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Abstract—We study competitive online algorithms for EV
(electrical vehicle) charging under the scenario of an aggregator
serving a large number of EVs together with its background load,
using both its own renewable energy (for free) and the energy
procured from the external grid. The goal of the aggregator
is to minimize its peak procurement from the grid, subject to
the constraint that each EV has to be fully charged before its
deadline. Further, the aggregator can predict the future demand
and the renewable energy supply with some levels of uncertainty.
The key challenge here is how to develop a model that captures
the prior knowledge from such prediction, and how to best
utilize this prior knowledge to reduce the peak under future
uncertainty. In this paper, we first propose a 2-level increasing
precision model (2-IPM), to capture the system uncertainty. We
develop a powerful computation approach that can compute
the optimal competitive ratio under 2-IPM over any online
algorithm, and also online algorithms that can achieve the optimal
competitive ratio. A dilemma for online algorithm design is that
an online algorithm with good competitive ratio may exhibit poor
average-case performance. We then propose a new Algorithm-
Robustification procedure that can convert an online algorithm
with reasonable average-case performance to one with both the
optimal competitive ratio and good average-case performance.
The robustified version of a well-known heuristic algorithm,
Receding Horizon Control (RHC), is found to demonstrate
superior performance via trace-based simulations.

I. INTRODUCTION

Replacing fossil fuels by renewable energy is a major
priority all over the world [1]. However, high penetration of
renewable energy poses an immense challenge to the existing
power grid. Specifically, renewable energy from wind and solar
is known to exhibit high variability and uncertainty. As renew-
able generation varies, the grid needs additional flexibility to
balance the demand and supply [2]. In this paper, we focus
on balancing the variability and uncertainty of the renewable
supply by exploiting the flexibility from electric vehicle (EV)
charging demand, which is a typical example of deferrable
demands [3]. We expect that future EV demand can potentially
be huge. Currently, transportation consumes 29% of the total
energy in the US, while electricity consumes 40%. If a large
fraction of the vehicles are electrified, their charging jobs will
provide an enormous amount of demand-side flexibility, which
could be used to compensate the variability and uncertainty due
to high penetration of renewable energy.

Our goal in this paper is thus to develop intelligent schedul-
ing algorithms for EV charging that minimizes the impact of
variability and uncertainty of renewable energy to the grid.
Specifically, we consider an (demand) aggregator who has

its own background demand and renewable energy supply
(the latter is assumed to be of no cost), and who manages
a large number of EVs. Such an aggregator could represent an
apartment or office building with a parking garage, a campus,
or a micro-grid [4]. As the EVs arrive and are connected to
the charging stations, each of them specifies a deadline for
the charging request to be completed. We model the objective
of the aggregator as minimizing the peak consumption from
the grid (the background load plus the EV charging rate,
minus the renewable supply) under the constraints that all
EVs must be charged before their deadlines. Our choice of
the peak-minimization objective is motivated by the following
two considerations. First, a large peak consumption-level re-
quires the grid to provision the corresponding generation and
transmission capacity in order to meet the demand. Thus, a
large peak not only increases the overall cost of supplying
energy, but also poses danger to grid-stability. Second, utility
companies have already developed peak-based pricing schemes
to encourage large customers (including aggregators) to reduce
their peak and smoothen their demand. In this type of pricing
schemes, the customers are charged based on not only the total
usage in a billing period, but also the maximum (peak) usage
at any time in the billing period. Specifically, if a customer’s
energy consumption is given as a sequence (E1, E2, ..., En),
then the total bill is of the form c1

∑
i Ei + c2 maxi{Ei} [5].

In typical schemes (e.g., Wisconsin electric power company
[6]), the unit charge for peak usage c2 (between 9.03$/kW and
9.38$/kW) is approximately 200 times the unit charge for total
usage c1 (between 0.03$/kWh and 0.05$/kWh), thus giving
the customers a strong incentive to reduce the peak. Under
this type of pricing schemes, when the aggregator reschedules
EV charging jobs, the total energy consumption from the grid
does not change. It is the peak demand that is changed. Hence,
minimizing the aggregator’s operating cost is also equivalent
to minimizing its peak consumption. Further, the potential
benefit of peak reduction is huge. For campus-level aggregators
(e.g., [4]), the peak energy is usually in the order of 20MW.
Then, every one percent of peak reduction will correspond to
0.01× 20MW × 9$/kW × 12 = 21600$ saving per year.

However, designing good scheduling algorithms for EV-
charging that minimize the peak demand to the grid is a
challenging problem due to the inherent uncertainty in both the
demand and the renewable energy supply. If all the demand and
the supply could be precisely predicted in advance, one could
have used an offline algorithm to compute the optimal charging
schedule that minimizes the peak [7]. Unfortunately, in practice
such prediction is often quite inaccurate. For example, the



maximum day-ahead prediction error for wind can be above
20% [8]. Without accounting for such uncertainty, the resulting
peak could be much higher than what we can achieve. As
readers will see in the numerical results in Section V-A, an
algorithm that is oblivious to such inherent uncertainty will
likely lead to significantly larger peak consumption levels.

In the literature, there are two general technical approaches
to deal with uncertainty. The first approach is to assume a prob-
abilistic model for future uncertainty and cast the problem as a
stochastic decision control problem. This is the approach taken,
e.g., in risk limiting dispatch [9], where a two-stage stochastic
control problem was studied. In contrast, since the amount
of renewable generation is revealed sequentially, here we are
faced with a multi-stage stochastic control problem. However,
this stochastic-control approach is known to have a number of
difficulties. First, as the problem size increases, a multi-stage
stochastic control problem quickly becomes computationally
intractable [10]. Second, even obtaining the probabilistic model
of uncertainty can be challenging, especially when the re-
newable supply is non-stationary and highly-correlated across
time. If the probabilistic model is inaccurate, the resulting
performance guarantee also becomes questionable.

The second approach, which we will adopt in this paper, is
to model the uncertainty in a set, and develop algorithms that
can achieve provable performance guarantees for the worst-
case uncertainty within that set. Note that there is no need to
obtain a probabilistic model. Further, as we will show in the
rest of the paper, searching for the worst case could potentially
be more tractable even for fairly complicated problem settings.
This approach is related to robust optimization [11] and two-
stage adaptive robust control [12]. As we discussed earlier, due
to the sequential nature with which renewable generation is
revealed, here we are interested in multi-stage decisions. This
multi-stage problem is also closely related to the problem of
designing competitive online algorithms [13]. For example, it
was shown in [14] that, even without any future information
of job arrivals and deadlines, one can design a competitive
online algorithm whose peak consumption is at most a constant
factor e = 2.718 above the offline optimal (where the latter
assumes that the future information is known in advance).
This constant factor is referred to as the competitive ratio
of the online algorithm. However, this line of research also
encounters a number of challenges. First, existing results on
competitive online algorithms are often based on very simple
models of future uncertainty [15], or do not assume any
model at all. As a result, the worst-case performance (and
the corresponding competitive ratio) is often quite poor. In
practice, both renewable supply and EV demands can be
predicted to a certain degree. Intuitively, such prediction can
provide very useful information for eliminating uninteresting
worst cases, and thus sharpening the competitive ratio of online
algorithms. However, to the best of our knowledge, there is no
systematic methodologies for designing competitive online al-
gorithms under more complicated models of future uncertainty.
The second challenge, which in fact applies to many “robust
optimization” results as well [12], is that the algorithms are
only optimized for the worst-case. As a result, their average-
case performance can be quite poor [15]. Given that the worst-
case input may only occur very rarely, the aggregator may then
be hesitant to endorse the resulting algorithm.

In this paper, we make two contributions to address the
above challenges. First, we propose a very general model,
called 2-IPM (2-level increasing precision model), to capture
the uncertainty of predicting renewable energy, EV demand,
and background load. Compared to existing uncertainty mod-
els, e.g. [15], a key novelty of 2-IPM is that it can model
the scenario where predictions are made at multiple instants
(e.g., day-ahead prediction versus intra-day prediction), and
that the predictions closer to the target time tend to be more
accurate (e.g., intra-day prediction is usually more accurate
than day-ahead prediction). For any given 2-IPM model, we
develop a powerful computation procedure to find the smallest
competitive ratio in terms of the peak consumption. This
smallest competitive ratio can thus be viewed as a measure
of “price of uncertainty” under the 2-IPM. As readers will
see in Section V-B, our 2-IPM yields much lower price-of-
uncertainty compared to the uncertainty models in [15].

We then study online algorithms that attain the optimal
competitive ratio under the 2-IPM. One can easily generalize
the EPS algorithm in [15] to obtain an online algorithm with
the optimal competitive ratio. However, such generalized EPS
algorithm still suffers from the second weakness discussed
earlier, i.e., it is optimized for the worst-case input, and
its average-case performance can be quite poor. Our second
contribution is to propose a general “robustification” procedure
to design online algorithms with both the optimal competitive
ratio and good average-case performance. Given any online
algorithm with good average performance (in terms of the
peak), this robustification procedure can convert it to one with
not only good average-case performance, but also the optimal
competitive ratio. We apply this robustification procedure to a
well-known online algorithm, called Receding Horizon Control
(RHC), which demonstrates good average-case performance,
but poor worst-case competitive ratio. Our numerical results
in Section V-C indicates that the robustified-RHC algorithm
achieves both good average-case and worst-case performance.

