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Abstract—Most existing wireless networking solutions are best-
effort and do not provide any delay guarantee required by im-
portant applications such as the control traffic of cyber-physical
systems. Recently, Hou and Kumar provided the first framework
for analyzing and designing delay-guaranteed network solutions.
While inspiring, their idle-time-based analysis appears to apply
only to flows with a special traffic (arrival and expiration) pattern,
and the problem remains largely open for general traffic patterns.

This paper addresses this challenge by proposing a new
framework that characterizes and achieves the complete delay-
constrained capacity region with general traffic patterns in single-
hop downlink access-point wireless networks. We first formulate
the timely capacity problem as an infinite-horizon Markov
Decision Process (MDP) and then judiciously combine different
simplification methods to convert it to an equivalent finite-
size linear program (LP). This allows us to characterize the
timely capacity region of flows with general traffic patterns for
the first time in the literature. We then design three timely-
flow scheduling algorithms for general traffic patterns. The
first algorithm achieves the optimal utility but suffers from
the curse of dimensionality. The second and third algorithms
are inspired by our MDP framework and are of polynomial-
time complexity. Simulation results show that both achieve near-
optimal performance and outperform other existing alternatives.

I. INTRODUCTION

Real-time communication systems over wireless networks
that require delay guarantee have become prevalent. Typi-
cal systems of this kind include multimedia communication
systems such as real-time streaming and video conferencing
over cellular networks, and cyber-physical systems (CPSs)
such as real-time surveillance and control over wireless sensor
networks. As a result, real-time wireless traffic has expressed
a phenomenal growth in recent years [1], and is predicted to
increase its volume by another 13-fold in 2014-2019 [2].

A common characteristic of these systems is that they have
a strict deadline for packet delivery. Packets traversing the
wireless network need to be delivered before their deadlines,
otherwise they expire and deem useless. For example, mobile
video conferencing may require bounded delay on video
delivery. Similarly, in CPSs, time-critical applications impose
latency constraints within which data or control messages
must reach their targeting entities [3]. Additionally, real-time
communication systems often require guarantees on the timely
throughput, defined as the throughput of packets that are
delivered on time [4], [5].

Serving delay-constrained traffic over wireless networks is
uniquely challenging due to the inherent coupling of space,
time, and transmission uncertainty:

• Wireless networks differ from wired networks in the
presence of spatial interference, wherein the transmission
over a link can upset other transmissions in its neigh-
borhood. This requires any communication scheme to
address a notoriously hard problem of scheduling across
multiple wireless links subject to interference constraints.

• To ensure timely packet delivery, one has to keep track
of the delay of individual packets and properly account
for delivery urgency in scheduling link transmissions.

• Wireless transmissions are unreliable and subject to shad-
owing and fading. The channel quality may also vary in
time and differ from link to link.

Systematically addressing them calls for a framework that both
captures the challenges of delay constrained communication
over wireless networks and offers tractable solutions.

Recently, researchers devote much effort to studying real-
time wireless communications [4]–[12]. Among them, Hou
and Kumar [4], [5], [7] developed an elegant idle-time-
based framework to characterize the time capacity region of
flows with a special traffic pattern, over single-hop downlink
access-point (AP) wireless networks. Further, they proposed
a throughput-optimal largest-deficit-first (LDF) scheduling
policy that can support any feasible rate vector within the
timely capacity region. Inspiring as it is, the idle-time-based
framework appears to apply only to flows with the special
traffic pattern, and new ways of thinking are needed beyond
the special traffic pattern. Overall, despite the exciting existing
results, the following fundamental questions remain open:
• How to characterize the capacity region of timely flows

over wireless networks with general traffic patterns?
• How to design new scheduling algorithms that can

achieve or approximate the optimal network utility?
In this paper, we take a first step towards answering these
questions by establishing a framework based on Markov
Decision Process (MDP). The structure of the timely wireless
flow problem makes MDP a natural candidate for establishing
such framework. We make the following contributions:
B In Sec. II, we model general traffic (arrival and expira-

tion) patterns. Then in Sec. III, we show that network utility
maximization of timely flows with general traffic patterns is
fundamentally an MDP problem. This new observation allows
us to systematically explore the full design space, beyond those
in previous studies, including [4], [5].
B The new MDP formulation is very challenging to solve.

In particular, it is of infinite-horizon, infinite state space,



and it is even time-heterogeneous. In Sec. IV, by leveraging
the underlying structure of the MDP formulation, we apply
three simplification methods to convert the challenging MDP
problem to an equivalent finite-size linear program (LP).
Although our final solution is built on top of the extremely
rich literature of MDP, one main contribution of ours is to
judiciously formulate the problem and adapt several existing
techniques of MDPs in a coherent way so that we can fully
answer the fundamental open question: “What is the timely
capacity region for flows with general traffic patterns?” As a
by-product, our LP solution also gives us a provably optimal
scheduling policy to achieve the maximal network utility.
B However, our optimal MDP-based scheduler suffers from

the curse of dimensionality rooted in the MDP approach.
Thus in Sec. V, we propose two new computationally-efficient
polynomial-time sub-optimal scheduling algorithms. One is
based on LP-relaxation and the other is based on the new con-
cept of lead-time normalization. Both scheduling algorithms
are inspired by our MDP formulation and simulation results in
Sec. VI show that they are near-optimal and outperform other
conceivable alternatives for most of practical scenarios.

