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Abstract—SVC-based live video-streaming in multi-channel
wireless networks leads to a challenging joint rate-control and
scheduling problem with stringent deadline constraints. Tradi-
tional utility-based approaches often did not explicitly account for
deadlines. In this paper, we explicitly account for deadlines and
study the problem of optimizing the total reward from packets
meeting their deadlines in a modern 4G OFDM system. Motivat-
ed by a heuristic utility-based approach, we propose a class of
threshold-based rate-control and wireless scheduling policies that
can respect the deadline constraints and approach the optimal
system reward asymptotically as the system size increases. We
also propose a distributed realization of our threshold-based
policies that can be easily implemented in practical scenarios.
We substantiate the result via both analysis and simulation.

I. INTRODUCTION

Live-streaming is becoming one of the most popular appli-

cations in wireless networks. According to a recent industry

whitepaper, video is expected to consume two-thirds of the

overall mobile data traffic by 2016 [1]. Compared to other

types of mobile data applications, supporting wireless live-

streaming is much more challenging due to the time-sensitivity

of the video packets and the time-varying nature of the wire-

less channel. If not controlled properly, a significant fraction

of the live-streaming packets may not meet their deadlines

when the channel condition is poor. The overall quality of the

live-streaming service will then degrade significantly.

In the literature, SVC (scalable video coding) has been

proposed as a way to improve live-streaming performance

against channel uncertainty. An SVC video-encoder produces

a layered video stream which contains a base layer and several

enhancement layers for each video frame. When the channel

condition is poor, the sender can reduce the data rate by

transmitting the video at a lower layer. Such adaptivity can

potentially improve the overall performance of live-streaming

under time-varying wireless channels [2].

In real networks, a large number of live-streaming users

may compete for the wireless channel simultaneously. The use

of SVC in such an environment leads to an interesting and

challenging problem of joint rate-control and scheduling with

stringent deadline constraints. Note that if the video rate is not

controlled, there have been a number of studies on the design

of wireless scheduling mechanisms to optimize the system

performance subject to deadline constraints [3][4][5][6][7].

However, with SVC the video rate may change according to

the state of the network, which in turn will affect the dynamics

of the scheduling mechanism. Thus, there is a tight close-loop

coupling between rate-control and scheduling, whose impact

on the delay performance is not captured in the above studies.

On the other hand, joint rate control and scheduling without
deadline constraints has been studied using an optimization

approach (see, e.g., [8]). Specifically, one may model the rate-

adaptivity using a rate-distortion [9] or utility [10] function,

and then design joint control algorithms to optimize the total

system utility. However, these studies do not account for the

deadline requirement. As we will see in Section III, such an

approach may lead to extremely poor performance for live-

streaming services requiring stringent deadlines.

In this work, we directly account for deadlines in a joint

rate-control and scheduling problem. Specifically, for SVC,

we assign different rewards to packets from different layers

according to the respective video quality. Further, we assign

each packet a hard deadline when it must be received by

the receiver. We then study the problem of how to jointly

adjust the video rates and the scheduling decisions in order

to maximize the total reward obtained from those packets

meeting their deadlines. In addition, we note that for practical

implementation, it is highly desirable that the solutions to this

problem possess the following decentralized structure. Recall

that rate-control for SVC naturally occurs at the user side1,

while multi-user scheduling occurs at a base-station. It would

be highly desirable that there is only a minimal amount of

information exchange between the users and the base station.

Specifically, the base-station ideally does not know extensive

application-level information from the users, and each user

does not need to know extensive application-level information

from other users. Our goal in this paper is to develop efficient

joint rate-control and scheduling algorithms under stringent

deadline constraints that possess this decentralized structure.

Designing such a decentralized joint rate-control and

scheduling algorithm with deadline constraints is a challenging

problem, and existing results in the literature are quite limited.

Many of the existing studies focus on a single user. For

example, Kang et al. [16] proposed a threshold based policy

for video packet scheduling by a single user, but there is no

study of optimality. If the statistics of the channel are known,

one may formulate the single-user problem (with deadline)

as an MDP (Markov Decision Problem) [13]. However, The

MDP-based approach incurs prohibitively high complexity,

1For example, in DASH (dynamic adaptive streaming over http) [11], users
will request a certain number of video layers based their channel condition



and thus is difficult to generalize to the multi-user case.

Some recent works [7][15] studied the multi-user problem

with deadline constraints. The analysis of [7] is based on the

assumption that all packets are generated at the beginning of

each period, and expire at the end of the same period. Such

a period structure is difficult to maintain in a decentralized

setting where packets from multiple sources arrive at the base

station with varying delay. The algorithm proposed in [15] is a

heuristic algorithm, which does not provide any performance

guarantee. Further, the algorithm in [15] requires the base

station to know substantial application-level knowledge of all

the users (e.g., the rate distortion function, and the reward

of each packet), which may be difficult to implement in a

practical decentralized setting.