II. SYSTEM MODEL

We consider an aggregator serving its EV demand and
background demand using both its own renewable energy
(which is assumed to be cost-free) and the energy procured
from the external grid. We assume that time is slotted, and
index a time-slot by an integer in T = {1, ..., T}, where T is
the time-horizon considered. We represent the EV demand by
a T × T upper-triangular matrix a = [ai,j ], where ai,j is the
total deferrable (EV) demand with arrival time i and deadline
j ≥ i. We represent the net non-deferrable demand by a T ×1
vector b = [bi], where bi is the background demand at time
i minus the renewable energy available at time i. Using the
flexibility in the EV demand, the goal of the aggregator is to
schedule EV charging jobs such that the peak energy procured
from the grid is minimized.

A. Model for Prediction and Uncertainty

In practice, there exists considerable uncertainty in both
the net non-deferrable demand and the deferrable demand.
Specifically, we define a (T − t + 2) × 1 vector x(t) =
[at,t, ..., at,T , bt]

T to include both the EV demand with arrival
time t and the net non-deferrable demand at time t. Note that
the aggregator will know the precise value of x(t) only at and
after time-slot t. In the rest of this paper, we will say that



“the value of x(t) is revealed at time t”. At a time s < t,
the value of x(t) is uncertain to the aggregator. However, the
aggregator can use various sources of information (such as
weather forecast) to predict the future value of these uncertain
quantities in order to improve its decision. In practice, such
predictions can be taken multiple times, e.g., if the operating
time-horizon is a day, one prediction can be made before the
day (called “day-ahead” prediction), and another prediction
can be made a few hours before time t (called “intra-day”
prediction). In general, intra-day prediction is more accurate
than the day-ahead prediction because it is closer to the real
time. Next, we will present a model, called 2-IPM (2-Level
Increasing Precision Model), to model the uncertainty associ-
ated with such prediction procedures. We note that, although
for ease of exposition the model below only assume one intra-
day prediction, both 2-IPM and the subsequent results can be
easily generalized to multiple intra-day predictions.

Specifically, we assume that at time 0 (before the first time-
slot), a day-ahead prediction is available for every x(t), t ∈ T.
For each future time-slot t, the day-ahead prediction provides
two (T − t+2)×1 vectors x̂L(0, t), x̂U (0, t), which are lower
and upper bounds, respectively, to x(t). In other words, the
future value of x(t) must lie within

x̂L(0, t) ≤ x(t) ≤ x̂U (0, t). (1)

Then, at a later time ut, 1 ≤ ut < t, another intra-day
prediction is performed. (One example of ut could be ut =
max{1, t − L}, i.e., the intra-day prediction is performed L
time-slots ahead.) The intra-day prediction provides another
two (T − t+2)×1 vectors x̂L(ut, t), x̂

U (ut, t), that are better
lower and upper bounds to x(t) than the day-ahead prediction.
In other words, the following will hold:

x̂L(0, t) ≤ x̂L(ut, t) ≤ x(t) ≤ x̂U (ut, t) ≤ x̂U (0, t). (2)

Obviously, a key difference between day-ahead prediction
and intra-day prediction is that they are performed at differ-
ent times. Thus, while the value of day-ahead predictioin,
x̂L(0, t), x̂U (0, t) for all t, are known even before time-slot
1, the value of x̂L(ut, t) and x̂U (ut, t) will not be known
until time slot ut. (We will say that the value of x̂L(ut, t)
and x̂U (ut, t) are revealed at time ut.) Thus, from time-slot
0 to time-slot ut − 1, although the aggregator does not know
the future intra-day prediction for x(t) that will be performed
at time ut, it does know that this future intra-day prediction
will be more accurate. In order to model this knowledge, we
assume that there exists a (T − t+ 2)× 1 vector W (ut, t) ≤
x̂U (0, t)− x̂L(0, t), which is known at time 0, that bounds the
(future) intra-day prediction gap x̂U (ut, t)− x̂L(ut, t), i.e.,

x̂U (ut, t)− x̂L(ut, t) ≤ W (ut, t). (3)

In other words, the aggregator knows the (increased) precision
level of future intra-day predictions that will be performed at
time ut, even though it does not know the exact bounds of this
intra-day prediction before time ut.

Remark 1: Readers may question what happens when the
bounds for the intra-day prediction falls outside of the day-
ahead predicted interval (1). If this happens, we suggest tighten
the intra-day prediction bounds so that (2) is satisfied. This
procedure is justified because in practice these bounds are

usually chosen such that the value of x(t) will fall into the
predicted intervals with high probability. In other words, the
competitive online algorithms defined below implicitly ignore
those cases where these bounds are violated.

We summarize how the variables defined above are re-
vealed in time. At time 0, the aggregator only knows Y =
{x̂L(0, t), x̂U (0, t),W (ut, t), t = 1, 2, ..., T}. At time-slot t,
the aggregator knows the revealed x(s) for all s ≤ t, and
the intra-day prediction for any time-slot s such that us ≤ t.
This set of information is summarized in Zt = {x(s), s =
1, 2, ..., t}⋃{x̂L(us, s), x̂

U (us, s), us ≤ t}. Note that the set
Zt increases with time t. Let Z =

⋃
t∈T

Zt denote all quantities
that were not known day-ahead. Thus, at time t, the aggregator
knows both Y and Zt, but not those quantities in Z \ Zt.

B. Objective

We are interested in designing online algorithms for sche-
duling EV demand that minimize the peak energy drawn from
the grid. Since Y is known day-ahead (before any scheduling
decisions are made), we define our objectives for a fixed Y as
follows. For a fixed Y , any possible realization Z must be in
the following set: ZY = {Z : Y, Z satisfy (1)− (3)}.

At each time t = 1, 2, ..., T , an online algorithm π must
determine the amount of energy Et(Zt, π) drawn from the grid,
based only on the knowledge of Y and Zt. In other words,
the decision at time t cannot be based on the values of any
quantity in Z \ Zt that will be revealed in the future. The
online algorithm π is said to be feasible if all the EV demands
can be completely served before deadlines using the sequence
of energy-procurement decisions [Et(Zt, π), t ∈ T] minus
the revealed non-deferrable demand (i.e., background demand
minus renewable energy). Let Ep

π(Z) = maxt{Et(Zt, π)}
be the peak energy drawn from the grid using a feasible
online algorithm π. The aggregator is interested on reducing
Ep

π(Z). However, it is not possible for one online algorithm
to minimize Ep

π(Z) for all Z’s. Instead, we consider an offline
solution provided by a “genie” that knows the entire future Z
in advance. This genie can set the energy procurement Et(Z)
at each time-slot t based on Z. This genie can then solve the
following problem offline:

min
All demand can be completely served

max
t

{Et(Z)}. (4)

Let E∗
off(Z) be the optimal offline solution to (4). Clearly, for

any online algorithm π, we will have E∗
off(Z) ≤ Ep

π(Z). We
can then evaluate the performance of an online algorithm π by
comparing it to the above offline optimal. Specifically, for a
fixed Y , define the competitive ratio (CR) ηY (π) of an online
algorithm π as the maximum ratio between Ep

π(Z) and E∗
off(Z)

under all possible Z ∈ ZY , i.e., ηY (π) = max
Z∈ZY

{
Ep

π(Z)
E∗

off(Z)

}
.

In other words, the competitive ratio characterizes how in
the worst case the online algorithm can perform more poorly
compared to the offline optimal.

In the rest of the paper, we will first find an achievable low-
er bound on the competitive ratio ηY (π) under 2-IPM, which
characterizes the fundamental limits how 2-level prediction can
improve the worst-case performance. Then, we will propose a
systematic approach to design online algorithms with both the
optimal competitive ratio and good average-case performance.



III. FUNDAMENTAL LIMIT OF THE COMPETITIVE RATIO

In this section, we extend the computation framework in
[15] to find a fundamental lower bound on the competitive ratio
ηY (π) of any algorithm π. This lower bound will be given by
the solution of the optimization problem (9). However, solving
(9) is much more difficult than that in [15]. In Section III-B, we
will develop a general convexification technique to convexify
(9). Such a convexification technique generalizes fractional-
linear programs [16], and thus may be of independent interest.

We need the following two lemmas throughout this section.

Lemma 1: An online algorithm π is feasible if and only
if for all Z ∈ ZY and all t1 ≤ t2, t1, t2 ∈ T, the following
inequality holds,

t2∑
t=t1

t2∑
s=t

at,s +

t2∑
t=t1

bt ≤
t2∑

t=t1

Et(Zt, π). (5)

Proof: See Appendix A.

