliminaries

1) Capacity Region: For networks with tree topology under
the one-hop interference model, the capacity region is in a
simple form. Suppose that lf1i1 , l

f2
i2
, ..., l

fyv
iyv

are all the logical
links adjacent to node v, then the interior of the capacity region
can be represented by a set of linear inequalities,

yv∑
k=1

λfk

R
l
fk
ik

< 1, for any node v. (7)

Later in this section, we will also be interested in the
capacity regions of a subnetwork of (GT ,FT). Consider the
following subnetwork of (GT ,FT) given by a subset of flows
A ⊆ {1, 2, ..., F} and a vector zA = [zf , f ∈ A], where
each zf is an integer between 1 and nf . We denote such a
subnetwork by N (A, zA). For each flow f ∈ A, the route
in the subnetwork is given by a sub-path of Pf starting from
the zf -th hop and ending at the root O, i.e., Pf (l

f
zf
). The

subnetwork path collection is then given by {Pf (l
f
zf
)|f ∈ A}.

The subnetwork topology is a graph consisting of all links
traversed by at least one path Pf (l

f
zf
), f ∈ A, and all

vertices adjacent to these links, which can be represented by
∪

f∈A
Pf (l

f
zf
) (Recall that we view Pf (·) as a graph. A finite

union of graphs is defined as follows. Given Gi = {Vi, Ei},
the union of Gi is ∪

i
Gi = (∪

i
Vi,∪

i
Ei)). In the rest of the paper,

we will use C(A, zA) to denote the capacity region of the
above subnetwork and use intC(A, zA) to denote its interior.
Further, we use E(A, zA) to denote the set of all logical links
of the above subnetwork.

To prove the optimality of LWF algorithm, we need the
following lemma.

Lemma 1. Given A ⊆ {1, 2, ..., F}, and z′f ≤ zf for any
f ∈ A, we have

intC(A, z′A) ⊇ intC(A, zA). (8)

Proof: Please refer to Appendix A

The intuition of this lemma is quite simple. Since z′f ≤ zf
for any f ∈ A, then N (A, z′A) is a subnetwork of N (A, zA).
As a result, it has less constraints for the arrival rates in
network N (A, z′A). Therefore, the capacity region should be
larger.

2) Fluid Sample Paths: Given B and T , define the follow-
ing scaled quantities in the time interval [−T, 0] as

aBf (t) =
1

B

B(T+t)∑
τ=0

Af (τ), x
f,B
i (t) =

1

B
Xf

i (B(T + t)),

xB
f (t) =

1

B
Xf (B(T + t)), ef,Bi (t) =

1

B

B(T+t)∑
τ=0

Ef
i (τ), (9)

for t = m
B − T,m = 0, 1, ..., BT , and by linear interpolation

otherwise.
Due to the assumption of bounded arrivals and depar-

tures, (aBf (t), x
f,B
i (t), xB

f (t), e
f,B
i (t)), f = 1, 2, ..., F, i =

1, 2, ..., nf are all Lipschitz continuous. Fix T and take any se-
quence of such scaled processes as B → ∞. There must exist a
subsequence that converges uniformly over the compact inter-
val [−T, 0]. Any such limit is called a fluid sample path(FSP).
In other words, (af (t), x

f
i (t), xf (t), e

f
i (t)) is called an FSP if

there exists a subsequence of (aBf (t), x
f,B
i (t), xB

f (t), e
f,B
i (t))

that converges to it uniformly over [−T, 0]. Note that in
general, there may exist more than one FSPs out of the same
sequence of scaled processes.

Using the scaled quantities, the probability in (3) can be

rewritten as P

[
max

f=1,2,...,F

{
xB
f (+∞)

}
≥ 1

]
. Our interest is

its decay-rate as B → ∞. Since the arrival process is i.i.d.,
the scaled arrival process aB(t) satisfies a large deviation
principle with some rate function ITa (·) (Chapter 1.2 in [14]).
This means that, for any set Γ of arrival sample paths, the
probability that aB(t) falls into Γ satisfies: lim

B→∞
1
BP(aB(t) ∈

Γ) = − inf
a∈Γ

ITa (a). In the typical large-deviation literature, if

we can additional verify that the mapping from aB(t) to xB
f (t)

is continuous under a given scheduling algorithm, we can then
apply the contraction principle [14] and obtain the decay-
rate of the overflow probability by finding the "most likely
path to overflow". However, there are significant difficulties
in applying this approach in multi-hop network. First, it is
usually very hard to verify the continuity of the mapping
from aB(t) to xB

f (t). Second, finding such "most likely
path to overflow" involves solving a high-complexity multi-
dimensional calculus-of-variations problem. In this paper, we
use a different approach which is first proposed in [3] to
circumvent these difficulties. The result of [3] propose a drift
minimizing criterion, which is sufficient for an algorithm to
attain the largest decay-rate. We will go into details in Section
III-C.

Since the convergence to an FSP is uniform, the FSP
(af (t), x

f
i (t), xf (t), e

f
i (t)) is also Lipschitz continuous, and

therefore, its derivative exists almost everywhere (a.e.)
over [−T, 0]. Define the Lyapunov function V (x(t)) �
maxf xf (t). It is easy to check that V (x(t)) is also Lipschitz
continuous, and thus is differentiable a.e. with respect to t.
Denote by Z the set of all time instances where the FSP or the
Lyapunov function V (x(t)) is not differentiable with respect
to t. Then Z is of measure 0. In the rest of this paper, we will
restrict our analysis to those t /∈ Z , and we call such a time

instant a regular time.
At any regular time t, we define αf (t) = d

dtaf (t) and
μf
i (t) =

d
dte

f
i (t). Then, we can derive the following equations

for an FSP from equation (1) and (2) (refer to [6] for detailed
derivation):

d

dt
xf
i (t) =

{
μf
i+1(t)− μf

i (t), if i = 1, 2, ..., nf − 1,

αf (t)− μf
i (t), if i = nf .

(10)
d

dt
xf (t) = αf (t)− μf

1 (t). (11)

Eqn. (10) and (11) can be interpreted as the limits of (1)
and (2) as B → ∞.

As for V (x(t)), define M(t) = {f |xf (t) =
maxf ′{xf ′(t)}} as the set of flows that have the largest end-
to-end backlog in the FSP at time t. Then,

d

dt
V (x(t)) = max

f∈M(t)
{αf (t)− μf

1 (t)}. (12)

In addition, we have the following lemma that imposes
additional constraints for μf

1 (t).

Lemma 2. (Proposition 1 in [6]) Under any algorithms, any
FSP (af (t), x

f
i (t), xf (t), e

f
i (t)) must satisfy the following flow

constraint for each flow f :

μf
i (t) ≤

{
μf
i+1(t), if i = 1, 2, ..., nf − 1 and xf

i (t) = 0,

αf (t), if i = nf and xf
i (t) = 0.

(13)
For each node v, suppose that lf1i1 , l

f2
i2
, ..., l

fyv
iyv

are all the links
that are adjacent to node v. Then, any FSP must also satisfy
the following node constraints:

yv∑
k=1

μfk
ik

R
l
fk
ik

≤ 1, for all nodes v, (14)

μf
i ≥ 0, for all i, f. (15)

Lemma 2 can be viewed as follows. The variables μf
i (t) can

be viewed as the service rate of link lfi . The first part of (13)
states that, when the backlog xf

i (t) is 0, we need the upstream
link lfi+1 to serve as many packets as the downstream link lfi .
A similar interpretation holds for the second part of (13). In
(14), μf

i (t)

R
l
f
i

can be viewed as the fraction of time that link lfi is

activated. The sum of the fraction of time must be no greater
than 1 for mutually interfering links around each node v.