In this paper, we take a different approach from the prior

works. We focus on the setting where there are a large number

of channels. Such a multi-user multi-channel setting naturally

arises for 4G OFDM systems [12]. Somewhat surprisingly, we

can develop simple decentralized algorithms that are asymp-

totically optimal when the number of users and the number

of channels are both very large. Specifically, we first motivate

the structure of our proposed algorithm by considering another

version of the problem without the deadline constraints. This

problem can be solved using a standard utility-based approach

[8], and the resulting solution (without deadline constraints)

exhibits the following decentralized structure: the base station

only needs to report some congestion signal to the users, and

the user can determine the video rate (i.e., layers) by compar-

ing the congestion signal to a set of thresholds. However, as we

will show in Section III, the thresholds in the resulting solution

are not chosen based on the deadline constraints, and hence it

is difficult to tune this algorithm to achieve good performance

when there are stringent deadline constraints. Motivated by

the above observation, we then design a class of threshold-

based algorithms that choose the thresholds more carefully to

respect the hard deadline constraints. We show that when these

thresholds satisfy certain conditions, this class of algorithms

can asymptotically achieve the optimal time-average per-user

reward (even with deadline constraints) as the number of users

and the number of OFDM channels become large. Noting that

it may still involve centralized knowledge to set thresholds that

meet these conditions. We further develop a practical algorithm

to adaptively adjust the thresholds based on the current state

of network. Our practical algorithm possesses the desirable

decentralized structure: the base station does not need to know

video rates and utility functions of the users, and each user

only need a small amount of feedback from the base station to

dynamically adjust the thresholds. Hence, our algorithm can be

easily implemented in practice. Finally, our simulation results

confirm that the proposed algorithm also achieves superior

performance in medium-size systems.

II. NETWORK MODEL

A. Model

We study the downlink video-streaming in a single cell in

a modern 4G OFDM system. There are nu wireless users,

each of which wishes to receive a live stream from a video

source in the backbone wireline network. Specifically, each

user requests for video packets from its corresponding video

source, and then the video source transmits the generated video

packets to the user via the base station. We assume that the

propagation delay from the source to the base station is upper

bounded by σ, and each packet will expire in d time slots

after it is generated at the source. The base station maintains

a queue for each user, holding video packets that are waiting to

be transmitted to the user. There are ns frequency sub-carriers

in the OFDM system, which we refer to as OFDM channels.

In the rest of the paper, for ease of exposition, we assume

that nu = ns = n. However, our methodology can be easily

generalized to the case where nu �= ns.

Different users may request different videos, and they are

from different locations in the cell. To model such differences,

we classify the n users into C classes. The total number of

class-c users is nc = nηc, where
∑C

c=1 ηc = 1. Users from the

same class have the same video statistics and channel statistics.

Otherwise, they will be treated as different classes. We first

model the video statistics. For a typical class-c user, the cor-

responding video source encodes the generated video into Lc

layers using SVC, and then divides each layer into a sequence

of packets. Packets from different layers are assigned different

rewards since they contribute different video quality levels to

the user. Specifically, we assume that the reward for a layer-l
packet of a class-c user is Rc,l, and Rc,1 ≥ Rc,2 ≥ ... ≥ Rc,Lc

.

Further, we assume that the average packet-generating rate for

layer-l packets is λc,l. We then model the channel statistics.

Our focus is the following on-off model with possible temporal

correlation. Each class-c user has access to all the n OFDM

channels. Each channel evolves as a two-state Markov chain

with state-transition probability q(c) = [q
(c)
0,0, q

(c)
0,1; q

(c)
1,0, q

(c)
1,1]

(“0” means off, “1” means on), independent of other channels.

Whenever a channel is on for a class-c user, it can transmit rc
packets successfully from the base station to the user. Further,

we assume that q
(c)
0,1, q

(c)
1,1 > 0, and the channel states for

different users are independent.

Our goal in this paper is to maximize the time-average per-

user reward from those packets successfully received before

their deadlines. We assume that at the beginning of time t, the

base station knows the exact user-channel connectivity matrix

S(t) = [Si,j(t)]n×n, where Si,j(t) = 1 if the j-th sub-channel

is on for user i, and Si,j(t) = 0 otherwise. A scheduler at the

base station will then allocate channels to users in this time

slot based on S(t). We assume that each user can be allocated

multiple channels, while each channel can only be allocated

to one user. Based on the channel allocation, let γc,l(t) be the

number of layer-l packets received by class-c users at time t
that meat the deadlines. Then, the total reward J(n, t) obtained

from packets received before their deadlines in the interval

from time slot 0 to time slot t− 1 can be expressed as

J(n, t) =

t−1∑
t0=0

C∑
c=1

Lc∑
l=1

γc,l(t0)Rc,l.



We define the time-average per-user reward as

J(n) = lim
t→∞

1

t

J(n, t)

n
.

In this paper, we would like to design some joint rate-control

and scheduling policies that maximize J(n).

B. Desired Decentralized Structure of the Control Policies

The control of this system resides in both the user side

and the base station side. At the beginning of each time

slot t, a scheduler at the base station will allocate channels

to users based on the user-channel connectivity matrix S(t),
and transmit packets to the corresponding users. Further, the

base station also generates some control signal based on its

queue-length information, and sends the control signal to all

users through a broadcast control channel. We assume that the

control signal can be immediately delivered to the users. After

receiving the control signal, each user will then use the control

signal to adjust the video rate by requesting different number

of layers from the corresponding video sources.

In a practical system, the users and the base-station are

distributed entities. Hence, for practical implementation, it

is highly desirable that the control policies also possesses

a decentralized structure. Specifically, the base station need

not know much user-level information (e.g., packet rewards

and utility function) to generate control signals and allocate

channels; each user should request for a certain number of

layers purely based on the control signal, independent of the

behavior of other users.

III. MOTIVATION FOR THRESHOLD-BASED POLICIES

In this section, we first consider another version of the

problem that ignores the deadline constraints for all the users.

Then, our problem can be easily solved using a standard

utility-based approach. Further, the solution exhibits a decen-

tralized structure as we discuss earlier. However, since this

solution does not account for deadlines, we refer to it as a

“heuristic utility-based approach”. Indeed, we will see soon

that it is difficult to tune this heuristic approach to achieve

good performance with deadline constraints.