Lemma 1 is a generalization of Lemma 6 in [15]. It states
that, in order for an online algorithm to be feasible, the total
energy procured from the grid plus the renewable energy
supply in any time interval [t1, t2] must be no smaller than
the total demand that must be served in the same interval.
Further, the condition (22) is also sufficient. Specifically, if
the service profile of the algorithm π satisfies (22), and the
algorithm π uses the Earliest-Deadline-First (EDF) policy to
serve the demand, then this algorithm π can finish all the
demands before their corresponding deadlines.

Lemma 2: Given a realization of Z, for any t1 ≤
t2, t1, t2 ∈ T, define the intensity of an interval J = [t1, t2] as

gJ(Z) =

∑t2
t=t1

(
∑t2

s=t at,s + bt)

j − i+ 1
. (6)

Then, the offline optimal peak is given by

E∗
off(Z) = max{0,max

J
{gJ(Z)}}. (7)

Lemma 2 states that the offline optimal peak is equal to
the maximum intensity over all possible intervals. This result is
easy to show based on the offline optimal algorithm proposed
in [7]. The reason that we have a “0” term in Eqn. (7) is that
the power procured from the grid must be non-negative.

A. Lower Bound

Consider an online algorithm π with competitive ratio
ηY (π). We first study the maximum value for Et(Zt, π) given
a realization Z. Recall that the decision Et(Zt, π) should only
depend on Zt. Further, we note that there may exist different
realizations Z that yield the same value of Zt. Thus, the value
of Et(Zt, π) must be chosen such that the competitive ratio
ηY (π) holds for all the possible future uncertainty. Let

Epe
t (Zt) = inf

Z′∈ZY ,Z′
t=Zt

E∗
off(Z

′), (8)

where the superscript “pe” stands for “peak estimation”. Then,
we have the following lemma.

Lemma 3: Given an online algorithm π with competitive
ratio ηY (π), we must have Et(Zt, π) ≤ ηY (π)E

pe
t (Zt).

To obtain Lemma 3, let Z∗ be the realization that attains
the minimum value of E∗

off(Z
′) in (8). Then, the optimal offline

peak would be Epe
t (Zt) if the future realization turned out to be

Z∗. Thus, in order for π to have a competitive ratio ηY (π) for
input Z∗, its decision Et(Zt, π) cannot exceed ηY (π)E

pe
t (Zt).

We now apply Lemma 1. If π is feasible, then for all Z ∈
ZY and all t1 ≤ t2, t1, t2 ∈ T, we must have

t2∑
t=t1

(
t2∑
s=t

at,s + bt

)
≤

t2∑
t=t1

Et(Zt, π) ≤ ηY (π)

t2∑
t=t1

Epe
t (Zt).

Define the following optimization problem:

η∗t1,t2(Y ) = sup
Z∈ZY

∑t2
t=t1

(∑t2
s=t at,s + bt

)
∑t2

t=t1
Epe

t (Zt)
(9)

Let η∗Y = max
t1≤t2,t1,t2∈T

{η∗t1,t2(Y )}. Then, η∗Y provides a lower

bound on the competitive ratio, which is stated below.

Theorem 4: For any feasible online algorithm π, its com-
petitive ratio must be no smaller than η∗Y , i.e., ηY (π) ≥ η∗Y .

The above arguments share some similarity to Theorem 4
in [15]. However, computing η∗Y here is much more difficult
than that in [15]. The computation of η∗Y requires solving the
optimization problem (9). Like in [15], the denominator of
the objective function in (9) is the optimal value of another
optimization problem. In general, such a bi-level optimization
problem is NP-hard [17]. In [15], special structures of the
problem are exploited to convert a similar bi-level optimization
problem to a convex problem, which is then easier to solve.
However, the techniques in [15] critically rely on the property
that the input Z can be freely scaled up or down without
violating system constraints. Unfortunately, this property does
not hold in this paper. Specifically, if Z is component-wise
multiplied by a large constant, it may violate the bounds from
day-ahead prediction in (1). In the next subsection, we will
develop a more general convexification technique than that in
[15] to convexify the optimization problem (9).

B. Convexification of Problem (9)

We present the key convexification technique in Lemma 5.

Lemma 5: Consider the following optimization problem:

M1 = sup
�x,y

(cT�x+ α)/y

subject to y = f(�x), A�x ≤ b, (10)

where �x, c are n×1 vectors, A is a m×n matrix, b is a m×1
vector, and α, y are scalars. Suppose that the following two
conditions hold:

(a) f(·) is a convex function of �x, and f(�x) > 0 over
the entire constrained region of A�x ≤ b;

(b) There exists �x, such that cT�x+ α > 0.

Then, the optimal value M1 of (10) is equal to the optimal
value M2 of the following optimization problem:

M2 = sup
�x′,u

cT�x′ + αu

subject to 1 ≥ uf(�x′/u), A�x′ ≤ bu, u > 0. (11)



Remark 2: The optimization problem (11) can be trans-
formed from (10) as follows. First, we let �x′ = �x/y, u = 1/y.
Then, the resulting optimization problem will be similar to
(11), except that we have a constraint 1 = uf(�x′/u) instead
of 1 ≥ uf(�x′/u). Note that f(�x) is a convex function.
uf(�x′/u) must also be convex in (�x, u) because it is the
perspective of f(·) [18]. Therefore, after relaxing the constraint
1 = uf(�x′/u), the optimization problem (11) becomes a
convex problem, and can be efficiently solved. The result of
Lemma 5 can be viewed as a generalization of fractional-linear
program [16], which requires f(�x) to be linear. The detailed
proof is available in Appendix B.

We are now ready to convexify (9). We assume that the
condition (b) holds in our problem, i.e.,

∑t2
t=t1

(
∑t2

s=t at,s +
bt) > 0 for some Z ∈ ZY . In other words, we cannot serve
all the EV demand and the background demand using only the
renewable energy. This assumption is reasonable, because that
the renewable energy is highly variable, and we need to procure
energy from the external grid when the renewable energy turns
out to be low. It remains to show that the condition (a) also
holds for (9), i.e.,

∑t2
t=t1

Epe
t (Zt) is a convex function of Z.

Obviously, it is sufficient to show that Epe
t (Zt) is a convex

function of Zt. The convexity of Epe
t (Zt) is ensured by the

following lemma.

Lemma 6: Suppose that f(x, y) is a convex function de-
fined on a convex set D. Let Dx = {y : (x, y) ∈ D}, then
g(x) = infy∈Dx

f(x, y) is also a convex function.

Proof: See Appendix C.

Specifically, we can view Zt as x, and Z ′ \ Zt as y.
Then, based on (8), we can rewrite Epe

t (Zt) as Epe
t (x) =

infy{E∗
off(x, y)}. The region of (x, y) is a convex set because

all the constraints in (1)-(3) are linear constraints. Further, it
is easy to verify that E∗

off(x, y) is a convex function of (x, y)
according to (7). Therefore, Epe

t (Zt) is a convex function.

IV. ALGORITHM DESIGN AND ROBUSTIFICATION

Note that we have obtained a lower bound η∗Y for the com-
petitive ratio of any online algorithm, the next step is to design
an online algorithm that can attain this lower bound. It turns
out that we can use the idea of the EPS algorithm proposed
in [15]. Specifically, at each time, an online algorithm can
set Et(Zt, π) = η∗Y E

pe
t (Zt). We also refer to this algorithm

as the EPS (Estimated Peak Scaling) algorithm because it
always scales up the estimated value Epe

t (Zt) of the lowest
possible future peak by the competitive ratio η∗Y . Like in [15],
it is not difficult to prove from the definition of η∗Y that this
EPS algorithm is feasible for any input Z ∈ ZY because the
condition (22) is always satisfied. Thus, the EPS algorithm
attains the optimal competitive ratio η∗Y .

The problem of this EPS algorithm, however, is that
although it achieves the optimal competitive ratio for the
worst-case input, its average-case performance can be quite
poor, i.e., its peak can be high for many other inputs. To
understand this dilemma, note that according to Lemma 3,
any online algorithm with optimal competitive ratio η∗Y should
set Et(Zt, π) to be no larger than η∗Y E

pe
t (Zt). In the case

of the EPS algorithm, it always set Et(Zt, π) to the highest
possible value. Thus, it can be viewed as the most conservative

algorithm. If the future input indeed followed the worst-case,
such conservatism would have been essential to attain the
optimal competitive ratio: by serving more demand up-front,
the EPS algorithm avoids a potentially large peak in the future.
However, if the future input is different from the worst case,
the EPS algorithm will likely be too conservative. For example,
if the future input followed precisely the one that produces the
value Epe

t (Zt) in (8), then using a rate Et(Zt, π) = Epe
t (Zt)

would have been sufficient. Thus, one could argue that, since
the worst-case perhaps occurs very rarely, using EPS may turn
to be a poor choice in most scenarios.

This conflict between worst-case performance and average-
case performance is not uncommon in the context of com-
petitive online algorithms [13]. An algorithm designed for
the worst-case can exhibit poor average-case performance,
making it less appealing for practical implementation. Ideally,
we would like to design an algorithm with both good worst-
case and good average-case performance. In the rest of this
section, we will present a novel “robustification” procedure to
design such an algorithm. Our key idea is as follows. We first
identify not one, but a class of algorithms that all attain the
optimal competitive ratio. Then, starting from any algorithm
with reasonable average-case performance, we “robustify” its
decision by comparing it to the above class of algorithms.
The resulting algorithm will then achieve both the optimal
competitive ratio and good average-case performance.