C. Optimality of the LWF Algorithm

We will use the techniques of [3] to prove that the LWF
algorithm achieves the largest asymptotic decay-rate of the
maximum end-to-end backlog overflow probability. We would
like to prove the following result.

Theorem 3. The LWF algorithm achieves the optimal decay-
rate for the maximum end-to-end backlog among all flows, i.e.,

for any scheduling algorithm π, we have

lim sup
B→∞

1

B
log

(
P
LWF

[
max

f=1,2,...,F
{Xf (+∞)} ≥ B

])
≤ lim inf

B→∞
1

B
log

(
P
π

[
max

f=1,2,...,F
{Xf (+∞)} ≥ B

])
,(16)

where P
LWF and P

π denote the stationary distribution under
algorithm LWF and π, respectively.

To prove Theorem 3, we use the result of Theorem 8 from
[3], which we restated here for reference.

Theorem 4. Let π0 be a scheduling algorithm that satisfies
Assumptions 1,2,3,4,5 and 6 of [3]. Then the algorithm π0

attains the optimal decay-rate in the sense of (16).

To prove Theorem 3, we need to justify the Assumptions
1,2,3,4,5 and 6 of [3] for the LWF algorithm. We list these
assumptions (except Assumption 4) in Appendix B. We can
verify that Assumptions 1,2,3,5,6 hold for the LWF algorithm.

Theorem 5. The LWF algorithm satisfies Assumptions 1,2,3,5
and 6.

Proof: Please refer to Appendix B.
Next, we will focus on Assumption 4, which is restated

below.

Assumption 4. (Drift Minimization Assumption) For any
FSP (af (t), x

f
i (t), xf (t), e

f
i (t)) under the algorithm π0, the

following holds for all regular times t.

d

dt
V (x(t)) = min

μ̃
max

f∈M(t)
{αf (t)− μ̃f

1} (17)

subject to μ̃ satisfies (13)(14)(15).

In Eqn. (17), x(t), α(t) are fixed for a given FSP at the time
t. μ̃ = [μ̃f

i] represents a feasible scheduling decision (which
is not necessarily the same as the decision according to the
FSP). Hence, max

f∈M(t)
{αf (t)− μ̃f

1} is the drift of the Lyapunov

function if the scheduling decision were μ̃. By taking the
minimization over all feasible μ̃’s, (17) essentially states that
the drift of the Lyapunov function at each time under algorithm
π0 is also the minimum possible.

Theorem 6. The LWF algorithm satisfies the drift minimiza-
tion assumption.

Since we have verified that the LWF algorithm satisfies
1,2,3,5 and 6, then Theorem 3 follows directly from Theorem
6. Therefore, It is sufficient to prove Theorem 6. To begin with,
we need to understand what should be the optimal solution of
(17).

1) Optimal Solution of (17): Clearly, to minimize the objec-
tive function in (17), we only need to serve flows in M(t) as
much as possible. Note that in the optimization problem (17),
minimizing the objective is equivalent to maximizing μ̃f

1 (t)
for all f ∈ M(t) since αf is fixed by the given FSP. From
constraint (13), we note that there is no constraint relating
μ̃f
i and μ̃f

j , j > i, if xf
i (t) > 0. An intuitive explanation is

the following. xf
i (t) > 0 means that the queue length in the

original discrete time system is very large (the queue length
is approximately Bxf

i (t), and B is large). Therefore, link lfi
always has enough packets to transmit. In contrast, in case of
xf
i (t) = 0, we need link lfi+1 to serve as many packets as

link lfi . Hence, we can intuitively view the link that has non-
zero backlog in the FSP and that is closest to the destination
of flow f as a "barrier" for flow f . To achieve the optimal
solution of (17), we only need to consider those links between
the destination and the barrier. To be specific, for each flow
f ∈ M(t), define the barrier of flow f (Fig. 1) as

bf (t) =

{
argmin

i
{i|xf

i (t) > 0}, if xf (t) > 0,

nf , if xf (t) = 0.
(18)

� � �

� � �
�� � �� � �� � ��

Fig. 1. Illustration of Barrier of flow f ∈ M(t).

Given A ⊆ M(t), let bA(t) = [bf (t), f ∈ A]. Note that
if the growth rate of the end-to-end backlog of flow f is g,
we must have μ̃f

1 = αf (t) − g. Further, all μ̃f
i for i ≤ bf

must be no less than μf
1 due to constraints in (13). Hence,

[(αf (t) − g), f ∈ A] must be supportable by the subnetwork
with topology ∪

f∈A
Pf (l

f
bf
). Therefore, we can show that the

following value gA(t) gives the minimal possible growth rate
of the maximum backlog among all flows f ∈ A. To be
precise, if xf (t) > 0 for some f ∈ A, then

gA(t) � inf
{
g|((αf (t)− g)+

)
f∈A ∈ C(A, bA(t))

}
. (19)

Otherwise, if xf (t) = 0 for all f ∈ A, then

gA(t) � inf
{
g ≥ 0|((αf (t)− g)+

)
f∈A ∈ C(A, bA(t))

}
.

(20)
Here, (u)+ � max{u, 0}.

Consider gM(t)(t) for M(t). For simplicity, we use the
notation g(t) to stand for gM(t)(t). The following lemma
states that g(t) attains the optimality in (17).

Lemma 7. g(t) is the optimal solution of the optimization
problem (17), i.e.,

min
μ̃ satisfies

(13)(14)(15)

max
f∈M(t)

{αf (t)− μ̃f
1 (t)} = g(t).

Proof: Please refer to Appendix C.
2) Proof of the Optimality of LWF Algorithm: Next, we will

show that the LWF algorithm achieves the minimum drift g(t).
The key difficulty is that the LWF algorithm does not know

the value of α(t) before hand. However, by excavating some
inherent properties of the LWF algorithm, we could show that
the LWF algorithm always achieve the optimality.

Given an FSP, assume that μ(t) is the service rate under the
LWF algorithm. Denote by M0(t) the set of flows in M(t)
that have the maximum growth rate, i.e.,

M0(t) =

{
f ∈ M(t)| d

dt
xf (t) = max

f ′∈M(t)

{
d

dt
xf ′(t)

}}
,

where d
dtxf (t) = αf (t)− μf

1 (t).
Then, all flows in M0(t) have the same end-to-end backlog

and the same derivative in the corresponding FSP. If xf (t) =
d
dtxf (t) = 0 for one flow f ∈ M0(t), then xf (t) =

d
dtxf (t) =

0 holds for all flows. In this case, the max growth rate under
the LWF algorithm is 0. Note that g(t) ≤ 0 because of Lemma
7. However, g(t) ≥ 0 since the backlog is zero (see (20)).
Hence, g(t) = 0 and Theorem 6 holds trivially. Hence, we
next focus on the case xf (t) > 0 or d

dtxf (t) > 0 for all
f ∈ M0(t).

Consider gM0(t)(t) for M0(t). Again, for simplicity, we use
g0(t) to stand for gM0(t)(t). It is easy to check that g0(t) ≤
g(t).

Recall we have defined the barrier for flow f ∈ M(t). Now
we need to introduce the concept of potential barrier b′f (t)
for f ∈ M0(t). b′f (t) is the first link that has the potential
to become a barrier for flow f ∈ M0(t), which is formally
defined as follows:

b′f (t) = argmin
i

{i|xf
i (t) > 0 or

d

dt
xf
i (t) > 0}. (21)

Since we already assume that xf (t) > 0 or d
dtxf (t) > 0 for

each flow f ∈ M0(t), it is easy to check that the potential
barrier is well defined. Further, let b′M0

= [b′f , f ∈ M0].
According to our definition of potential barrier and M0(t),
we have the following lemma.