We begin with an outer bound on the capacity region of our

OFDM system. Let vc denote the average packet injection rate

for a class-c user, and let �v = [v1, v2, ..., vC ]. A rate vector �v
is said to be feasible if and only if there exists a scheduling

policy such that the long-term average allocated rate for each

class-c user is at least vc. Define a set Ω as

Ω =

{
�v :

C∑
c=1

ηc
vc
rc

≤ 1

}
. (1)

It is easy to check that Ω is an outer bound on the capacity

region of our OFDM system. In other words, any feasible rate

vector �v must be in Ω. Indeed, since vc/rc is a lower bound

on the average number of channels that a class-c user needs in

each time-slot, and there are ηcn class-c users and n channels,

the outer bound Ω then follows. Later on, we will see that this

outer bound is asymptotically tight when n is large. For more

details, please refer to our technical report [14].

We then propose a heuristic utility-based policy (ignoring

deadline constraints) based on the above outer bound. We first

construct the utility function Uc(·) for a class-c user. Recall

that the video requested by a class-c user has Lc layers, and

the packets from the l-th layer have per-packet reward Rc,l

and average generating rate λc,l. Recall that Rc,l is monotone

decreasing with respect to l. Hence, if the rate allocated to

this user is vc, to achieve the highest reward we should first

serve the layer-1 packets, following the layer-2 packets, layer-

3 packets, and so on, until a total rate of vc is fully utilized or

all the layers are served. Therefore, the utility function Uc(·)
of a class-c user is a piecewise linear function, i.e.,

Uc(vc) =

⎧⎨
⎩
∑Lc

l=1 Rc,l

[
vc −

∑l−1
i=1 λc,i

]+
, if vc ≤

∑Lc

l=1 λc,l,

Uc(
∑Lc

l=1 λc,l), if vc >
∑Lc

l=1 λc,l,
(2)

where [x]+ = max{x, 0}.

Our goal is to maximize the total utility under the constraint

that the rate vector �v is inside the outer bound Ω, i.e.,

max
v

C∑
c=1

nηcUc(vc), subject to

C∑
c=1

ηc
vc
rc

≤ 1. (3)

To solve (3), we associate a Lagrange multiplier μ ≥ 0 to

the inequality constraint, and define the Lagrangian as:

L(v, μ) =

C∑
c=1

nηcUc(vc)− μ

( C∑
c=1

nηc
vc
rc

− n

)

=
C∑

c=1

nηc

(
Uc(vc)− μ

rc
vc

)
+ nμ (4)

To maximize L(v, μ), each user can independently choose

the rate vc(t) at time t, such that

vc(t) = argmax
vc

Uc(vc)− μ

rc
vc, (5)

and the base station will update μ according to

μ(t+ 1) =

[
μ(t) + α

( C∑
c=1

nηc
vc(t)

rc
− n

)]+
, (6)

where α is a positive step size.

It is easy to see that the rate-control part (5) has a threshold

structure. Indeed, based on the form of Uc(·) in (2), we can

obtain the closed-form solution to (5), i.e.,

vc(t) =

⎧⎨
⎩
∑Lc

l=1 λc,l, if μ ≤ Rc,Lcrc,∑l
i=1 λc,l, if Rc,l+1rc < μ ≤ Rc,lrc,

0, if μ > Rc,1rc.

Thus, the user will request for layer l if and only if μ ≤ Rc,lrc.

We note that the above heuristic solution possesses the

desirable decentralized structure that we discussed earlier.

Specifically, each user only needs the control signal μ to adjust

the video layer, and can do so independently of other users.



Further, the base-station updates the control signal μ based on

(6), without the need to know the utility function of each user.

However, this heuristic utility-based solution may perform

poorly under deadline constraints. Specifically, note that μ/α
may be thought as an approximation to the weighted queue

length at the base station, where each packet of class-c is taken

as of length 1/rc. To achieve the optimal utility, the step size

α needs to be small. Unfortunately, it implies that the queue

length at the base station will be large, and the delay at the

base station may violate the deadline constraint d. Hence, it

is difficult to tune the parameter α of the solution to attain

good performance subject to deadline constraints. In the next

section, we will propose a class of threshold-based policies,

which respect the stringent deadline constraints and achieves

close-to-optimal reward.

IV. TP POLICIES FOR REWARD OPTIMIZATION

A. Simplification of Notations

For ease of exposition, we introduce the following concept

of a super-packet, which will greatly simplify the description

and analysis of the system. Recall that users of class-c can

transmit rc packets when an OFDM channel is on. Each super-

packet can contain rc class-c packets. Note that with this

concept, users from all classes can transmit exactly one super-

packet when an OFDM channel is on.

We define the normalized reward of a layer-l packet from

class-c users as Rc,lrc, which is also the reward of a super-

packet if the super-packet only contains layer-l class-c packets.

We then introduce the concept of “tiers” based on the normal-

ized reward of all the layers from all classes. We say two

layers are in the same tier, if they have the same normalized

reward. Assume that the total number of different tiers is

L. The layers with the largest normalized reward belong to

the first tier, the layers with the second largest normalized

reward belong to the second tier, and so on. For ease of

exposition, we assume that the normalized rewards for all L
tiers of packets are R1 > R2 > ... > RL, respectively. Note

that if there are multiple classes and multiple corresponding

layers with the same value of normalized reward Rl, then

a tier-l super-packet may contain a different number of real

packets depending on which class they are from. However,

regardless of the class, a tier-l super packet always has the

same reward and can be served by one channel use. Hence, the

notion of super-packets considerably simplify the notation and

analysis that follow. Specifically, let alu(i) denote the number

of tier-l super-packets2 generated for user u at time i, and

let alu(i, j) =
∑j

k=i a
l
u(k) denote the total number of tier-l

super-packets for user u from time i to j. The total rate of

tier-l super-packets for all the users is nλl, where

λl =
∑

c,i:Rc,irc=Rl

ηc
λc,i

rc
.