A. Online Algorithms with the Optimal Competitive Ratio

Suppose that π is an optimal online algorithm with com-
petitive ratio η∗Y . For any realization Z ∈ ZY , we next study
all possible values of Et(Zt, π) that the algorithm π can take.
The upper bound on Et(Zt, π) is given by Lemma 3, i.e.,

Et(Zt, π) ≤ η∗Y E
pe
t (Zt). (12)

Next, we derive a lower bound for Et(Zt, π).

At time t, we use rt,t1 to represent the total not-yet-served
demand with deadline no greater than t1, which includes all
the remaining demand (with deadline no greater than t1) from
the previous time slots, the newly arrived net demand, and the
newly arrived EV demand with deadline no greater than t1.
Consider any time instant t1 ≥ t, given any input Z with the
first part being Zt, we must have

Et(Zt, π)+η∗Y
t1∑

s=t+1

Epe
s (Zs) ≥ rt,t1+

t1∑
s=t+1

(
t1∑

w=s

as,w + bs

)
.

Here, as,w and bs are the elements of Z. The right hand side is
the total demand that has to be served within [t, t1], while the
left hand side is the maximum possible energy procurement
from the grid (assuming that each future energy procurement
rate is set to the upper bound in (12)). Then, we have

Et(Zt, π) ≥ rt,t1+

t1∑
s=t+1

(
t1∑

w=s

as,w + bs − η∗Y E
pe
s (Zs)

)
. (13)

Note that (13) must hold for all possible future inputs. Define
the following optimization problem that maximizes the right
hand side of (13) over all possible future inputs:

sup
Z′∈ZY ,Z′

t=Zt

t1∑
s=t+1

(
t1∑

w=s

a′s,w + b′s − η∗Y E
pe
s (Z ′

s)

)
(14)



where a′s,w, b
′
s are the corresponding elements of Z ′. Let

R∗
η∗
Y
(Zt, t1) be the optimal value of (14). Then, in order to

attain the optimal competitive ratio, the following must hold

Et(Zt, π) ≥ rt,t1 +R∗
η∗
Y
(Zt, t1). (15)

Finally, the above inequality must hold for all t1 ≥ t.
Therefore, we obtain the following lower bound for Et(Zt, π):

Et(Zt, π) ≥ max
t1≥t

{rt,t1 +R∗
η∗
Y
(Zt, t1)}. (16)

Remark 3: Note that Epe
s (Z ′

s) is a convex function (see
Section III-B). Therefore, the objective of (14) is a concave
function. Further, both constraints (Z ′ ∈ ZY and Z ′

t = Zt) of
(14) are linear constraints. Hence, (14) is a convex optimization
problem, and thus can be efficiently solved.

We summarize the above discussion into Lemma 7.

Lemma 7: For any feasible η∗Y -competitive online
algorithm, we must have

max
t1≥t

{rt,t1 +R∗
η∗
Y
(Zt, t1)} ≤ Et(Zt, π) ≤ η∗Y E

pe
t (Zt).

Remark 4: We note a key difference in the qualitative
nature of the upper and lower bounds. The upper bound of
Et(Zt, π) depends only on the optimal competitive ratio η∗Y
and the past realization Zt, but is independent of the past
decisions Es(Zs, π), s < t. In contrast, the lower bound
of Et(Zt, π) also depends on the past energy procurement
Es(Zs, π), s < t. Due to this reason, the lower bound is more
adaptive: if the energy procured from the grid in the previous
time slots is large, we will have less remaining demand rt,t1 ,
and thus have a smaller value for the lower bound. Such an
ability to adjust based on the past decisions is the key reason
that we can robustify an algorithm with good the average-case
performance to have optimal competitive ratio.

Input: Time slot t, the remaining demand rt,t1 and the
part Zt that has been revealed.

1 Compute the lower bound (16) and upper bound (12),
and let Et(Zt, π) be any value in between.

2 The aggregator purchases Et(Zt, π) amount of energy
from the external power grid, and uses the renewable
energy and the purchased energy Et(Zt, π) to serve the
existing demand. The aggregator first serves the
background demand bt, and then serves the deferrable
demand by the earliest deadline first (EDF) policy (i.e.,
demand with earlier deadline gets served first). The
aggregator will stop serving demand if all the available
demand at time t is completely served or the amount of
energy Et(Zt, π) is exhausted.

Algorithm 1: A Class of Optimal Online Algorithms

Motivated by Lemma 7, we define a class of online
algorithms, called ABS (Adaptive Bound-based Scheduling),
in Algorithm 1. We first show that all ABS algorithms are
well-defined. Specifically, we show that the lower bound (16)
is always no greater than the upper bound (12). Therefore, it
is always feasible to pick a value for Et(Zt, π) at each slot.

Lemma 8: Given Z ∈ ZY and an algorithm π in the class

ABS, at each time slot t, we must have

max
t1≥t

{rt,t1 +R∗
η∗
Y
(Zt, t1)} ≤ η∗Y E

pe
t (Zt). (17)

Lemma 8 is the key of this section, and its proof is non-
trivial. We can see that both sides of (17) depend on η∗Y . In
fact, η∗Y is the smallest value such that (17) always holds. For
any η < η∗Y , it is possible to construct a case Z ′ ∈ ZY such
that maxt1≥t{rt,t1 + E∗

η(Zt, t1)} > ηEpe
t (Zt) for some t.

In order to prove Lemma 8, it suffices to show that

η∗Y E
pe
t (Zt) ≥ right hand side of (13) (18)

for all possible future realizations of the input. We note that
rt,t1 in (13) can be written as rt,t1 = r̃t,t1 + bt +

∑t1
s=t at,s,

where r̃t,t1 is the total remaining demand (with deadline no
greater than t1) from the previous time slots. Then, we can
rewrite the inequality (18) as follows:

η∗Y
t1∑
s=t

Epe
s (Zs) ≥ r̃t,t1 +

t1∑
s=t

(
bs +

t1∑
w=s

as,w

)
. (19)

The main difficulty of proving (19) comes from the term
“r̃t,t1”. If r̃t,t1 = 0, then (19) would have hold trivially because
of the definition of η∗Y (see (9)). If r̃t,t1 > 0, we have to
develop new techniques to prove (19). The key idea here is to
apply induction from time t− 1 to time t. The detailed proof
is in Appendix D.

Next, we show that all ABS algorithms are indeed optimal.

Lemma 9: Any algorithm π in the class of ABS is feasible
and achieves the optimal competitive ratio of η∗Y .

Proof: The proof is straightforward. First, based on the
choice of Et(Zt, π), it is easy to see that the peak of the
algorithm π never exceeds η∗Y times the offline optimal peak.
Thus, the algorithm π is η∗Y -competitive. Second, let t1 = t
in (15). It is easy to check that R∗

η∗
Y
(Zt, t) = 0. Therefore,

Et(Zt, π) ≥ rt,t, which implies that no demand will violate
its deadline at time t. This completes the proof.

B. Algorithm Robustification

We have characterized the structure of optimal online
algorithms. It only remains to find an online algorithm in ABS
that also has good average performance. Our strategy is to take
any algorithm with reasonable average-case performance, and
convert it into one in the class ABS. We call this procedure
Algorithm-Robustification. The Algorithm-Robustification pro-
cedure is formally stated in Algorithm 2. Specifically, Step 3
of the procedure states that, if Et(Zt, π) is between the upper
bound and the lower bound, then we use the decision of the
original algorithm π. Otherwise, we “robustify” the decision
by setting Et(Zt, πRobust) to one of the bounds, so that the
resulting “robustified” algorithm belongs to ABS. Intuitively,
this procedure implies that for most inputs the robust version of
π will likely behave in the same way as the original algorithm.
Hence, the average-case performance will likely be similar.
However, if there is a danger that the competitive ratio may be
violated in the future, the robustified algorithm will then take
the more conservative decision represented by the bounds.

In practice, in Section V-C, we will robustify a well-known
online algorithm, called receding-horizontal-control (RHC).



Input: A realization Z ∈ ZY , the optimal competitive
ratio η∗Y and any online algorithm π.

Output: An optimal online algorithm πrobust and its
schedules Et(Zt, πRobust).

1 for t = 1 : T do
2 Compute α = maxt1≥t{rt,t1 +R∗

η∗
Y
(Zt, t1)},

β = η∗Y E
pe
t (Zt), and the schedule Et(Zt, π) of the

online algorithm π.
3 Set Et(Zt, πRobust) = Mβ

α (Et(Zt, π)), where

Mβ
α (x) = max{min{x, β}, α}.