Lemma 8. For any ε > 0, there exist δ̃ > 0 and K > 0, such
that, if 0 < δ < δ̃, then

1) xf (t + δ) > xf̃ (t + δ) + Kδ for any f ∈ M0(t), f̃ /∈
M0(t);

2) xf
i (t + δ) > Kδ, if i = b′f ; x

f
i (t + δ) < εK

4L δ, if i =
1, 2, ..., b′f − 1, where L is the total number of physical
links.

Proof: Please refer to Appendix D.
We consider the FSP together with the original discrete-

time system. Let (aBf (t), x
f,B
i (t), xB

f (t), e
f,B
i (t)) be the se-

quence of scaled processes that converge uniformly to
(af (t), x

f
i (t), xf (t), e

f
i (t)). Using Lemma 8, we then find the

following result which is the key in the proof of the optimality
of the LWF algorithm.

Lemma 9. For any 0 < ε < 1, and any fixed 0 < δ < δ̃(ε)
2 ,

there exist B̃(δ) > 0, such that for all B > B̃(δ) and all time
slots t0 ∈ (B(t+ T + δ), B(t+ T + 2δ)), we have

1) The weight of any logical link lf̃
ĩ

/∈ E(M0, b
′
M0

) is
strictly smaller than the weight of any logical link

lfb′f
, f ∈ M0(t), i.e.,

qf̃
ĩ
(t0) < qfb′f

(t0).

2) Consider one specific link lfb′f
, f ∈ M0(t), let I ′(lfb′f)

be the set of all the logical links in E(M0, b
′
M0

)

that interfere with link lfb′f
. Then at least one link in

I ′(lfb′f)
⋃{lfb′f } should be scheduled at time instance t0.

Moreover, if all the links in I ′(lfb′f) interfere with

each other, then the usage efficient of any link lf̂
î

∈
I ′(lfb′f)

⋃{lfb′f }(if it is scheduled) must satisfy

ηf̂
î
(t0) > 1− ε.

Proof: Please refer to Appendix E.
The rigorous proof of Lemma 9 has to deal with the original

discrete-time system. However, it is easier to explain the
intuition in the sense of FSP. In the immediate future of
time t, those potential barrier links always have none zero
backlog. Therefore, in the original discrete-time system, their
backlog must be larger than their capacity, and thus their usage
efficiency must be 1. Hence, the weight of each potential
barrier links is approximately equal to the maximum end-
to-end backlog. For those logical links not in E(M0, b

′
M0

),
it is easy to check that their weights are strictly smaller
than the maximum end-to-end backlog. Because, either the
corresponding flow is not in M0, or it is in M0, but at least
the backlog of the potential barrier link must be subtracted
from the weight of the link. Therefore, they must have smaller
weights than those potential barrier links as is stated in part
(1). The results in part (2) are direct corollaries of part (1).
For the first part of (2), if none of the links in I ′(lfb′f) is

scheduled, link lfb′f
will have larger weight than the rest of its

interfering links not in E(M0, b
′
M0

). Then link lfb′f
should be

scheduled. As for the second part of (2), applying the same
argument, we know that for link lf̂

î
∈ I ′(lfb′f) to be activated,

it must have weight larger than that of lfb′f
. Note that if we

ignore the usage efficiency term, the weight of link lf̂
î

and
lfb′f

are comparable because they are both approximately equal
to the maximum end-to-end backlog in FSP, and further, link
lfb′f

has usage efficiency equal to 1. Hence, lf̂
î

must also have
usage efficiency close to 1, otherwise it cannot be scheduled.

Now we are ready to prove Theorem 6. By contradiction,
suppose that the LWF algorithm does not minimize the drift.
Then, we must have αf (t) − μ̂f

1 (t) = max
f ′∈M(t)

{αf ′(t) −
μ̂f ′
1 (t)} > g(t) ≥ g0(t), and thus, αf (t) − g0(t) > μ̂f

1 (t)
for any f ∈ M0(t). From the definition of g0(t), we can then
obtain (

μf
1 (t), f ∈ M0(t)

) ∈ intC(M0(t), bM0(t)(t)).

Noting that b′f (t) ≤ bf (t), according to Lemma 1, we have

intC(M0(t), bM0(t)(t)) ⊆ intC(M0(t), b
′
M0(t)

(t)). There-
fore, (

μf
1 (t), f ∈ M0(t)

) ∈ intC(M0(t), b
′
M0(t)

(t)).

Hence, there exist ε > 0 such that(
(1− ε)−1μf

1 (t), f ∈ M0(t)
) ∈ intC(M0(t), b

′
M0(t)

(t)).

Consider a leaf link lf
∗

i∗ in the subtree ∪
f∈M0

Pf (l
f
b′f (t)

). Let all

of its interfering links in E(M0, b
′
M0

(t)) be lf1i1 , l
f2
i2
, ..., l

fy
iy

.
Then according to Eqn. (7), we have

(1− ε)−1

⎛
⎝ μf∗

1

R
lf

∗
i∗

+

y∑
k=1

μfk
1

R
l
fk
ik

⎞
⎠ < 1.

Thus,
μf∗
1

R
lf

∗
i∗

+

y∑
k=1

μfk
1

R
l
fk
ik

< 1− ε. (22)

For the above ε, according to Lemma 9, we know that for
0 < δ < δ̃(ε)

2 and B > B̃(δ) > 0, in the time period (B(t+T+

δ), B(t+T +2δ)), at least one of the links lf
∗

i∗ , l
f1
i1
, lf2i2 , ..., l

fy
iy

should be scheduled. On the other hand, these links interfere
with each other. Then, exactly one of these links must be
scheduled at one time instance. Therefore, we must have
B(T+t+2δ)∑
τ=B(T+t+δ)

1{γ
l
f∗
i∗

(τ)=1}+
y∑

k=1

B(T+t+2δ)∑
τ=B(T+t+δ)

1{γ
l
fk
ik

(τ)=1} = Bδ.

Further, their usage efficiency is larger than 1− ε. Then,

Bδ ≥
B(T+t+2δ)∑
τ=B(T+t+δ)

Ef∗
i∗ (τ)

R
lf

∗
i∗

+

y∑
k=1

B(T+t+2δ)∑
τ=B(T+t+δ)

Efk
ik
(τ)

R
l
fk
ik

> (1− ε)Bδ.

Divide by Bδ on both sides, we obtain,

1 ≥ 1

δ

(
ef

∗,B
i∗ (t+ 2δ)− ef

∗,B
i∗ (t+ δ)

R
lf

∗
i∗

+

y∑
k=1

efk,Bik
(t+ 2δ)− efk,Bik

(t+ δ)

R
l
fk
ik

)
> (1− ε).

Let B → ∞, δ → 0, we then obtain

μf∗
i∗

R
lf

∗
i∗

+

y∑
k=1

μfk
ik

R
l
fk
ik

≥ 1− ε. (23)

Finally, since the derivatives of the backlog of links (except
potential barrier links) in E(M0, b

′
M0

) stay at zero, we have
μf∗
1 = μf∗

i∗ , μ
fk
1 = μfk

ik
, k = 1, 2, ..., y. Then, Eqn. (23)

contradicts to Eqn. (22).