Due to the space limitation, most proofs are presented in
our technical report [13].

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. The Communication Model
Network Topology and Scheduling Model: We consider a

single-hop downlink access-point (AP) scenario where the AP
aims to transmit K independent timely traffic to K users, one
for each user. The traffic between the AP and user k ∈ [1,K]
is denoted as flow k. Assume slotted transmission. In each slot,
only one link can be scheduled and can only send 1 packet.
At the beginning of slot t, the action of the AP, denoted by
At, thus includes two parts: (i) which flow/link to schedule,
and (ii) which packet of the selected flow to transmit if there
are multiple packets of the selected flow in the current queue.
At the beginning of slot (t+1), the AP can choose a different
At+1 and the process starts over. For easier reference, we use
“at time (slot) t” to refer to “at the beginning of slot t” and
use “in time (slot) t” to refer to “the time span” of slot t.

Propagation Delay and Random Erasure: To model
propagation delay, we assume that if link k is scheduled at
time t, then the transmitted packet can be received by user k
at the end1 of time t. To model random variation of wireless
channels, we assume that along any link k successful delivery
happens with some probability pk, the random delivery events
are independently and identically distributed (i.i.d.) over time,
and the events for different links are independent.

We also assume that at the end of time t, every user will
inform the AP through a separate control channel whether it
has received the transmitted packet or not (ACK/NACK). The
information will then be used for scheduling at time (t + 1)
and onward.

The above model captures the practical Wi-Fi networks
and is widely adopted in the real-time wireless network
communication literature, e.g., [4]–[8].

1“At the end of slot t” is equivalent to “at (the beginning of) slot (t+1)”.
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Fig. 1. The illustration of two traffic (arrival & expiration) patterns.

B. Packet Arrival & Hard Delay Constraints
We assume periodic-i.i.d. packet arrivals with hard delay

constraints for each flow k, which can be best described by the
following concept of “traffic (arrival & expiration) patterns.”
For any flow k, its traffic pattern can be described by a 4-dim.
vector: (offsetk, prdk,Dk,Bk). That is, for any integer m = 1
to ∞, at slot

t[k]arr (m) , offsetk + (m− 1)prdk + 1, (1)

one flow-k packet will arrive independently with probability
Bk. If the packet indeed arrived, it will expire at slot

t[k]exp(m) , t[k]arr (m) + Dk. (2)

Intuitively, offsetk denotes the time offset for the start of the
arrival process of flow k. The arrival time of the m-th2 flow-k
packet is thus described by (1). Dk is the deadline for each
flow-k packet. Namely, if it arrived, the m-th packet of flow
k has to be delivered before its expiration time, described in
(2). After t[k]exp(m), the m-th flow-k packet will expire and be
removed from the system because it is no longer useful.

An illustration of two traffic patterns is provided in Fig. 1.
For example, the first flow-1 packet will always arrive at time
1 since offset1 = 0 and B1 = 1 and will expire at time 4. The
second flow-2 packet will arrive at time 5 with probability 0.7
and expire at time 9.

Remark 1: Our general traffic model can capture the fol-
lowing traffic patterns widely used in the scheduling literature:
• Frame-Synchronized Traffic Pattern: Let

(offsetk, prdk,Dk,Bk) = (0, T, T, 1),∀k ∈ [1,K]

where T is called the frame length. Namely, all K flows
arrive and expire simultaneously with period T . This
model is used in [4], [8], [10].

• I.I.D. Traffic Pattern: Let

(offsetk, prdk,Dk,Bk) = (0, 1,Dk,Bk),∀k ∈ [1,K].

Namely, at every slot one flow-k packet arrives with
probability Bk and will last for Dk slots. This reduces
to the traditional i.i.d. arrival processes. ♦

Remark 2: Although our work is described only for the
periodic-i.i.d. traffic patterns, the same principle can be readily

2 We slightly abuse the notation and still call the packet arriving at tkarr(m)
the m-th packet, even though the previous m− 1 packets may not arrive.



extended to the much more general cyclostationary Markovian
arrivals with observable states. ♦

C. The Objective
The timely throughput Rk of flow k is defined as

Rk , lim inf
T→∞

E {# of flow-k pkts delivered before exp. in [1,T]}
T

,

which computes the average number of flow-k packets deliv-
ered before expiration over the total duration [1,T].