4 end
Algorithm 2: Algorithm-Robustification Procedure

The RHC algorithm usually exhibits good average-case per-
formance [19]. However, its worst-case competitive ratio can
be very poor. We then apply this Algorithm-Robustification
procedure to the RHC algorithm. This robustified RHC al-
gorithm will then achieve optimal competitive ratio in the
worst case. Further, our numerical results demonstrate that the
robustified RHC algorithm achieves almost the same average-
case performance as the RHC algorithm.

V. SIMULATION

We conduct simulation using real traces from two data sets.
Elia [20], Belgium’s electricity transmission system operator,
provides day-ahead predictions and real-time values of back-
ground demand and renewable energy for every hour of each
day. (However, Elia [20] does not provide data for intra-day
prediction.) The National Household Travel Survey (NHTS)
dataset [21] provides vehicle driving records for 150147 house-
holds. By assuming that future EV driving patterns are similar,
it is not difficult to use the data in [21] to synthesize a model
for the EV demand (see Fig. 1), including EV arrival time,
deadline and amount of energy charging demand, as has been
done in earlier works in [22]. See Appendix E for more details
about the traces in [20] and [21].

A. The importance of Accounting for Uncertainty

We note that the day-ahead prediction in our 2-IPM con-
sists of an upper bound and a lower bound for each time-slot.
In contrast, the day-ahead prediction in Elia data-set [20] only
contains one predicted value. Nonetheless, by comparing the
difference between day-ahead predicted value and the real-
time value over long periods of time (e.g., a year), it is easy
to compute upper and lower bounds of the prediction error
(for a given confidence level). Combining them with the day-
ahead predicted values of [20], we can then generate the
upper and lower bounds for day-ahead predictions as required
in our model (see Appendix F). In Fig. 2 (a), we apply
this methodology to Elia’s data on background demand and
renewable energy over a 24-hour period from 8am 02/05/2013
to 8am 02/06/2013, and plot the following versions of net non-
deferrable demand b (as the background demand minus the
renewable energy): the real-time value, the day-ahead predicted
value directly from [20], and the upper and lower bounds of
the real-time values as constructed above. From Fig. 2 (a),
we can see that the gap between the upper and lower bounds
can be quite large (up to 20% of the day-ahead predicted
value). The dataset in [20] does not provide explicit intra-day

prediction. Hence, in our first experiment, we only consider
day-ahead prediction. Lastly, for EV demand, we scale up1 the
synthesized model (see Fig. 1) by a factor 20, and assume that
the day-ahead prediction of the EV demand is always accurate.
In other words, we consider the uncertainty of background
demand and renewable energy only.

We next demonstrate that, even for the scenario with low
uncertainty, an algorithm that is oblivious to future uncertainty
may lead to large peak consumption levels. Specifically, we
consider the following uncertainty-oblivious algorithm. At day-
ahead, this uncertainty-oblivious algorithm assumes that the
day-ahead predicted values of the background demand, the
renewable energy (both from [20]) and the EV demand, are
accurate. It thus computes the offline optimal peak and the
corresponding charging schedule (e.g., one possible schedule
is to procure at each time-slot the amount of energy equal
to this offline optimal peak), and then applies this schedule
during real-time operation. Note that there is a chance that
this schedule may not meet the deadline constraints of some
EV demands because the real-time values will differ from
the predicted values. In that case, this uncertainty-oblivious
algorithm will then need to procure additional energy at the
time of the deadlines to meet the requirement of these EV
demands. Intuitively, this algorithm will perform poorly even if
there is only a slight deviation between the real-time values and
the predicted values because it always wait until the last minute
to remediate the prediction error. This is confirmed from Fig.
2 (b), where we plot the energy procurement schedule of
this uncertain-oblivious algorithm versus the EPS algorithm
(discussed at the beginning of Section IV). The uncertainty-
oblivious algorithm suffers a large peak at the last minute
because the deadlines of most EV demands are 8am (see
Fig. 1). In contrast, since the EPS algorithm increases the
amount of energy procured early on, it avoids this last-minute
peak. (We will see shortly that algorithms in the class of
ABS will tend to have even lower peak than that of the EPS
algorithm.) Hence, this figure clearly illustrates the importance
of explicitly accounting for future uncertainty in the system.

B. 2-IPM and the Price of Uncertainty

We next evaluate the merit of the proposed 2-IPM in
capturing the uncertainty of prediction. Note that given specific
parameters of 2-IPM, we can calculate the lowest competitive
ratio over all online algorithms (see Section III). This optimal
competitive ratio can thus be viewed as measure of the
“price of uncertainty”, i.e., it represents the increase in cost
(compared to the offline optimal peak) due to the inherent
uncertainty captured by 2-IPM. Note that we have simulated
based entirely on real traces in Section V-A. In the rest of
the numerical experiments, we will artificially manipulate the
trace to observe the performance in different settings.

We first compare the competitive ratio under 2-IPM versus
that under the prediction model in [15]. Note that the uncer-
tainty model in [15] assumes that the ratio between the future
uncertainty (i.e., the walk-in demand in [15]) and the predicted
value (i.e., the reserved demand in [15]) is bounded. However,
the absolute quantity of the predicted value is not specified.

1This EV trace [21] is obtained based on 150147 households. However,
Belgium has 4 million households. Scaling the EV demand up by 20 will
correspond to the future scenario where all vehicles in Belgium are electrified.
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Fig. 2. The EPS algorithm vs. the uncertainty-oblivious algorithm.
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Fig. 4. Net non-deferrable load of two Simulation traces.
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Fig. 5. Schedules under 2 Simulation traces.

Thus, we refer to the uncertainty model in [15] as a relative
uncertainty model. In contrast, in 2-IPM the absolute quantities
for the predicted upper/lower bounds are specified. Hence, we
refer to 2-IPM as an absolute uncertainty model. One can map
absolute uncertainty in this paper to relative uncertainty in [15]
by using only the ratio between the prediction error and the
predicted value. For instance, suppose xDA(t) is the day-ahead
predicted value. In 2-IPM, the upper and lower bounds of day-
ahead prediction are specified as

x̂L(0, t) = xDA(t)×(1−ε), x̂U (0, t) = xDA(t)×(1+ε). (20)

In contrast, with the relative uncertainty model in [15], only ε
is specified, but not xDA(t).

Intuitively, absolute uncertainty contains more information
than relative uncertainty, and thus 2-IPM should yield lower
competitive ratios. To confirmed this point, we use the day-
ahead predicted values as in Section V-A, but varies the up-
per/lower bounds of day-ahead prediction by varying ε in (20).
In Fig. 3, we plot the optimal competitive ratios under both
2-IPM and under the relative uncertainty model from [15], as
ε varies from 0.05 to 0.2. We can see that, even with only day-
ahead prediction, the optimal competitive ratios under 2-IPM
are lower. For example, when ε = 0.2, the competitive ratio
reduces from 1.2 to 1.16, which corresponds to approximately
4% reduction on the peak demand (which is significant as 1%
reduction corresponds to 0.01×20MW×9$/kW×12 = 21600$
saving per year for campus-level aggregators [4] with peak
energy in the order of 20MW). In this sense, we argue that
the price of uncertainty under 2-IPM is lower than that under
a comparable model of relative uncertainty as in [15].

We next evaluate the impact of intra-day prediction. Note
that the Elia data set [20] does not have intra-day prediction
data. Thus, in the following we will artificially vary the param-
eters of intra-day prediction and evaluate the corresponding

optimal competitive ratios. Such an evaluation methodology
has a unique advantage: even before the operator carries out
the intra-day prediction, our methodology will be able to reveal
how useful such information will be in terms of reducing the
optimal competitive ratio. Again, this knowledge of “price of
uncertainty”, i.e., how must the cost can be reduced by intra-
day prediction, could be very useful in deciding which types of
intra-day prediction to perform and how accurate they need to
be. Specifically, we evaluate three types of intra-day prediction,
i.e., hour-ahead prediction, 12-hour-ahead prediction and 18-
hour-ahead intra-day prediction. For each type of intra-day
prediction, we vary the intra-day prediction gap as

W (ut, t) = min{2εintra × xDA(t), x̂U (0, t)− x̂L(0, t)},
where x̂L(0, t), x̂U (0, t) are the day-ahead predicted bounds
specified in (20), and εintra is the parameter we can vary. In
Fig. 3, we plot the corresponding optimal competitive ratios
under several choices of εintra, as the ε (i.e., error of day-
ahead prediction) varies from 0.05 to 0.2. We can make a
number of interesting observations. First, even if the hour-
ahead prediction is perfect (i.e., εintra = 0), the optimal
competitive ratio barely changes from the case with only day-
ahead prediction. Intuitively, this is because the hour-ahead
prediction is too late: most of the decisions have already
been made well before such hour-ahead prediction becomes
available. In contrast, a perfect 12-hour-ahead prediction re-
duces the optimal competitive ratio by 2%. Interestingly, even
an imperfect 18-hour-ahead prediction can be very helpful.
For example, when ε = 0.2, 18-hour-ahead prediction with
εintra = 0.08 reduces the optimal competitive ratio from 1.16
(no intra-day prediction) to 1.13, which is comparable to the
gain from a perfect 12-hour-ahead prediction. In practice, the
earlier the intra-day prediction is performed, the less accurate
it will likely be. Thus, the results in Fig. 3 will allow the
operator to evaluate which type of intra-day prediction will be



most useful, i.e., in reducing the cost of uncertainty.