Therefore, the LWF algorithm satisfies the drift minimiza-
tion assumption, and thus achieves the largest decay rate for
the overflow probability of the maximum end-to-end backlog.

Time Slots Flow 1 Flow 1
A1(t) X1

2 (t) X1
1 (t) A2(t) X2

2 (t) X2
1 (t)

0 0 0 0 0 0 0
1 1 1

√
0 0 0 0

2 0 0 1
√

0 0 0
3 0 0 0 1 1

√
0

4 1 1 0 1 1 1
√

. . .
4n 0 k 0 0 k 1

√
4n+1 1 k+1

√
0 0 k 0

4n+2 0 k 1
√

0 k 0
4n+3 0 k 0 1 k+1

√
0

4n+4 1 k+1 0 1 k+1 1
√

. . .

TABLE I
SCHEDULING OF THE LWF ALGORITHM FOR THE NETWORK IN FIG. 2 (

√
INDICATES THE SCHEDULING AT EACH TIME SLOT. IT CAN BE SEEN THAT

THE QUEUE LENGTH BUILD UP AT THE SOURCE NODES).

IV. MAXIMUM END-TO-END BACKLOG MINIMIZATION IN
GENERAL NETWORK

A. Applicability of the LWF Algorithm

In the previous section, we have proved that the LWF algo-
rithm is large-deviation optimal in minimizing the maximum
end-to-end backlog for converge-cast. A natural next-step is
to find such optimal algorithm under more general setting.
In this section, we seek to first get a better understanding
of the LWF algorithm under more general settings. Readers
can observe that the LWF algorithm is quite similar to the
Longest Queue First(LQF) algorithm[4]. The LQF algorithm
is throughput-optimal whenever the network satisfies the local
pooling condition [4]. The tree topology is one that satisfies
the local pooling condition. Given that the LWF algorithm
is optimal for multihop converge-cast, one would naturally
hope that the LWF algorithm is also large-deviation optimal
for other topologies that satisfy the local pooling condition.
Unfortunately, this is not true even for a tree topology that is
not a converge-cast. We next present a counter example below.

Fig. 2. A counter example of LWF algorithm.

Consider the figure shown in Fig. 2, we have a tandem
network with four nodes and three links. Two flows are active
in this network. The routes of the two flows are (1, 0) and
(1, 2) respectively. Assume that the capacity of each link is
1, i.e., at each time slot, one link can transmit at most one
packet.

Suppose that the traffic pattern is as follows (Table I). At
every (4n+1)th time slot, flow 1 has one new arrival packet.
At every (4n + 3)th time slot, flow 2 has one new arrival
packet. At every (4n+4)th time slot, with probability ε, both
flow 1 and flow 2 have one new arrival packet; otherwise,
there is no new arrival packet. In this case, the arrival rate to
both flows are 1+ε

4 . Obviously, the arrival rate 1+ε
4 is inside

the capacity region of the 3-link tandem topology when
0 ≤ ε < 1/3. Actually, we can schedule link 1 twice every 3
time slots and schedule link 0 and link 2 together once every
3 time slots. In this case, the system is stablized.

However, under the LWF algorithm, one can see that only
link 1 is scheduled at the (4n + 1)th and (4n + 3)th time
slots; only link 2 is scheduled at (4n + 2)th time slot; and
only link 0 is scheduled at (4n + 4)th time slot (Table I).
Therefore, with probability ε, the total number of packets in
the network increased by 2 every 4 time slots. Therefore, the
system is unstable under LWF algorithm.

This example thus indicates that LWF is not throughput-
optimal even for a tree network that is not a converge-cast in
this case. As a result, LWF cannot be large-deviation optimal
in this setting either.

B. Drift Minimization in General Networks

Given that the LWF algorithm is not optimal for even
a tree topology that is not converge-cast, our next hope is
that there may be still other algorithm that is optimal for
these more general settings. Recall that we establish the
optimality of LWF by showing that LWF satisfies the drift
minimization assumption. Clearly, LWF cannot minimize the
drift for the network setting in Fig. 2(otherwise it would have
been optimal). Then, a natural question is whether there exists
other algorithms that can minimize the drift for the above
network. Unfortunately, we will prove next that no algorithm
could minimize the drift in that network. Hence, in order
to design optimal scheduling algorithms, we must find new
criterions(other than drift minimizing).

Theorem 10. For the network in Fig. 2, no algorithm can
minimize the drift in every regular time for every FSP.

We note that Theorem 10 is quite strong. It holds even when
we include the possibility of non-causal algorithms. The basic
idea of proving Theorem 10 is to construct a sequence of
FSPs, and then find a contradiction if we want to minimize
the drift for every FSP. For ease of exposition, we will use
the following scaling that does not involve a shift in time.
Specifically, for t ∈ [0, T], let

aBf (t) =
1

B

Bt∑
τ=0

Af (τ), x
f,B
i (t) =

1

B
Xf

i (Bt),

xB
f (t) =

1

B
Xf (Bt), ef,Bi (t) =

1

B

Bt∑
τ=0

Ef
i (τ), (24)

for t = m
B ,m = 0, 1, ..., BT , and by linear interpola-

tion otherwise. Similarly, we define the fluid sample path
(af (t), x

f
i (t), xf (t), e

f
i (t)) as the limit of some subsequence

of (aBf (t), x
f,B
i (t), xB

f (t), e
f,B
i (t)). To proceed, we need the

following lemma.

Lemma 11. Given any FSP for the network shown in Fig.
2. Let a(t) =

[
a1(t) a2(t)

]T
denote the arrival process in

FSP and let α(t) = d
dta(t). Assume that xf

i (0) = 0, f =
1, 2, i = 1, 2 and that algorithm π can minimize the drift at
every regular time of the FSP. Then if |α1(t) − α2(t)| ≤ 1

2
almost everywhere(a.e.) in [0, T], we must have x1

2(t) = x2
2(t)

and x1
1(t) = x2

1(t) = 0 in [0, T].

Proof: Please refer to Appendix F.

The condition |α1(t) − α2(t)| ≤ 1
2 states that the rates of

the two flows do not differ too much. If such an assumption is
satisfied, then there exists service rate μ satisfying constraints
(13)(14)(15), such that α1(t)− μ1

1(t) = α2(t)− μ2
1(t). Under

this assumption, the drift-minimizing FSP will be able to
balance the end-to-end backlog for the two flows.

Now we are ready to prove theorem 10.

Proof: To prove theorem 10, it is sufficient to show that
no algorithm can minimize the drift for the network in Fig.
2. We prove by contradiction. Assume that there exists an
algorithm π that minimizes the drift for the above network at
every regular time in every FSP.

The actual arrival process is a random process defined on

space Ω × N. We represent it by A(ω, t) =

[
A1(ω, t)
A2(ω, t)

]
. For

each ω ∈ Ω, A(ω) = {A(ω, t), t = 0, 1, 2, ...} can be seen as
a 2×∞ matrix.

For convenience, we define two matrices M1 and M2.

M1 =

[
1 0 1 0 1 0 1 0
1 0 0 0 0 0 0 0

]

M2 =

[
1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0

]
.

Using these two matrices, we construct a sequence of
realizations of the arrival process as follows, where the k-th
realization ωk is given by

A(ωk) = [M1M1 · · ·M1︸ ︷︷ ︸
k

M2M2 · · ·M2︸ ︷︷ ︸
k

M1M1 · · ·M1︸ ︷︷ ︸
k

M2M2 · · ·M2︸ ︷︷ ︸
k

· · ·], k = 1, 2, ...