2If the source of user u does not generate tier-l packets, we will have
alu(i) = 0.

Therefore, E[
∑n

u=1 a
l
u(·)] = nλl. Let Al

u(i) =
∑l

k=1 a
k
u(i)

be the cumulative number of generated super-packets from tier

1 to tier l for user u at time i, and Al
u(i, j) =

∑j
k=i A

l
u(k)

be the sum from time i to time j. Similarly, let Al(i) =∑nu

u=1 A
l
u(i) be the total number of generated super-packets

from tier 1 to tier l for all users at time i, and let Al(i, j) =∑j
k=i A

l(k) be the sum from time i to j.

Further, we make the following assumptions in the asymp-

totic regime.

Assumption 1. There exist M < ∞, such that the total
number of generated super-packet for any time i and user
u is upper bounded by M , i.e., AL

u (i) < M .

Assumption 2. Given l = 1, 2, ..., L and ε > 0, there exists
N l

ε > 0, and Il(ε) > 0 independent of n and t, such that for
all t0, t > 0, n > N l

ε ,

P

(∣∣∣∣∣A
l(t0, t0 + t)

n
− t

l∑
k=1

λk

∣∣∣∣∣ > ε

)
< e−nIl(ε).

Assumption 3. Given l = 1, 2, ..., L and ε > 0, there exists
T̃ l
ε , Ñ

l
ε > 0, and Ĩl(ε) > 0 independent of n and t, such that

for all t0, t > T̃ l
ε and n > Ñ l

ε ,

P

(∣∣∣∣∣A
l(t0, t0 + t)

nt
−

l∑
k=1

λk

∣∣∣∣∣ > ε

)
< e−ntĨl(ε).

Assumption 1 is mild. Assumption 2 and Assumption 3

are also very general. Assumption 2 essentially states that the

probability that the total number of generated packets deviates

from its mean decays exponentially to zero as the number

of sources increases. For large t, Assumption 3 further states

that the exponential decay rate increases linearly with t. In our

model, Assumption 2 can be verified using Cramer’s Theorem

[3]. Assumption 3 has been verified for packet-generating

processes that follow a two-state Markov chain [3], and the

proof can also be generalized to more general Markov chains.

B. Upper Bound of J(n)

Recall that our goal is to maximize the time-average per-

user reward J(n). Therefore, we first provide an upper-bound

using the newly-defined “tier” structure.

Theorem 1. Let l∗ be the tier satisfying
∑l∗

i=1 λi < 1 ≤∑l∗+1
i=1 λi. Then, the upper bound of J(n) under any policies

is given by

J̄ �
l∗∑
i=1

λlRl +

(
1−

l∗∑
i=1

λl

)
Rl∗+1.

Essentially, the upper bound J̄ is obtained by assuming that

each OFDM channel can always serve one super-packet at

each time slot. Specifically, we consider a large time period

[0, τ−1], in which at most nτ super-packets can be served. We

then use nτ to serve the real packets in a decreasing order of

their normalized reward. Based on the definition of l∗, all tiers

from 1 to l∗ can be served, while only part of packets from

tier l∗ + 1 can be served. Summing the total reward obtained



from all of these tiers, we eventually obtain J̄ . The detailed

proof is provided in our technical report [14].

We would like to point out that J̄ is also closely related

to the optimization problem defined in (3). Recall that (3)

maximizes the total utility (reward) among all users under the

constraint that the rate vector �v ∈ Ω, and the outer bound Ω
is essentially obtained using the same assumption that each

OFDM channel can always serve one super-packet at each

time slot. Therefore, the optimal solution of (3) must be equal

to nJ̄ . Here, with the help of the “tier” concept, we can further

give a closed form of J̄ .

C. TP Policies and Optimality

We now define a policy class TP (Threshold-based Policies).

This class of TP policies is motivated by the heuristic utility-

based policy proposed in Section III. Specifically, in the

heuristic policy, each user adjusts the layers by comparing

μ to a set of thresholds Rc,lrc. However, these thresholds are

not chosen according to the deadline constraints, and hence

it is difficult to tune the heuristic policy to achieve good

performance subject to deadline constraints. We will see soon

that most of these thresholds are non-critical. We focus on

adjusting the more critical thresholds. Thus, we can obtain

near-optimal reward even with stringent deadline constraints.

TP contains all the joint rate-control and scheduling policies

satisfying the following requirements. A typical policy in TP

consists of two parts.

1) The first part is a threshold-based rate-control policy. Let

Q(t) be the total number of super-packets at the base

station at the beginning of each time slot t. The base

station will provide Q(t) as a feedback to all the users

at the beginning of each time slot. Assume that there are

L thresholds 1 ≤ DL ≤ DL−1 ≤ ... ≤ D1 ≤ d. (How

these thresholds should be set will be clear shortly.)

Based on Q(t), the users will request for packets from

the corresponding sources as follows: The packets from

tier l will be requested if and only if Dln > Q(t).
(Note that if this condition is met, all layers below tier-l
are also requested.) If Q(t) ≥ D1n, the users will stop

requesting any packets.

2) The second part is a scheduling policy at the base station.

At the beginning of each time slot t, we first drop all

the expired packets. Then, based on different scenarios,

we use different strategies to serve packets:

• If there exists a channel allocation scheme that could

serve all the n super-packets with the largest waiting

times3 (if the number of packets at the base station

is less than n, we just consider all the packets), we

will serve these n super-packets. In this case, we

say there is a successful schedule at time slot t.
• If the above scenario does not occur, we can use an

arbitrary policy to serve packets.