C. Worst-case vs. Average-case Performance

Until now we have focused on evaluating the worst-
case competitive ratio. This worst-case competitive ratio is
achievable by the EPS algorithm. However, as we discussed
in Section IV, the EPS algorithm has poor average-case
performance. In Section IV, we also present a robustification
procedure that can be used to design algorithms with both good
average-case performance and worst-case guarantees. Our next
set of simulations will demonstrate this point.

Specifically, we will robustify a well-known heuristic al-
gorithm, called Receding Horizon Control (RHC) [19]. In our
setting, RHC means that, at each time-slot, the aggregator
assumes that future demand and supply will be exactly equal
to their most-recently predicted values, and then computes
the schedule that minimizes the future peak based on the
remaining EV demand and the currently-known background
demand and renewable energy supply. The aggregator will then
apply the first time-slot of the schedule. In the next time-slot,
this procedure is repeated with the newly-revealed information.
Empirically, the RHC algorithm is often found to exhibit good
average-case performance, especially when the future values of
uncertain quantities are close to the predicted values. However,
it is not difficult to construct cases where the RHC algorithm
will perform much poorer than the optimal competitive ratio
achieved by the EPS algorithm. (Details of such an example
are available in Appendix G.)

We next show that the robustified version of the RHC
algorithm (according to Section IV-B), will achieve both good
worst-case and average-case performance. We will use two
traces (see Fig. 4). In both traces, the day-ahead predicted
values of background demand and renewable energy, and
their corresponding upper-bounds and lower-bounds, are the
same and are obtained using the methodology in Section V-A.
Both traces also employ the same intra-day prediction model
that uses the values of the respective quantities one time-slot
ahead as the slot-ahead prediction for the next time-slot, and
the intra-day prediction gap W (ut, t) is set according to the
maximum difference between the corresponding quantities in
adjacent time slots (see Appendix F for more details). Further,
they use the same EV traces as in Section V-A, although
here we also allow prediction errors of the EV demand.
Specifically, we use EV demand model in Section V-A as the
day-ahead predicted value, and assume that the real demand
vary uniformly randomly between 0.8 to 1.2 times the day-
ahead predicted value. (We do not use intra-day prediction for
EV demand.) However, the two figures differ in their revealed
values of the net non-deferrable demand. In Fig. 4 (a), the
revealed values of the net non-deferrable demand are closer
to their day-ahead predicted values, while in Fig. 4 (b), the
difference is much bigger (particularly at the end of the time-
horizon). We will also refer to the trace in Fig. 4 (a) as the
“easy trace”, and the trace in Fig. 4 (b) as the “difficult trace”.

In Fig. 5, we compare the schedules of the EPS algorithm,
the RHC algorithm and the robustified-RHC algorithm under
both traces. By comparing Fig. 5 (a) and 5 (b), we observe that
the EPS algorithm cannot distinguish between the easy trace
and the difficult trace, and its peaks are similar high in both
traces. In other words, the EPS algorithm is too conservative:

it treats every trace as the worst trace, and scales up Epe
t (Zt)

by the maximum value η∗Y . In contrast, the RHC algorithm
produces a much lower peak in the easy trace, when the day-
ahead prediction is fairly accurate. However, its performance
in the difficult trace is very poor. In the difficult trace, the
day-ahead predicted values consistently underestimate the net
non-deferrable load. As a result, the RHC algorithm sets its
service rate too low at the beginning, and has to use a much
higher rate when all the EV demand approaches the deadlines.
Our robustified-RHC algorithm, on the other hand, inherits the
benefits of both the EPS algorithm and the RHC algorithm. For
the easy trace, the robustified-RHC algorithm gives virtually
the same schedule as the RHC algorithm. For the difficult trace,
the robustified-RHC algorithm detects that the service rate of
the RHC algorithm is too low at about 6pm. It then increases
the service rate afterwards, and avoids the potential peak in
the end. In summary, the robustified-RHC algorithm achieves
both good average-case and good worst-case performance.

VI. CONCLUSION

We study competitive online EV-charging algorithms for
an aggregator to reduce the peak procurement from the grid.
We model the uncertainty of the system using the 2-IPM,
which captures both day-ahead and intra-day predictions of the
demand and the renewable energy supply. We then develop a
powerful computation approach that can compute the optimal
competitive ratio under 2-IPM over any online algorithms, and
also develop a class of online algorithms that can achieve
the optimal competitive ratio. Noting that algorithms with
the optimal competitive ratio (e.g., the EPS algorithm) may
have poor average-case performance, we then propose a new
Algorithm Robustification procedure that can convert an online
algorithm with reasonable average-case performance to one
with both the optimal competitive ratio and good average-
case performance. We demonstrate the superior performance
of such robustified algorithms via trace-based simulations.
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APPENDIX

A. Proof of Lemma 1

Proof: We would like to apply Lemma 6 of [15]. Note
that [15] deals with a system without renewable energy and
background load. Hence, in order to utilize Lemma 6 of [15],
we first construct another system with only EV demand (which
we call Π2), by mapping the renewable energy and background
load of the original system to a “fictitious” EV demand.

Let the original system be denoted by Π1. We construct
another EV-charging system Π2 with EV demand only based
on Π1. The demand of Π2 can be fully represented by a T ×T
upper-triangular matrix ã = [ãi,j ]. For any ã ∈ Z̃ , there exists
Z ∈ ZY , such that

ãi,j =

{
ai,j , if i < j,

ai,j + bi, if i = j.
(21)

Note that in (21), we have viewed the net non-deferrable de-
mand bi as a “fictitious” EV demand arriving at the beginning
of the time-slot i and departing at the end of the time-slot i.
As a result, the total EV demand ãi,i with the same arrival
time and deadline i of the system Π2 equals the sum of the
“real” EV demand ai,i and the “fictitious” EV demand bi of
the system Π1. We denote the set of all possible realizations
of ã by Z̃ , i.e.,

Z̃ = {ã : there exists Z ∈ ZY , such that (21) holds}.

We apply the same schedule of Π2 to Π1. Specifically,
given ã ∈ Z̃ , we first find the corresponding Z ∈ ZY such that
(21) holds. Then, at each time t, we can compute Et(Zt, π)
as if we were making decisions for the system Π1, and then
procure Et(Zt, π) amount of energy to serve the EV demands
in Π2. It is easy to check that π is feasible for Π1 if and
only if for any ã ∈ Z̃ in Π2, the schedule obtained from the
above procedure can finish all the EV demands in ã. Note that
Π2 only contains EV demand. Then, we can apply Lemma
6 in [15] to Π2. Therefore, the schedule of π can finish all
the demands in Π2 if and only if for all ã ∈ Z̃ and all t1 ≤
t2, t1, t2 ∈ T, the following inequality holds,

t2∑
t=t1

t2∑
s=t

ãt,s ≤
t2∑

t=t1

Et(Zt, π). (22)

Note that

t2∑
t=t1

t2∑
s=t

at,s +

t2∑
t=t1

bt =

t2∑
t=t1

t2∑
s=t

ãt,s.

The result of Lemma 1 then follows.

B. Proof of Lemma 5

Proof: We first show that M2 ≥ M1. Recall that M1

is the smallest upper bound of the optimization problem in
(10). Then for any ε > 0, there exists (�xε, yε) satisfying the
constraints of (10), such that (cT�xε + α)/yε > M1 − ε. Note
that yε = f(�xε) > 0 (by condition (a) of the lemma). Let

�x′ =
�xε

yε
, u =

1

yε
.

Then, (�x′, u) satisfies the constraints in (11), and cT�x′+αu =
(cT�xε+α)/yε > M1−ε. The optimal value M2 of (11) must be
no smaller than the achievable value. Therefore, M2 > M1−ε.
Let ε → 0, we then have M2 ≥ M1. Further, according to the
condition (b), it is easy to check that the optimal solution of
(10) must be positive, i.e., M1 > 0. Therefore, M2 ≥ M1 > 0.

We next show that M2 ≤ M1. According to the definition
of M2, for any 0 < ε < M2, there exists (�x′

ε, uε) satisfying
the constraints of (11), such that cT�x′

ε + αuε > M2 − ε > 0.
Note that uε > 0. Let

�x =
�x′
ε

uε
, y =

1

uε
.

Then, it is easy to check that y ≥ f(�x) and A�x ≤ b. Let
y0 = f(�x) ≤ y. Then,

cT�x+ α

y0
≥ cT�x+ α

y
= cT�x′

ε + αuε > M2 − ε.

The optimal value M1 of (10) must be no smaller than the
achievable value. Therefore, M1 > M2 − ε. Let ε → 0, we
then have M1 ≥ M2.

Combining the above analysis, we then have M1 = M2.