We assume that there are no packets in the network at the
initial time(t = 0). Next, we define scaled versions of the
system based on Eqn. (9). Here, we let T = 16. Define a

matrix

B = {Bk,j}, k = 1, 2, ..., j = 1, 2, ...

=

⎡
⎢⎢⎢⎣
1 2 3 . . .
2 4 6 . . .
3 6 9 . . .
...

...
...

. . .

⎤
⎥⎥⎥⎦ (25)

Obviously, Bk,j = kj. It is easy to check that, for any fixed
j, as k → ∞, aBk,j (ωk, t) converge uniformly to a piecewise

linear function a(j)(t) =

[
a
(j)
1 (t)

a
(j)
2 (t)

]
, where

a
(j)
1 (t) =

{
1
2 t− 3

16
Ti
j if Ti

j ≤ t < T (2i+1)
2j

1
8 t+

3
16

Ti
j + 3

16
T
j if T (2i+1)

2j ≤ t < T (i+1)
j

a
(j)
2 (t) =

{
1
8 t+

3
16

Ti
j if Ti

j ≤ t < T (2i+1)
2j

1
2 t− 3

16
Ti
j − 3

16
T
j if T (2i+1)

2j ≤ t < T (i+1)
j

where i = 0, 1, ..., j − 1. Actually, we can verify that
a
Bk,j

f (ωk, t) takes the same value as a
(j)
f (t) at t = mT

2B ,m =

1, 2, ... And the difference between a
Bk,j

f (ωk, t) and a
(j)
f (t) is

bounded, i.e., |aBk,j

f (ωk, t)− a
(j)
f (t)| ≤ 1

Bk,j
for all t.

Then

α
(j)
1 (t) =

d

dt
a
(j)
1 (t) =

{
1
2 if Ti

j ≤ t < T (2i+1)
2j

1
8 if T (2i+1)

2j ≤ t < T (i+1)
j

α
(j)
2 (t) =

d

dt
a
(j)
2 (t) =

{
1
8 if Ti

j ≤ t < T (2i+1)
2j

1
2 if T (2i+1)

2j ≤ t < T (i+1)
j

where i = 0, 1, ..., j − 1.
Note that this FSP satisfies the conditions in Lemma 11.

Therefore, x1
2(t) = x2

2(t) and x1
1(t) = x2

1(t) = 0 in [0, T]
under algorithm π. In this case, the optimization problem (17)
becomes

min
μ

max{α(j)
1 (t)− μ1

1, α
(j)
2 (t)− μ2

1} (26)

sub to μ1
1 ≤ μ1

2

μ2
1 ≤ μ2

2

μ1
1 + μ2

1 + μ2
2 ≤ 1

μ2
1 + μ2

1 + μ2
2 ≤ 1

By solving the optimization problem (26), we can obtain
the service rates as:

μ
1(j)
1 (t) =

{
11
24 if Ti

j ≤ t < T (2i+1)
2j

1
12 if T (2i+1)

2j ≤ t < T (i+1)
j

i = 0, 1, ..., j−1

μ
2(j)
1 (t) =

{
1
12 if Ti

j ≤ t < T (2i+1)
2j

11
24 if T (2i+1)

2j ≤ t < T (i+1)
j

i = 0, 1, ..., j−1

Then, it is easy to check that x
(j)
1 (T) = x

(j)
2 (T) = 1

24T .
Note that lim

k→∞
x
Bk,j

1 (ωk, T) = x
(j)
1 (T), therefore, for ∀j, ∃kj ,

such that
x
Bkj,j

1 (ωkj
, T) >

1

25
T. (27)

Now, we consider another sequence of scaled arrival pro-
cesses aBkj,j (ωkj

, t), where kj is chosen according to Eqn.

(27). Let a(∗)(t) =

[
a
(∗)
1 (t)

a
(∗)
2 (t)

]
, where

a
(∗)
1 (t) = a

(∗)
2 (t) =

5

16
t.

Note that

|aBkj,j

f (ωkj
, t)− a

(∗)
f (t)|

= |aBkj,j

f (ωkj
, t)− a

(j)
f (t) + a

(j)
f (t)− a

(∗)
f (t)|

≤ |aBkj,j

f (ωkj
, t)− a

(j)
f (t)|+ |a(j)f (t)− a

(∗)
f (t)|

≤ 1

Bkj ,j
+

3

16

T

j

≤ 1

j
+

3

16

T

j

Therefore, as j → ∞, aBkj,j (ωkj
, t) converges uniformly

to a(∗)(t). And,

α
(∗)
1 (t) =

d

dt
a
(∗)
1 (t) =

5

16
, α

(∗)
2 (t) =

d

dt
a
(∗)
2 (t) =

5

16
.

To minimize the drift (solving (26) with α(j)(t) replaced
by α(∗)(t)), we must have

μ
1(∗)
1 (t) =

5

16
, μ

2(∗)
1 (t) =

5

16
.

Therefore, x
(∗)
1 (T) = x

(∗)
2 (T) = 0. Note that

lim
j→∞

x
Bkj,j

1 (ωkj , T) = x
(∗)
1 (T) = 0. Therefore, ∃J , such that

x
BkJ ,J

1 (ωkJ
, T) <

1

25
T.

This contradicts to Eqn. (27). Hence, the result of the
theorem must hold.

V. SIMULATION

In this section, we present our simulation results for the
topology shown in Fig. 3.(a). This topology contains 10 nodes,
with one node as the root, 2 nodes at depth 1, 5 nodes at
depth 2, and 2 nodes at depth 3. The number near each link
represents its capacity. There are 7 flows in the network. The
number of packets arrived at each flow per time slot admits
to Poisson distribution. The number near each flow indicates
the arrival rate. One can verify that the resulting offered-load
vector has already exceeded 0.9 of the optimal capacity region
according to Eqn. (7) 3.

We are interested in the overflow probability of the max-

imum end-to-end backlog, i.e., P

[
max

f=1,2,...,7
{Xf (t)} ≥ B

]
.

3Consider Eqn. (7) for the source node of Flow 1, we have
1.5+1.5+1.2+1

12
+ 1.5

7
+ 1.2

8
+ 1

8
> 0.9

(a) Network topology.

0 20 40 60 80 100 120
10−6

10−4

10−2

100

max backlog

ov
er

flo
w

 p
ro

ba
bi

lit
y

 back−pressure
 LWF(perfect queue−length)
 LWF(imperfect queue−length)
 P−TREE
αβ−algorithm

(b) Simulation result.

Fig. 3. Comparison between LWF, back-pressure, and P-TREE algorithms.

We simulate the system under four different scheduling algo-
rithms: LWF, back-pressure, αβ−algorithm, and P-TREE.

We give a brief overview about these algorithms. In back-
pressure algorithm[1], the weight of each logical link is given
by the difference between the backlog at this link and its
subsequent link. For example, the weight of link lfi at time
instance t is Xf

i (t) − Xf
i−1(t)(Here, we use the convention

that Xf
0 (t) = 0). And then we schedule those logical links

that maximizes the total weight. αβ−algorithm is essentially a
generalization of back-pressure. Instead of directly computing
the backlog difference for a link, αβ−algorithm raises the
backlog to the power of α, and then compute the difference
as the weight of link. When α = β = 1, αβ−algorithm
degenerate to back-pressure. And it was shown in [13] that
as α → 0, β → ∞, αβ−algorithm achieves the optimal
decay rate asymptotically. (In our simulation, we just let
α = 0.1, β = 10.) As for the P-TREE algorithm[6], it is
a large-deviations optimal algorithm for minimizing the total
backlog of all flows, which gives priority to those links nearer
to the destination and links that have larger capacity.