3The waiting time of a super-packet is the largest waiting time of packets
from this super-packet.

By comparing the heuristic utility-based approach in Section

III and the TP policy, we can see some striking similarities.

Specifically, the value of μ(t) corresponds to αQ(t). Hence,

if we choose the thresholds Dl to be Rl

αn , then the TP policy

would have been very similar to the heuristic policy. However,

as we discussed earlier, in order to achieve optimal utility, we

would like α to be small. Then, we will have difficulty to

ensure that all thresholds Dl are between [1, d] (as stated in the

TP policy)! Fortunately, our main result below shows that not

all thresholds are that critical. The most important thresholds

are those around the tier l∗+1 that leads to the upper bound J̄ .

Next, we will show that as long as certain conditions are met

for these thresholds, any policy in TP asymptotically achieves

the upper-bound J̄ of the time-average per-user reward, which

is formally stated in Theorem 2.

Theorem 2. Suppose that the thresholds satisfy the following
four constraints: (1). Dl∗+2 ≥ 1; (2). d−D1−σ−2σM+1 >
0; (3). Dl∗−Dl∗+1−2σM > 0; (4). Dl∗+1−Dl∗+2−2σM >
0. Then, the long-term average per-user reward J(n) under
any policy in TP asymptotically approaches the upper bound
J̄ with a positive decay-rate, i.e.,

lim inf
n→∞ − 1

n
log

J̄ − J(n)

J̄
> 0.

In Theorem 2, there are 4 constraints to ensure that a

typical policy in TP is asymptotically optimal. From these

constraints, we can see that there are only 4 critical thresholds

(D1, Dl∗ , Dl∗+1 and Dl∗+2), and three critical gaps (d−D1,

Dl∗ − Dl∗+1 and Dl∗+1 − Dl∗+2). Therefore, to implement

a TP policy, we only need to worry about these three gaps.

One simply strategy is to set Dl = 1 for all l ≥ l∗ + 2,

Dl =
2(d−σ)

3 for all l ≤ l∗, and Dl∗+1 =
Dl∗+Dl∗+2

2 . Compare

to the heuristic policy, as we discussed above the gap between

the corresponding thresholds Dl∗ and Dl∗+1 would have been
Rl∗−Rl∗+1

αn . Therefore, it would have been difficult to keep all

the thresholds between [1, d] when the step size α is small.

In theorem 2, by focusing only on Dl∗ and Dl∗+1, effectively

a smaller value of α is now used, while at the same time all

thresholds are between [1, d]. This intuition is the main reason

why the TP policy can attain near-optimal utility subject to

deadline constraints.

We also note that the conditions in Theorem 2 require the

gap between the critical thresholds to be larger when the prop-

agation delay σ is large. Intuitively, a larger σ implies that the

closed-loop control is more sluggish. Thus, we would expect

that it would be more difficult to attain the optimal reward.

Indeed, if σ is too large, it may not be possible to satisfy

the conditions in Theorem 2 given the deadline constraints d.

Hence, these conditions are of critical importance in practice.

D. Proof of Theorem 2

1) A Key Preliminary Lemma: Recall that the upper bound

J̄ is derived based on the assumption that each OFDM channel

can transmit one super-packet at each time slot. The following

lemma suggests that when the number of users and channels



are large, our TP policy can indeed serve n super-packets with

probability close to 1 at each time slot.

Lemma 3. Let ωi(t), i = 1, 2, ..., n be n non-negative integers
satisfying max1≤i≤n ωi(t) ≤ H and

∑n
i=1 ωi(t) ≤ n, where

H is a fixed positive constants. Let A(t) be the event that
there exists a channel allocation scheme at time t, such that
at least ωi(t) OFDM channels are allocated to user i. Then,
there exists a polynomial function f(n) of n and a constant
N0, such that for all n > N0, the following holds

P(A(t)|S(t− 1)) ≥ 1− f(n)e−nI ,

where I = 1
H log 1

1−q > 0 and q = min
c=1,...,C

{q(c)0,1, q
(c)
1,1} > 0.

In Lemma 3, A(t) is an event that is mainly determined by

the channel state S(t) at time t. Consider the j-th OFDM

channel, even though the probability that it is on for one

user is less than 1, when there are many users we can find

a user i such that Si,j(t) = 1 with high probability. In other

words, there exists significant diversity in this system. Lemma

3 makes this intuition rigorous by showing that we can in

fact find a channel allocation to send any n super-packets for

all users with high probability, regardless of the past channel

state. We note that Lemma 3 is similar to Lemma 6 in [3]. The

key difference, however, is that we only require
∑n

i=1 ωi ≤ n
instead of

∑n
i=1 ωi ≤ n−H , at the cost of a smaller decay rate

I , and we allow temporally correlated channels. The detailed

proof is given in our technical report [14].

Recall the system model where we assume that the number

of generated super-packets at each time slot for each user is

upper bounded by M . Further, each super-packet will expire

in at most d time slots. Therefore, if we let H = dM ,

then in each time slot, each user could have no more than

H super-packets at the base station. Thus, by Lemma 3, the

OFDM system will be able to serve any n super-packets with

high probability. In other words, any policy in TP will see a

successful schedule at each time slot with probability close to

1. This insight also implies that the outer bound Ω in (1) is

tight when the system size is large.

2) Sketch of the Proof of Theorem 2: To prove Theorem 2,

we need to find a lower bound of J(n) for an arbitrary policy

πTP in TP. Recall that not all layers of packets will be injected

to the network. We use Ĵ(n) to denote the average reward

from all the injected packets at each time slot. Further, not all

injected packets can be served before expiration. We use pd to

denote the probability that a typical injected packet is dropped

due to expiration. Note that the system reward is obtained

from those packets meeting their deadlines. Therefore, J(n) =
1
n Ĵ(n)(1− pd).