C. Proof of Lemma 6

Proof: It suffices to show that for any x1, x2 and x0 =
λx1 + (1− λ)x2 where 0 < λ < 1,

g(x0) ≤ λg(x1) + (1− λ)g(x2). (23)

Recall that g(x1) = inf
y∈Dx1

f(x1, y) and g(x2) =

inf
y∈Dx2

f(x2, y). Hence, for any fixed ε > 0, there exist y1, y2,

such that f(x1, y1) < g(x1) + ε and f(x2, y2) < g(x2) + ε.
Note that f(x, y) is a convex function of (x, y). We then have,

λg(x1) + (1− λ)g(x2)

> λf(x1, y1) + (1− λ)f(x2, y2)− ε

≥ f(x0, y0)− ε, (24)

where y0 = λy1 + (1 − λ)y2. Since D is a convex set, if
(x1, y1), (x2, y2) ∈ D, we must have (x0, y0) ∈ D. Therefore,
y0 ∈ Dx0

. Then, based on the definition of g(x), we must
have

g(x0) = inf
y∈Dx0

f(x0, y) ≤ f(x0, y0). (25)

Combining Eqn. (24) and (25), we then have

λg(x1) + (1− λ)g(x2) > g(x0)− ε.

Let ε → 0, we then obtain (23). Thus, g(x) is a convex
function.

D. Proof of Lemma 8

Proof: Recall that maxt1≥t{rt,t1 + R∗
η∗
Y
(Zt, t1)} is the

smallest value of Et(Zt, π) that satisfies (13) for all possible
t1’s and all possible future realizations. Therefore, in order to
prove (17), it suffices to show that η∗Y E

pe
t (Zt) also satisfies



(13), i.e.,

η∗Y
t1∑
s=t

Epe
s (Zs) ≥ rt,t1 +

t1∑
s=t+1

(
t1∑

w=s

as,w + bs

)
, (26)

for all t1 ≥ t, and all possible as,w and bs.

We prove by induction on t. When t = 1, r1,t1 =
b1 +

∑t1
s=1 a1,s. Therefore, the right hand side of (26) is∑t1

s=1(
∑t1

w=s as,w + bs). Based on the definition of η∗Y in (9),
(26) holds trivially for all t1 ≥ t when t = 1.

Assume that (26) holds for a given t and all t1 ≥ t. We
will show that (26) holds for t + 1 and all t1 ≥ t + 1. Note
that

rt+1,t1 = (rt,t1 − Et(Zt, π))
+ + bt+1 +

t1∑
s=t+1

at+1,s,

where (x)+ = max{x, 0}, (rt,t1 − Et(Zt, π))
+ is the re-

maining demand with deadline no greater than t1 and bt+1 +∑t1
s=t+1 at+1,s is the new arrival demand with deadline no

greater than t1. If (rt,t1 − Et(Zt, π))
+ = 0, then (26) holds

trivially based on the definition of η∗Y . In the rest of this proof,
we only need to consider (rt,t1−Et(Zt, π))

+ > 0. In this case,

rt+1,t1 = rt,t1 − Et(Zt, π) + bt+1 +

t1∑
s=t+1

at+1,s.

We prove by contradiction. Assume that there exist
t̃1, ãs,w, b̃s, such that (rt,t̃1 − Et(Z̃t, π))

+ > 0 and

η∗Y
t̃1∑

s=t+1

Epe
s (Z̃s) < rt+1,t̃1

+

t̃1∑
s=t+2

⎛
⎝ t̃1∑

w=s

ãs,w + b̃s

⎞
⎠ .

Then,

0

< rt+1,t̃1
+

t̃1∑
s=t+2

⎛
⎝ t̃1∑

w=s

ãs,w + b̃s

⎞
⎠− η∗Y

t̃1∑
s=t+1

Epe
s (Z̃s)

= rt,t̃1 − Et(Z̃t, π) + b̃t+1 +

t̃1∑
s=t+1

ãt+1,s

+

t̃1∑
s=t+2

⎛
⎝ t̃1∑

w=s

ãs,w + b̃s

⎞
⎠− η∗Y

t̃1∑
s=t+1

Epe
s (Z̃s)

=

t̃1∑
s=t+1

⎛
⎝ t̃1∑

w=s

ãs,w + b̃s

⎞
⎠− η∗Y

t̃1∑
s=t+1

Epe
s (Z̃s)

+rt,t̃1 − Et(Z̃t, π)

≤ R∗
η∗
Y
(Z̃t, t̃1) + rt,t̃1 − Et(Z̃t, π).

The last inequality holds based on the definition of the opti-
mization problem (14). The above derivation implies that

Et(Z̃t, π) < R∗
η∗
Y
(Z̃t, t̃1) + rt,t̃1 ,

which contradicts to our choice of Et(Z̃t, π).

Hence, (26) holds for t+1 and all t1 ≥ t+1. By induction,

(26) holds for all t’s and t1 ≥ t. Thus, Lemma 8 holds.

E. Trace

We first describe the traces for the EV demand and the
net non-deferrable load, which we will use for evaluation. We
obtain a synthesized EV demand pattern based on the National
Household Travel Survey (NHTS) dataset [21] in Appendix
E1. We then focus on the net non-deferrable load. Recall that
the net non-deferrable load is equal to the background demand
minus the renewable energy. Hence, we will show the statistics
of both the background demand and the renewable energy in
Appendix E2 and E3, respectively. We have used b to represent
the net non-deferrable load. In Appendix E2 and E3, we will
use B and R to represent the background demand and the
renewable energy, respectively.

1) EV Demand: We first estimate the future EV demand
based on the National Household Travel Survey (NHTS)
dataset [21]. This dataset provides the transportation record for
150147 households. Even though the vehicles in the NHTS
dataset are mainly gasoline- or diesel- fueled vehicles, we
assume that people’s driving behavior will not change much
after they upgrade their vehicles to EVs.

Human’s driving behavior exhibits a strong diurnal pattern.
According to the NHTS dataset, many drivers leave home
at around 8am in weekdays. Thus, if all EVs are charged
overnight at home, the EV-charging deadlines should be earlier
than 8am the next day. Recall that our system model in
Section II assumes a finite time-horizon. Due to the above
considerations, we take the decision horizon as a day (24
hours) from 8am today to 8am tomorrow.

Using the NHTS dataset, we collect the starting time tstart

for each overnight EV-charging job based on the time that a
vehicle comes back home, collect the charging deadline tend

based on the time that the vehicle leaves home, and estimate
the charging demand based on the mileage that the vehicle
travels in a day. Specifically, based on the NHTS dataset, we
can obtain the exact time that a vehicle arrives home. We only
care about the last arrival-time that the vehicle arrives home
in a day from 0 : 00 to 24 : 00. (By the “last arrival-time”, we
mean that the vehicle will not leave home in the same day.)
If this “last arrival-time” is from 0 : 00 to 8 : 00 (based on
the NHTS dataset, only 0.19% of the vehicles have such “last
arrival-times”), we will set tstart = 8 : 00; otherwise, we will set
tstart to be exactly equal to the “last arrival-time”. The NHTS
dataset also provides the time that a vehicle leaves home. Here,
we only care about the first leaving-time that the vehicle leaves
home in a day from 0 : 00 to 24 : 00. If this “first leaving-time”
is from 8 : 00 to 24 : 00, we will set tend = 8 : 00; otherwise,
we will set tend to be exactly equal to the “first leaving-time”.
Such approximation is reasonable due to the following reasons.
First, a driver may not know the exact leaving time in the next
day when an EV starts charging. Therefore, he/she has to set
tend more conservatively to ensure that the EV can be fully
charged before leaving home the next day. Second, the “busy
hours” for background demand start around 8 : 00 (see Fig.
7 (b)) at each day. Therefore, further deferring the charging
deadlines may not help much in reducing the overall peak.
We can also estimate the total mileage that a vehicle travels in
a day from 0 : 00 to 24 : 00 based on the NHTS dataset. On



average, the energy consumption of an EV is 34kwh/100miles
[23]. Therefore, we use “total mileage×0.34” to compute an
estimation of the charging demand of each EV.

We discretize the tstart and the tend into 48 time slot-
s, each of which lasts for half an hour. For each 2-tuple
(tstart,tend)=(i, j), we compute the total EV demand atrace

i,j by
summing up all the demand with (tstart,tend) =(i, j). Finally,
we plot the EV demand atrace as a function of tstart and tend in
Fig. 6. From Fig. 6, we can see that the peak of tstart occurs
at around 6pm.

0
6

12
18

24

0
6

12
18

24
0

100

200

300

tend
tstart

To
ta

l D
em

an
d 

(M
W

)

Fig. 6. EV demand.

2) Background Demand: We obtain the background de-
mand and its day-ahead forecast from Elia [20], Belgium’s
electricity transmission system operator. We plot the revealed
background demand and the day-ahead predicted background
demand of one month in Fig. 7 (a). Recall that we have
divided a day into 48 time slots. Let Breal

t (k) be the realized

background load at time slot t of the k-th day; let Bday-ahead
t (k)

be the day-ahead predicted background load at time slot t of
the k-th day. Even though the mean prediction error, i.e.,

Et,k

[
|Breal

t (k)−Bday-ahead
t (k)|/Bday-ahead

t (k)
]
,

is small2 (5.67%), the prediction error in a specific day can be
very large. For example, on 01/03/2013, the prediction error
is always above 10% (Fig. 7 (b)).