In our analysis of the LWF algorithm, we have assumed per-
fect queue-length information in every time slot. However, in
practice, the delivery of queue-length information may suffer
from delay and loss. Therefore, we simulate the performance

of the LWF algorithm both with and without perfect queue-
length information. In the latter case, the weight of each logical
link l is based on the queue-length information rl time slots
before, where r = [rl] is a set of random variables uniformly
distributed in [0,20].

In Fig. 3.(b), we plot the overflow probability

P

[
max

f=1,2,...,7
{Xf (t)} ≥ B

]
vs the threshold B with the

y-axis in the log scale. We observe that our LWF algorithm
performs best not only in terms of decay rate, but also in
terms of actual overflow probability. The performance of P-
TREE algorithm, back-pressure algorithm, and αβ−algorithm
are all significantly worse. This is because, in our network
setting, while flow 1 and flow 2 have the same rate, they
are at different depth: flow 1 is at depth 1, and flow 2 is at
depth 3. In P-TREE algorithm, priority is given to flow 1
as it is closer to destination. Similarly, in the back-pressure
algorithm and αβ−algorithm, the link l11 is more likely to
have larger weight, since flow 1 only has one hop. Hence,
flow 1 again has a higher priority. For all the three algorithms,
giving priority to flow 1 hurts the packet transmission of
flow 2. Therefore, their performance are poor in terms of
the maximum end-to-end backlog. Finally, note that the
LWF algorithm with imperfect queue-length information
still performs very well. This indicates that although our
theoretical analysis is based on the assumption of perfect
queue-length information, the insights of the algorithm
obtained can still be effective even in practical settings with
imperfect queue-length information.

VI. CONCLUSION

We study the scheduling problem for multi-hop wireless
network under one-hop interference model. We first focus
on the case of converge-cast on a tree topology. Using a
large-deviation framework, we design a new LWF algorithm
and show that it is large-deviations optimal for minimizing
the maximum end-to-end backlog across flows. We prove the
large-deviation optimality of the LWF algorithm by showing
that it minimizes the drift at every time in every FSP. Then, we
study large-deviations optimal algorithms in a more general
setting. We provide a negative result that drift minimizing
algorithms do not exist for some topologies. Finally, the
simulation results indicate that the proposed LWF algorithm
significantly outperforms other algorithms in the literature not
only in terms of the asymptotic decay rate, but also in terms
of the actual overflow probability.
Acknowledgement:The work has been partially supported by
NSF through grants CNS-0643145, CNS-0721477 and CNS-
0721484, and by the Purdue Research Foundation.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability Properties of Constrained
Queueing Systems and Scheduling Policies for Maximum Throughput in
Multihop Radio Networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936-1949, December 1992.

[2] L. Tassiulas and A. Ephremides, “Dynamic Scheduling for Minimum
Delay in Tandem and Parallel Constrained Queueing Models,” Annals
of Operation Research, vol. 48, pp. 333-355, 1993.

[3] V.J.Venkataramanan and X. Lin, “On the Queue-Overflow
Probability of Wireless Systems: A New Approach Combining
Large Deviation with Lyapnov Functions,” submitted to
IEEE Trans. Info. Theory, 2009. [online]. Available:
https://engineering.purdue.edu/%7elinx/publications.html.

[4] C. Joo, X. Lin, and N. B. Shroff, “Understanding the Capacity Region
of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless
Networks,” IEEE/ACM Transactions on Networking, vol. 17, no. 4, pp.
1132-1145, August 2009.

[5] S. Hariharan and N. B. Shroff, “On Optimal Dynamic Scheduling for
Sum-Queue Minimization in Trees,” IEEE WIOPT, May 2011

[6] V. J. Venkataramanan and X. Lin, “Low-Complexity Scheduling Algo-
rithm for Sum-Queue Minimization in Wireless Convergecast,” in IEEE
INFOCOM, Shanghai, China, April 2011.

[7] L. Bui, R. Srikant, and A. L. Stolyar, “Novel Architectures and Algo-
rithms for Delay Reduction in Back-Pressure Scheduling and Routing,”
in IEEE INFOCOM Mini-Conference, April 2009.

[8] L. Ying, R. Srikant, A. Eryilmaz, and G. E. Dullerud,“A Large Devia-
tions Analysis of Scheduling in Wireless Networks,” IEEE Transactions
on Information Theory, vol. 52, no. 11, pp. 5088-5098, November 2006.

[9] V. J. Venkataramanan and X. Lin, “On Wireless Scheduling Algorithms
for Minimizing the Queue-Overflow Probability,” IEEE Transactions on
Networking, vol. 18, no. 3, June 2010.

[10] S. Zhao and X. Lin, “Scheduling Algorithm for End-to-
End Backlog Minimization in Wireless Multi-hop Networks,”
Technical Report, Purdue University, 2011. [Online]. Available:
http://web.ics.purdue.edu/%7ezhao147/.

[11] M. J. Neely, “Delay Analysis for Max Weight Opportunistic Scheduling
in Wireless Systems,” IEEE Transactions on Automatic Control, vol. 54,
no. 9, pp. 2137-2150, Sept. 2009.

[12] M. J. Neely, “Delay Analysis for Maximal Scheduling with Flow
Control in Wireless Networks with Bursty Traffic,” IEEE Transactions
on Networking, vol. 17, no. 4, pp. 1146-1159, August 2009.

[13] V. J. Venkataramanan, X. Lin, L. Ying and S. Shakkottai, “On Schedul-
ing for Minimizing End-to-end Buffer Usage Over Multihop Wireless
Networks,” in IEEE INFOCOM, San Diego, CA, March 2010.

[14] A. Dembo and O. Zeitouni, “Large Deviations Techniques and Applica-
tions,” 2nd ed. New York: Springer-Verlag, 1998.

[15] R.L.Wheeden and A.Zygmund “Measure and Integral: an introduction
to real analysis,” CRC Press, 1977.

APPENDIX

A. Proof of Lemma 1

Proof: Consider an arrival rate vector λ̃ = (λ̃f , f ∈
A) ∈ intC(A, zA). Then, there exists a sufficiently small
ε > 0, such that λ̂ = (1 + 2ε)λ̃ ∈ intC(A, zA). Therefore,
there exists a scheduling algorithm π0 that stabilizes the
network N (A, zA) under arrival rate λ̂. Under this scheduling
algorithm π0, the actual service rate at logical link lfi (i =
1, 2, ..., zf , f ∈ A) must be greater or equal to λ̂f > (1+ε)λ̃f .

In network N (A, z′A) with arrival rate (1+ε)λ̃, we schedule
link lfi (i = 1, 2, ..., z′f , f ∈ A) if and only if the corresponding
link lfi in network N (A, zA) is scheduled by π0. Since z′f ≤
zf for any f , this strategy is feasible. Moreover, the service
rate at logical link lfi is larger than (1 + ε)λ̃f . Therefore, the
network N (A, z′A) is stable under our strategy. Thus, (1 +
ε)λ̃ ∈ C(A, z′A). Therefore, λ̃ ∈ intC(A, z′A). Thus,

intC(A, z′A) ⊇ intC(A, zA).

B. Restatement of Assumptions from [3]

Assumption 1: The Lyapunov function V (x), defined for
x ≥ 0, satisfies the following:

1) V (x) is a continuous function of x.