The main difficulty is to find a lower bound on Ĵ(n).
Note that the injection of packets is controlled by Q(t)
and the set of thresholds D1, D2, ..., DL. If we know the

probability distribution of Q(t), then we can compute Ĵ(n).
Specifically, let q0 = P(Q(t) < nDl∗+2), q1 = P(nDl∗+2≤
Q(t) < nDl∗+1), q2 = P(nDl∗+1 ≤ Q(t) < nDl∗) and

q3 = P(Q(t) ≥ nDl∗). Obviously,
∑3

i=0 qi = 1. Furthermore,

if Dl∗+2 ≥ 1 (constraint 1 in Theorem 2), we also have

q0n

L∑
l=l∗+2

λl + (q0 + q1)nλl∗+1 + n

l∗∑
l=1

λl

≥ n(1− q0)(1− f(n)e−nI). (7)

Eqn. (7) is obtained from the fact that not all injected

packets will get served eventually. The left hand side of Eqn.

(7) is an upper bound on the average number of super-packets

injected in each time slot, while the right hand side of Eqn.

(7) is a lower bound on the average number of super-packets

served in each time slot. More details are provided in our

technical report [14].

Recall that if the event {Q(t) < nDl∗+1} occurs, all packets

up to layer l∗+1 will be injected into the network. If the event

{nDl∗+1 ≤ Q(t) < nDl∗} occurs, all packets up to layer l∗

will be injected into the network. Then, we can obtain a lower

bound for Ĵ(n) based on q0, q1, q2 and q3, i.e.,

Ĵ(n) ≥ (q0 + q1)n

l∗+1∑
l=1

λlRl + q2n

l∗∑
l=1

λlRl + q3 · 0

= (1− q3)n

l∗∑
l=1

λlRl + (q0 + q1)nλl∗+1Rl∗+1

≥ (1− q3)n

l∗∑
l=1

λlRl +

(
n(1− q0)

(
1− f(n)e−nI

)

−q0n

L∑
l=l∗+2

λl − n

l∗∑
l=1

λl

)
Rl∗+1. (8)

The last inequality of Eqn. (8) is obtained using Eqn. (7).

Recall that J(n) = 1
n Ĵ(n)(1 − pd). Comparing (8) with J̄

in Theorem 1, we can see that if q0, q3 and pd converge

exponentially fast to 0 as n → ∞, then the result of Theorem

2 follows. (More detailed steps are available in our technical

report [14].) Such an exponential decay for q0, q3 and pd are

shown in the following lemma.

Lemma 4. There exists N such that for all n ≥ N ,

pd ≤ f1(n)e
−nI1 , q3 ≤ f2(n)e

−nI2 , q0 ≤ f3(n)e
−nI3 ,

where I1 = (d − D1 − σ − 2σM + 1)I , I2 = min
c≥0

{cI +

Il∗(Dl∗ −Dl∗+1 − 2σM − c)}, I3 = min{I1, Il∗+1(Dl∗+1 −
Dl∗+2 − 2σM)}, and f1(n), f2(n), f3(n) are polynomials of
n. Note that I1, I2, I3 > 0 if constraints 2,3,4 in Theorem 2
are satisfied.

The intuition behind Lemma 4 is as follows. Note that a TP

policy provides a closed-loop control for the entire system.

According to Lemma 3, we know that the total service rate in

the unit of super-packets is very close to n. If the number

of backlogged super-packets Q(t) is greater than Dl∗+1n,

then the total injecting rate is n
∑l∗

l=1 λl < n. Therefore,

the backlog has a tendency to decrease. Similarly, if Q(t)
is smaller than Dl∗+1n, the backlog will have a tendency to

increase. As a result, Q(t) will stay around Dl∗+1n. Thus,



the probability q0 of underflow (Q(t) < nDl∗+2) and the

probability q3 of overflow (Q(t) ≥ nDl∗ ) should both be very

small. As for pd, if a packet is dropped eventually, then at

the time that this packet arrives at the base-station, the queue

size Q needs to be very large, which deviates far from the

equilibrium point Dl∗+1n. As we explain earlier, such an event

occurs with very low probability too.

We note that the results in Lemma 4 share some similarity

to the many-source many-channel asymptotes in [3]. However,

the analysis in [3] is for an open-loop system, where the

statistics of the packet-injection process are given. In contrast,

Lemma 4 is for a closed-loop system where the packet-

injection is also controlled by the queue length. Hence, the

statistics of the packet-injection process is unknown before-

hand. Due to this reason, the proof is also significantly

different from that in [3]. For the detailed proof, please refer

to our technical report [14].

V. AN ADAPTIVE IMPLEMENTATION OF THE TP POLICIES

We have shown that the TP policies achieve close-to-optimal

time-average per-user reward under certain conditions on the

thresholds. However, it remains a challenging problem to find

the thresholds to satisfy these conditions. First, it requires the

base station to know l∗, which depends on the normalized

rewards for all the layers from all classes of users. Second,

such a value l∗ may change when a user moves to another

location (in which case the channel rate will change) or when

users join or leave the system dynamically. Therefore, there

is a pressing need to develop decentralized and adaptive ways

to set these thresholds.