We are interested in the range of the prediction error. Let

eday-ahead
B (t, k) be the day-ahead prediction error at time slot t

of the k-th day, i.e.,

eday-ahead
B (t, k) =

Breal
t (k)−Bday-ahead

t (k)

Bday-ahead
t (k)

.

For each fixed time-slot t, we have different eday-ahead
B (t, k)’s

for different days. In Fig. 7 (c), we plot the 95th percentile

and the 5th percentile values of eday-ahead
B (t, k) for each fixed

t. These percentile values can be then used to set the day-
ahead prediction bounds as required by our system model (see
Appendix F). Another observation here is that the day-ahead
prediction is highly unbalanced. The realized background load
tends to be higher than the day-ahead predicted value.

2Here, Et,k[·] means taking the average over all possible t’s and k’s.

We are also interested in the slot-ahead prediction error.
(Recall that one slot is equal to half an hour, since we have 48
slots in a day.) The Elia trace does not provide slot-ahead
predictions. Here, we simply use the realized background
load as a slot-ahead prediction of the background load in the
next time slot, i.e., the slot-ahead prediction Bslot-ahead

t (k) =
Breal

t−1(k). Similarly, we can define the slot-ahead prediction
error eslot-ahead

B (t, k) at time slot t of the k-th day as follows,

eslot-ahead
B (t, k) =

breal
t (k)− bslot-ahead

t (k)

bday-ahead
t (k)

.

We caution that the slot-ahead prediction errors are also
with respect to the day-ahead predicted values. We plot the
95th percentile and the 5th percentile values of eslot-ahead

B (t, k)
for each fixed t in Fig. 7 (c). We can see that the slot-
ahead prediction is much more accurate than the day-ahead
prediction. Further, these percentile values can be used to set
the intra-day prediction as required by our system model (see
Appendix F).
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(a) Background load vs. its day-ahead forecast (Jan. 2013).
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(b) Background load vs. its day-ahead forecast (01/03/2013).
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(c) Prediction errors computed from a one-month (Jan.
2013) trace.

Fig. 7. Background demand and its forecast.

3) Renewable Energy: We obtain the renewable energy and
its day-ahead forecast from Elia [20]. The renewable energy



is from wind power. The total installed capacity of the wind
power is Rcapacity = 930.65MW.

We plot the realized renewable energy and the day-ahead
predicted value of one month in Fig. 8 (a). We can see that
the renewable energy is highly variable.

Similar to the background load, we use Rreal
t (k) to denote

the realized wind energy at time slot t of the k-th day, and use

Rday-ahead
t (k) to denote the day-ahead predicted wind energy

at time slot t of the k-th day. We also use the revealed wind
energy as a slot-ahead prediction of the renewable energy in
the next time slot, i.e., the slot-ahead prediction Rslot-ahead

t (k) =
Rreal

t−1(k). we also define the day-ahead prediction error and the
slot-ahead prediction error for the renewable energy as follows.

eday-ahead
R (t, k) = (Rreal

t (k)−Rday-ahead
t (k))/Rcapacity,

eslot-ahead
R (t, k) = (Rreal

t (k)−Rslot-ahead
t (k))/Rcapacity.

We caution here that the prediction errors for the renewable
energy are with respect to the total installed capacity, while
the prediction errors for the background load are with respect
to the day-ahead predicted values. This is because that the
renewable energy is more variable, and does not exhibits any
predictable diurnal pattern. We plot the 95th percentile and

the 5th percentile values of eday-ahead
R (t, k) and eslot-ahead

R (t, k)
for each fixed t in Fig. 8 (b). We can see that the slot-ahead
predictions are more accurate than the day-ahead predictions.
Further, these percentile values can be used to set the day-
ahead prediction bounds and the intra-day prediction as re-
quired by our system model (see Appendix F).
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(a) Wind power vs. its day-ahead forecast (Jan. 2013).
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Fig. 8. Wind power and its forecasts.

F. Simulation Parameter Setting

We have synthesized an EV demand pattern from [21],
and have obtained the day-ahead predicted values and the
real values of both the background demand and the renewable
energy from [20]. However, these data sets are not ready to
use in our numerical experiments. Recall our system model
(Section II) that the pre-known knowledge Y of the aggregator
includes both the day-ahead prediction bounds (x̂L(0, t) and
x̂U (0, t)) and the intra-day prediction gap (W (ut, t)). In the
following, we will show how to generate the required data set
of Y using the data sets available in [21] and [20].

We first focus on the EV demand. We use the synthesized
EV demand (see Fig. 1), denoted by aday-ahead, as the day-ahead
prediction of the EV demand. We use a day-ahead prediction
error εa to generate the day-ahead upper and lower bounds,
i.e.,

x̂L
a (0, t) = aday-ahead×(1−εa), x̂

U
a (0, t) = aday-ahead×(1+εa),

where x̂L
a (0, t) (x̂U

a (0, t)) represents all the entries in x̂L(0, t)
(x̂U (0, t)) that correspond to the EV demand. We assume that
there is no intra-day prediction for the EV demand. Therefore,
we set

Wa(ut, t) = ∞,

where Wa(ut, t) represents all the entries in W (ut, t) that
correspond to the EV demand.

We then focus on the net non-deferrable load. From the
day-ahead prediction errors (eday-ahead

B (t, k) and eday-ahead
R (t, k))

of both the background load and the renewable energy (see
Appendix E), we first find their 95th percentile and 5th per-

centile values, which are denoted by eday-ahead
B,95 (t), eday-ahead

B,5 (t),

eday-ahead
R,95 (t) and eday-ahead

R,5 (t), respectively. Then, the day-ahead
prediction bounds for the net non-deferrable load b = B −R
can be set as follows:

x̂L
b (0, t) = Bday-ahead

t × (1 + eday-ahead
B,5 (t))

−(Rday-ahead
t +Rcapacity × eday-ahead

R,95 (t)
)
,

x̂U
b (0, t) = Bday-ahead

t × (1 + eday-ahead
B,95 (t))

−(Rday-ahead
t +Rcapacity × eday-ahead

R,5 (t)
)
,

where x̂L
b (0, t) (x̂U

b (0, t)) represents all the entries in x̂L(0, t)
(x̂U (0, t)) that correspond to the net non-deferrable load.

As for the intra-day prediction, we assume that the intra-
day prediction is conducted 1-slot ahead. (Recall from Ap-
pendix E that we use the revealed background demand or
wind energy in time-slot t − 1 as a slot-ahead prediction of
the background demand or wind energy in time-slot t.) Hence,
ut = t−1. From the slot-ahead prediction errors (eslot-ahead

B (t, k)
and eslot-ahead

R (t, k)) of both the background load and the renew-
able energy (see Appendix E), we can find their 95th percentile
and 5th percentile values, which are denoted by eslot-ahead

B,95 (t),

eslot-ahead
B,5 (t), eslot-ahead

R,95 (t) and eslot-ahead
R,5 (t), respectively. Then,

we set the intra-day prediction gap as follows:

Wb(ut, t) = Bday-ahead
t × (eslot-ahead

B,95 (t)− eslot-ahead
B,5 (t)

)
Rcapacity ×

(
eday-ahead
R,95 (t)− eday-ahead

R,5 (t)
)
,



where Wb(ut, t) represents all the entries in W (ut, t) that
correspond to the net non-deferrable load.

G. An Example for the RHC Algorithm

We construct a simple example to demonstrate that the
performance of the RHC (Receding Horizontal Control) al-
gorithm can be very poor. To see this, consider the example in
Fig. 9. Suppose that we have 48 time-slots. All EV charging
jobs arrives at the beginning of time-slot 1, departs at the end
of time-slot 48, and the total demand is 50. (In other words,
there is no uncertainty for the EV demand.) The day-ahead
predictions of the net non-deferrable demands are 10 for all the
time-slots. However, their real values turn out to be 11 in real
time (note that there is no intra-day prediction in this example).
The offline optimal peak for this example is approximately 12.
If we apply the RHC algorithm to this example, the resulting
peak will be 15.5. On the other hand, like in 2-IPM, we know
in advance that the error of day-ahead prediction is no more
than 2. In other words, based on a day-ahead predicted value
of 10 for the net non-deferrable demand, their real values
will be between 8 and 12. Note that the real value of 11
specified earlier still fall into this range. We can then apply
the EPS algorithm to the same setting. The EPS algorithm
achieves an optimal competitive ratio 1.06 (computed from
(9)). In contrast, the empirical competitive ratio of the RHC
algorithm for this input is 15.5/12 = 1.29, which is already
much larger than 1.06. (The worst-case competitive ratio of
the RHC algorithm can be even larger.) Hence, this example
shows that the worst-case performance of the RHC algorithm
can be much poorer than the EPS algorithm.
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Fig. 9. Poor performance of the RHC algorithm.