2) V (x) ≥ 0 for all x and V (x) = 0 if and only if x = 0.
3) V (x) → ∞ if ‖ x ‖→ ∞.
4) min‖x‖≥1 V (x) ≥ 1. Further there exists a constant C̃

such that max‖x‖≤1 V (x) ≥ C̃.
5) For any B > 0, there exists a constant L that may depend

on B, such that for any ‖ x1 ‖≤ B and ‖ x2 ‖≤ B,

|V (x1)− V (x2)| ≤ L ‖ x1 − x2 ‖ .

6) The following holds (for a fixed arrival rate �λ assumed
in the system model): For all fluid limits x (i.e. fluid
sample path with α(t) = �λ for all t), when V (x) > 0,

d

dt
V (x(t)) ≤ −η, (28)

for almost all t, where η is a positive constant.

Parts (1)(2)(3)(6) are typically used to establish stability
through Lyapunov functions. Part (6) states that the Lyapunov
function must have negative drift when the arrival process
does not deviate from its mean behavior. For the norm in
Assumption 1, we may use the norm ‖ x ‖= max

f=1,2,...,F
{|xf |}.

We will also use the same norm in the following assumptions.
Assumption 2:

1) There exists ε > 0 such that for all fluid sample paths
and for all time t with ‖ α(t)−�λ ‖≤ ε and V (x(t)) > 0,
the following holds:

d

dt
V (x(t)) ≤ −η

2
,

where η > 0 is the same constant as in 28.
2) For any δ > 0, there exists M1 ≥ 0 such that for all fluid

sample paths and for all time t with ‖ α(t) − �λ ‖≥ δ,
the following holds,

d

dt
V (x(t)) ≤ M1.

Part (1) of this assumption states that if the arrival pro-
cess deviates from the mean behavior slightly, the Lyapunov
function still experiences negative drift leading to system
stability. Part (2) states that even if the arrival process deviates
significantly from its mean behavior, the rate of growth of the
Lyapunov function is still bounded.

Assumption 3: The Lyapunov function V (·) is linear in
scale, i.e., V (cx) = cV (x) for all c ≥ 0.

Assumption 5: V (x) is non-decreasing in each component
xf .

Assumption 6: V (x1 + x2) ≤ V (x1) + V (x2) for any two
vectors x1 ≥ 0 and x2 ≥ 0.

In out analysis, we will use the Lyapnov function V (x) =
max

f=1,...,F
{xf (t)}. Parts (1) − (5) of Assumption 1 and As-

sumption 3-6 are easy to verify. Hence, we do not provide
the details. Further, note that part (6) of Assumption 1 can be
seen as a special case of part (1) of Assumption 2. Hence,
it is suffcient to show that Assumption 2 holds for the LWF
algorithm.

According to Theorem 6 and Lemma 7, we know that under
the LWF algorithm,

d

dt
V (x(t)) = g(t).

In this paper, we assume that the arrival rate �λ is strictly
inside the capacity region of network (GT ,FT). Therefore,
there exists ε > 0, such that the arrival rate vector [λf +
2ε, f ∈ {1, 2, ..., F}] is also strictly inside the capacity region
of network (GT ,FT).

Note that, ‖ α(t)−�λ ‖≤ ε implies αf (t)+ ε ≤ λf +2ε for
any f ∈ {1, 2, ..., F}. Hence, [αf (t) + ε, f ∈ {1, 2, ..., F}] is
strictly inside the capacity region of the network (GT ,FT).
Then, it is very easy to show that [αf (t) + ε, f ∈ M(t)]
is strictly inside the capacity region of the subnetwork
N (M, bM). From the definition of g(t) (see Eqn. 19), we
immediately obtain g(t) ≤ −ε. Let η = 2ε, then the first part
of Assumption 2 holds.

As for the second part,

d

dt
V (x(t)) = max

f∈M(t)
{αf (t)− μf

1 (t)} ≤ max
f=1,2,...,F

{αf (t)}.

Note that the number of arrivals in one time slot is bounded by
M , it is easy to show that αf (t) ≤ M . Then d

dtV (x(t)) ≤ M .

C. Proof of Lemma 7

Proof: Consider a specific μ̂ that satisfies the constraints
(13)(14)(15). Let ĝ = max

f∈M
{αf (t) − μ̂f

1 (t)}. From the flow

constraint, we know that for each flow f ∈ M, μ̂f
i ≥ μ̂f

1 , i =
1, 2, ..., bf .

Thus, (
μ̂f
1 , f ∈ M) ∈ C(M, bf).

By definition of ĝ, we have af−μ̂f
1 ≤ ĝ. Then, af−ĝ ≤ μ̂f

1 .

Note that μ̂f
1 ≥ 0, then we have (af − ĝ)+ ≤ μ̂f

1 . Therefore,(
(af − ĝ)+, f ∈ M) ∈ C(M, bf).

From the definition of g(t), we immediately have g(t) ≤ ĝ.
On the other hand, g(t) is achievable4 for the optimization

problem (17) if we let μf
i = (af − g(t))+, i = 1, 2, ..., bf , f ∈

M(t). Thus, g(t) is the optimal solution of the optimization
problem (17).

D. Proof of Lemma 8

Proof: Consider f ∈ M0(t) and f̃ /∈ M0(t). If f̃ ∈
M(t) \ M0(t), then d

dtxf (t) − d
dtxf̃ (t) > 0. Let Kf,f̃ =

1
2 (

d
dtxf (t)− d

dtxf̃ (t)), then there exist δf,f̃ > 0, such that for
any 0 < δ < δf,f̃ , we have xf (t+ δ) > xf̃ (t+ δ) +Kf,f̃δ.

If f̃ /∈ M(t), then xf (t) − xf̃ (t) > 0. Then there exist
δf,f̃ > 0, such that for any 0 < δ < δf,f̃ , we have xf (t+δ) >

xf̃ (t+δ)+ 1
2 (xf (t)−xf̃ (t)). If we let Kf,f̃ =

d
dtxf (t)− d

dtxf̃ (t)

2δf,f̃
,

then we have xf (t+ δ) > xf̃ (t+ δ) +Kf,f̃δ.

4Here, we don’t mean that there exists a nice algorithm that minimizes the
drift.

Let K(1) = min
f,f̃

{Kf,f̃}, δ(1) = min
f,f̃

{δf,f̃}, then for any

0 < δ < δ(1), f ∈ M0(t) and f̃ /∈ M0(t), we have xf (t +
δ) > xf̃ (t+ δ) +K(1)δ

Consider link lfb′f
, f ∈ M0(t). If xf

b′f
(t) > 0, then there

exist δfb′f > 0, such that for any 0 < δ < δfb′f
, xf

b′f
(t + δ) >

xf

b′
f
(t)

2 . Let Kf
b′f

=
xf

b′
f
(t)

2δf
b′
f

, then we have xf
b′f
(t + δ) > Kf

b′f
δ.

If xf
b′f
(t) = 0, we must have d

dtx
f
b′f
(t) > 0. In this case, let

Kf
b′f

= 1
2

d
dtx

f
b′f
(t), the there exists δfb′f

> 0, such that for any

0 < δ < δfb′f
, xf

b′f
(t+ δ) > Kf

b′f
δ.

Let K(2) = min
f

{Kf
b′f
}, δ(2) = min

f
{δfb′f }, then for any 0 <

δ < δ(2) and f ∈ M0(t), we have xf
b′f
(t+ δ) > K(2)δ.