In this section, we will develop such decentralized and

adaptive implementation of the TP policies, which we call

ATP (Adaptive Threshold-based Policy). The main idea of

ATP is as follows. Suppose that the normalized rewards Rl

of all tiers l are laid down on a direct line, shown as the

top line in Fig. 1. Further, recall that the queue length Q(t)
at the base station in the unit of super-packets lied between

[0, nd], which is the bottom line in Fig. 1. Suppose that now

the base station focuses on the interval [R(1− β), R(1 + β)]
on the top line, and use a linear mapping D(·) that maps

the interval to the interval [0, d]. If Rl∗ , Rl∗+1 and Rl∗+2

all belong to the interval [R(1 − β), R(1 + β)], then their

values of D(Rl∗), D(Rl∗+1) and D(Rl∗+2) will correspond

to the thresholds Dl∗ , Dl∗+1 and Dl∗+2 of the TP policy. Like

the heuristic utility-based approach in Section III, each user

can simply compare nD(Rc,lrc) with Q(t), which precisely

implements these thresholds for TP. Further, if β is sufficiently

small, then the gaps between these thresholds will be large,

which may then satisfy the conditions in Theorem 2. A

decentralized implementation of the TP policy thus results.

However, the difficulty lies in that the base station does

not know the right value for R and β before hand. Hence,

we propose to adaptively adjust these values based on the

observation of the queue length.

Specifically, the ATP policy contains two components: Al-

gorithm 1 for base-station-side control and Algorithm 2 for

(1) Initialization: set constants

bright =
2(d−σ)

3 , bmiddle =
1+bright

2 ; set control parameters

R = R(0), β = 1, �Qhistory(1 : 4σ) = 0, Q̄0 = 0, p = 0.

(2) Updating control parameters: obtain the total number

of super-packets Q(t) at the beginning of time slot t. Let

Q̄t = 0.9Q̄t−1 + 0.1Q(t)

be the exponentially weight average queue length, and set

�Qhistory = [ �Qhistory(2 : 4σ), Q̄t].

Update p according to

p = 0.9p+ 0.1�{n 4+bmiddle
5 ≤Q(t)≤n

bmiddle+4bright
5 },

where �{·} is an indicator function. Use linear regression

on �Qhistory to estimate the slope s of the smoothed queue

length. Then update R and β as follows:

if Q̄t < n 1+bmiddle
2 then

update R = R/ρ1 if s < 0;

else if Q̄t > n
bright+bmiddle

2 then
update R = R× ρ1 if s > 0;

else
if s > 0.1 then R = R+ ρ2;

else if s < −0.1 then R = R− ρ2;

else
if p > 0.99 then β = max{β − ρ3, 0.1};

if p < 0.9 then β = min{β × ρ4, 1};
end

end
Send R, β and

Q(t)
n to all the users through a control

channel.

(3) Scheduling: obtain the channel states by some

channel estimation strategy. Use the second part of a TP

policy to allocate channels and serve packets.

Algorithm 1: ATP policy-base station side.

(1) Initialization: set constants

bright =
2(d−σ)

3 , bmiddle =
1+bright

2 . Estimate its maximum

transmission rate rc in one sub-channel.

(2) Constructing threshold mapping function D(·): obtain

R, β and
Q(t)
n from the base station. Use R and β to

construct the function D(·) as follows:

D(x) =

⎧⎨
⎩

1, if x < R(1− β),
bright, if x > R(1 + β),

(x−R)
bright−1
2βR + bmiddle, else.

(9)

(3) Request all video layers satisfying D(Rc,lrc) >
Q(t)
n

from the corresponding video source.

Algorithm 2: ATP policy-user side.



user-side control. The user-side control is simpler. Each user

will generate the same piecewise-linear mapping function D(·)
(see Eqn. (9)) based on the control parameters R and β given

by the base station. By comparing D(Rc,lrc) with Q(t)/n,

each user can decide the layers that it wishes to request.

The base-station-side control is more complex4. It needs to

adaptively estimate the parameters R and β based purely on its

queue evolution statistics. Our goal is to set R close to Rl∗+1,

i.e., the normalized reward of tier-(l∗ +1), and to set β to be

sufficiently small, so that all the thresholds mapped by D(·)
are set as desired by Theorem 2, i.e., Dl = 1 for all l ≥ l∗+2,

Dl =
2(d−σ)

3 for all l ≤ l∗, and Dl∗+1 =
Dl∗+Dl∗+2

2 . Note

that if R is estimated correctly, Q(t) will be stabilized around

nbmiddle = n
1+bright

2 . To adaptively find the right R, we let the

base station keep track of the exponentially weighted average

(EWA) queue �Qhistory. We then compute the slope s at which

the EWA queue �Qhistory increase or decrease. If the current

EWA queue Q̄t is too small compared to nbmiddle, we need s
to be positive. Hence, if s < 0, we will decrease R so that

more tiers of packets can be injected to the network, and thus

make s > 0. Similarly, if Q̄t is too large, we need s to be

negative. Hence, if s > 0, we will increase R so that less

tiers of packets can be injected to the network, and thus make

s < 0. if Q̄t is close to nbmiddle, we need s to be approximately

0. Then, if s is too small, we will decrease R to increase

s; if s is too large, we will increase R to decrease s. After

correctly estimating R, we should estimate β. If β is set to

be too large, then the three critical gaps in Theorem 2 would

become smaller, and hence the queue Q(t) will be constrained

in a small interval. If β is set to be too small, then Q(t) may

oscillate over a large interval. Thus, to adaptively set the value

of β, we construct a window [n 4+bmiddle

5 , n
bmiddle+4bright

5 ] around

nbmiddle. If the probability p that Q(t) is in this window is too

large, we will decrease β; if p is too small, we will increase

β. Based on the above control, the values of R and β will

eventually approach to the desired values. Next, we will study

the performance of our ATP policy via simulation.

���� ��� ��� ���

�������	 
����	

Fig. 1. Illustration of the mapping from normalized rewards to thresholds.