Let K = min{K(1),K(2)}. For each link lfi , f ∈
M0(t), i = 1, 2, ..., b′f−1, we must have xf

i (t) = 0, d
dtx

f
i (t) =

0. Then there must exist δfi > 0, such that for any 0 < δ < δfi ,
xf
i (t+ δ) < εK

4L δ.
Let δ(3) = min

i,f
{δfi } and δ̃ = min{δ(1), δ(2), δ(3)}. Then

lemma 8 holds.

E. Proof of Lemma 9

Proof: For each f ∈ M0(t), the backlog of link lfb′f
is Xf

b′f
(t0) = xf

b′f
(t0B − T)B + o(B) > KδB + o(B).

Therefore, there exists Bf > 0, such that for all B > Bf ,
Xf

b′f
(t0) > Rlf

b′
f

. Choose B(1) = max
f∈M0(t)

{Bf}, then for all

B > B(1), f ∈ M0(t), the usage efficiency of link lfb′f
is 1.

Now we assume B > B(1), then the weight of one link lfb′f
is

qfb′f
(t0) =

nf∑
j=b′f

Xf
j (t0)

= xf (
t0
B

− T)B −
b′f−1∑
j=1

xf
j (

t0
B

− T)B − o(B)

> xf (
t0
B

− T)B − T · εK
4L

(
t0
B

− T − t)B − o(B)

= xf (
t0
B

− T)B − εK

4
(
t0
B

− T − t)B − o(B)

Consider a link lf̃
ĩ

/∈ ∪
f∈M0(t)

Pf (l
f
b′f (t)

). We have two possi-

bilities:
(i) f̃ /∈ M0(t)
(ii) f̃ /∈ M0(t) but ĩ > b′

f̃

Case (i): The weight of link lf̃
ĩ

should be

qf̃
ĩ
(t0) ≤ Xf̃ (t0) = xf̃ (

t0
B

− T)B + o(B)

< xf (
t0
B

− T)B −K(
t0
B

− T − t)B + o(B)

Case (ii): The weight of link lf̃
ĩ

should be

qf̃
ĩ
(t0) ≤

nf̃∑
j=ĩ

X f̃
j (t0) ≤ Xf̃ (t0)−X f̃

b′
f̃

(t0)

= xf̃ (
t0
B

− T)B − xf̃
b′
f̃

(
t0
B

− T)B + o(B)

< xf̃ (
t0
B

− T)B −K(
t0
B

− T − t)B + o(B)

In either cases, there exist B(f, ĩ, f̃), such that for all B >

B(f, ĩ, f̃), we have qfb′f
> qf̃

ĩ
. Let B(2) = max

f,f̃
{B(f, ĩ, f̃)}

and B̃(δ)′ = max{B(1), B(2)}, then the first part of lemma 9
holds.

As for the second part, assume that none of the link in
I(lfb′f)

⋃{lfb′f } is scheduled. Consider link lfb′f
, according to

1), we know it has larger weight than all its interfering links
that is possible to be scheduled. Therefore, link lfb′f

must be
scheduled. This leads to a contradiction.

Further assume that link lf̂
î

(other than lfb′f
) is scheduled.

Actually, we have shown that the weight of link lfb′f
must be

equal to 1. We prove by contradiction. If the usage efficiency
of link lf̂

î
satisfy ηf̂

î
(t0) < 1 − ε. Then the weight of link lf̂

î
is

qf̂
î
(t0) = ηf̂

î
(t0)

(
xf̂ (

t0
B

− T)B − o(B)
)

< (1− ε)xf (
t0
B

− T)B − o(B)

< xf (
t0
B

− T)B − εK(
t0
B

− T − t)B − o(B)

Then there exists Bf̂

î
, such that for all B > Bf̂

î
, we have

qf̂
î
(t0) < qfb′f

. Consider link lfb′f
. Only link lf̂

î
is scheduled in

the set I(lfb′f). And lf̂
î

has smaller weight. For the other links

that interfere with link lfb′f
, they must not in ∪

f∈M0(t)
Pf (l

f
b′f (t)

).

Therefore, they all have smaller weight. Therefore, link lfb′f
should be scheduled. This leads to a contradiction.

Take B(3) = max
î,f̂

{Bf̂

î
} and B̃(δ) = max{B(3), B̃(δ)′},

then the results of lemma 9 hold.

F. Proof of Lemma 11

Proof: We first show that xf
1 (t) = 0, f = 1, 2, t ∈ [0, T].

In other words, there is no backlog in the second hop for
the FSP. Fix f , we will prove by contradiction. Assume that
there exists t0 ∈ [0, T], such that xf

1 (t0) > 0. Since xf
1 (t)

is Lipschitz continuous, it is also absolute continuous. Then,
according to Theorem 7.29 in [15], we have

0 < xf
1 (t0) =

∫ t0

0

d

dt
xf
1 (t)dt =

∫ t0

0

(μf
2 (t)− μf

1 (t))dt.

Then, we must have μf
2 (t) > μf

1 (t) in a set G ⊂ [0, T] with
measure |G| > 0. Without loss of generality, we assume f = 1.
Let θ =

μ1
2(t)−μ1

1(t)
3 > 0. If we let μ̂1

2(t) = μ1
2(t)−2θ, μ̂1

1(t) =

μ1
1(t)+θ, μ̂2

2(t) = μ2
2(t)+θ, μ̂2

1(t) = μ2
1(t)+θ, then we obtain

a smaller drift. Thus, algorithm π cannot minimize the drift
whenever t ∈ G, which contradicts to our assumption.

Then we are to show x1
2(t) = x2

2(t) for all t ∈ [0, T].
Note that from the previous step, we have xf (t) = xf

1 (t) +

xf
2 (t) = xf

2 (t), then it is enough to prove x1(t) = x2(t) for
all t ∈ [0, T]. We again prove by contradiction. Assume that
∃t1 ∈ [0, T], x1(t1) �= x2(t1). Without loss of generality, we
further assume that x1(t1) > x2(t1). Let Z be the set of all
roots of x1(t) = x2(t) in [0, t1], i.e.,

Z = {t ∈ [0, t1]|x1(t) = x2(t)}.
Let tz = supZ, then it is easy to verify that x1(tz) =

x2(tz) and x1(t) > x2(t) for ∀t ∈ (tz, t1]. Recall that
algorithm π minimizes the drift a.e., we can verify that
the drift minimization only occurs if μ1

1(t) = μ1
2(t) = 1

2
a.e. and μ2

1(t) = μ2
2(t) = 0 a.e. since these service rates

minimizes the drift of the backlog of the longest flow. To
be precise, since x1(t) > x2(t), then the objective in (17)
becomes α1(t)−μ1

1(t). Then, to minimize the drift, we should
serve l11 as more as possible. Since x1

1(t) = 0, we have
the constraint μ1

1(t) ≤ μ1
2(t). Combined with the constraint

μ1
1(t) +μ1

2(t) +μ2
2(t) ≤ 1, we immediately know the optimal

service rates should be μ1
1(t) = μ1

2(t) = 1
2 and μ2

2(t) = 0.
Notice that μ2

1(t) ≤ μ2
2(t), we must have μ2

1(t) = 0. Then

0 < x1(t1)− x2(t1)

= (x1(t1)− x1(tz))− (x2(t1)− x2(tz))

=

∫ t1

tz

d

dt
x1(t)dt−

∫ t1

tz

d

dt
x2(t)dt

=

∫ t1

tz

(α1(t)− μ1
1(t))dt−

∫ t1

tz

(α2(t)− μ2
1(t))dt

=

∫ t1

tz

(α1(t)− α2(t)− 1

2
)dt

≤ 0

This leads to a contradiction. Therefore, we must have
x1
2(t) = x2

2(t) for all t ∈ [0, T]