VI. SIMULATION

In this section, we are interested in the following policy

in TP, which is called TP-DWM (Delay Weighted Matching)

policy. In TP-DWM, each super-packet is assigned a weight,

which is equal to the largest waiting time of the packets inside

this super-packet. Then, TP-DWM tries to assign channels

to super-packets such that the total weight is maximized.

4R0, ρ1, ρ2, ρ3, ρ4 are a set of configuration parameters.

TP-DWM belongs to TP because TP-DWM will definitely

serve super-packets with the largest waiting times if it sees

a successful schedule at time t [3]. In the following, we will

study the performance of the ATP-DWM, which is the adaptive

implementation of TP-DWM as discussed in Section V.

A. ATP-DWM v.s. the Utility-based Approach

We compare the time-average per-user reward and the

packet dropping rate between the ATP-DWM policy and the

heuristic utility-based approach. We use a Markov chain to

generate videos. Specifically, we assume that each video has

busy periods and idle periods, and the state of each period

(busy or idle) evolves as a Markov chain with state transition

probability [0.8, 0.2; 0.4, 0.6]. For each layer of packets, we

assume that the number of packets generated in each period

follows a Poisson distribution, and the packet-generating rate

in busy periods is twice as much as that in idle periods.

All videos are generated using the same approach described

above. However, different videos can have different number

of layers, different rewards and different packet-generating

rates. We also use a Markov chain to generate OFDM chan-

nels. We model the channel for each channel-user pair by a

two-state Markov chain with state-transition probability q =
[q0,0, q0,1; q1,0, q1,1]. However, the state-transition probability

q and the transmission rate r when the channel is on can be

different for different users.

More precisely, we assume that there are two classes of

users. The videos for the first class of users have 4 layers,

with rewards {100, 50, 30, 20} (from layer 1 to layer 4) and

packet generating rates {0.7, 0.5, 0.5, 0.4} (again from layer 1
to layer 4). The OFDM channels for the first class of users

have the state-transition probability q(1) = [0.6, 0.4; 0.3, 0.7],
and the transmission rate r1 = 1. The videos for the second

class of users have 3 layers, with rewards {60, 40, 10} (from

layer 1 to layer 3) and packet generating rates {0.8, 0.5, 0.3}
(again from layer 1 to layer 3). The OFDM channels for

the second class of users have the state-transition probability

q(2) = [0.5, 0.5; 0.2, 0.8], and the transmission rate r2 = 2.

There are n users, and the total numbers of class 1 and class

2 users are n1 = n2 = n
2 . We assume that the propagation

delay between the video source and the base station is 2,

and all the packets will expire in d = 13 time slots after

it is generated at the video source. Based on Theorem 1,

it is easy to compute that the upper bound of the time-

average per-user reward is 83.75. We compute the time-

average per-user reward J(n) through simulation under both

the ATP-DWM polciy (the parameters of ATP-DWM are set

as R0 = 10, ρ1 = 1.01, ρ2 = 1, ρ3 = 0.01, ρ4 = 2) and the

utility-based approach (the step size is α = 1
n ). We vary n

from 4 to 60. From Fig. 2, we can see that the ATP-DWM

policy outperforms the utility-based approach in terms of both

the average reward and the packet dropping rate.

B. Impact of User Dynamics on ATP-DWM

We study how the ATP-DWM policy adapt to user dy-

namics, e.g., user-arrival, user-departure, and user-moving. We
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Fig. 3. Performance of ATP-DWM under user dynamics.

simulate 20 class-1 users and 20 class-2 users for 3000 time

slots in an OFDM system with 40 channels. The video and

channel statistics of each class of users are the same as that in

Section VI-A. All the class-1 users are present in the system at

time 0, and will leave the system at time 2000. All the class-2
users will join the system at time 1000, and leave the system

at time 3000. All class-2 users will move at time 1500. As a

result, their channel rate r2 will change from 2 to 1. We obtain

the total reward of all users5 at each time t via simulation, and

keep track of the exponentially weighted average (EWA) of the

total reward as a function of time using

EWA total reward(t) (10)

= 0.9× EWA total reward(t− 1) + 0.1× total reward(t).

In Fig. 3, we compare the EWA total reward with the cor-

responding upper bound (obtained by multiplying the upper

bound J̄ in Theorem 1 by the total number of on-going users).

We can see that the ATP-DWM policy can quickly adapt to

the right decisions to achieve a close-to-optimal reward6. Thus,

the ATP-DWM policy is adaptive to user dynamics.

VII. CONCLUSION

We study the joint rate-control and scheduling problem with

hard deadline constraints in a modern 4G OFDM system.

Motivated by a heuristic utility-based algorithm, we design

a class of threshold-based algorithms that can asymptotically

achieve the optimal time-average per-user reward as the num-

ber of users and the number of OFDM channels become large,

5Here we do not use the time-average per-user reward, because the total
number of users is changing.

6It is possible that the rewards obtained at some time slots are higher than
the upper bound. Therefore, it is also possible for the EWA total reward
obtained using Eqn. (10) to be greater than the upper bound. In fact, if we
average the total reward over a long time period, the time-average total reward
would be smaller than the upper bound.

provided that the thresholds satisfy certain conditions. Noting

that it may still involve centralized knowledge to set thresholds

that meet these conditions. We further develop a practical

algorithm, called ATP, to adaptively adjust the thresholds

based on the current state of network. Our practical algorithm

possess the desirable decentralized structure: the base station

does not need to know video rates, packets rewards, and

utility functions of the users, and each user only need a

small amount of feedback (R, β,Q(t)/n) from the base station

to dynamically adjust the thresholds. Finally, our simulation

results show that the ATP algorithm not only outperforms the

heuristic algorithm, but also adapt quickly to system dynamics.
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