Obviously, Rk depends on how to schedule the link/packet
for all time slots from t = 1 to ∞. The network utility
maximization (NUM) problem thus becomes

(P0) max
All possible scheduling policies

K∑
k=1

Uk(Rk)

where Uk(·) is the utility function for flow k, which is assumed
to be increasing, concave, and continuously differentiable.
Instead of maximizing the utility as in (P0), a simpler version
is to maximize the weighted sum rate

(P1) max
All possible scheduling policies

K∑
k=1

wkRk

where wk > 0 is the utility coefficient for flow k. Note that
(P0) and (P1) are highly related as (P1) can be viewed as
an intermediate step of solving (P0) through the Lyapunov-
drift analysis3 (see [14], [15]). Thus, (P1) is the core of the
wireless timely throughput problem. For ease of exposition,
we will focus mostly on (P1).

III. AN INFINITE-DIM. INFINITE-HORIZON MDP
This section explains how to cast the NUM problem (P1)

as an infinite-dimension infinite-horizon MDP problem. In
Sec. IV, we will further simplify the infinite-size MDP so that
the optimal utility and the corresponding optimal scheduling
policy can be computed by solving a finite-size LP.

An MDP problem [16] can be described in many different
forms, e.g., time-homogeneous MDPs with discounted/average
rewards, etc. The MDP used in this work is described by a
tuple (S, {As : s ∈ S}, {Pt}, r) where S is the state space,
As is the set of possible actions when the state is s ∈ S, and
Pt is the state-to-state transition probabilities in time t:

Pt(St+1 = s′|St = s,At = a),∀t,∀s, s′ ∈ S,∀a ∈ As. (3)

The reward function r(s, a) denotes the per-slot (additive)
reward of taking the action At = a when the system state
is St = s. We now describe how the NUM problem (P1)
can be cast as an MDP by describing the corresponding
(S, {As : s ∈ S}, {Pt}, r).

Definition of the state: We define the (network) state St of
the MDP as the snap-shot of all the network queues at time
t. More specifically, define

St , (S1
t , S

2
t , · · · , SKt ),

where Skt , the state of flow k, is the collection of all non-
expired flow-k packets in the AP’s queue.

3The reason is that our problem (P1) is exactly a Max-Weight problem
and we can regard wk as the (virtual) queue length of flow k.
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Fig. 2. An example for network states at slots 8 and 9, respectively.

For example, suppose that there are only K = 2 flows
with the corresponding traffic patterns depicted in Figs. 1(a)
and 1(b), respectively. Then a possible network state at slot
8 is illustrated in Fig. 2(a). Specifically, for flow 1, at slot 8,
packets m = 1 and m = 2 have expired and packet m = 3 has
arrived at the AP. If the packet m = 3 has not been delivered
successfully, it will remain in the queue and the state of flow
1 is S1

8 = {X3}. For flow 2, at slot 8, packet m = 1 has
expired (no matter whether it showed up at the AP or not),
and thus it does not appear in the queue. Packets m = 2
and m = 3 could have arrived at the AP. Suppose that these
two packets have not been delivered successfully. The state of
flow 2 is thus S2

8 = {Y2, Y3}. The network state at slot 8 is
S8 = (S1

8 , S
2
8) = ({X3}, {Y2, Y3}). Clearly, this is just one of

many possibilities. Fig. 2(b) depicts another possible network
state S9 = (S1

9 , S
2
9) = (∅, {Y3}) at slot 9.

By enumerating all possible network states, we can explic-
itly construct the state space S.

Definition of the action: An action At represents which
flow and which packet to serve in time t. For example, if the
network state at slot 8 is as Fig. 2(a), then there are 3 possible
actions4:
• Action 1: schedule link 1 and transmit packet X3;
• Action 2: schedule link 2 and transmit packet Y2;
• Action 3: schedule link 2 and transmit packet Y3.
One can quickly see that there are max(

∑K
k=1 |sk|, 1)

possible actions5 when St = s , (s1, · · · , sK) and the
collection of them is denoted by As. By enumerating over
all s ∈ S, we can specify {As : s ∈ S}.

Definition of the transition probabilities: We observe that
the transition probability Pt from St = s to St+1 = s′ depends
on (i) the action At = a in slot t; (ii) the channel success
probabilities {pk : k = 1, · · · ,K}; and (iii) the arrival and
expiration events at the end of time t (or equivalently at the
beginning of time (t + 1)). For example, at slot (t + 1),
some packet may be successfully delivered in time t, some
old packets may expire and no longer remain in the queue,
and some new packets may arrive, all of which will affect the
network state St+1. By carefully examining (i) to (iii), we can
explicitly construct the transition probability Pt in (3) for all
t, s, s′ and a. For example, we have

P8(S9 = (∅, {Y3})|S8 = ({X3}, {Y2, Y3}), A8 = Action 1) = p1.

The reason is as follows. When the AP takes “Action 1:
schedule link 1 and transmit packet X3” in slot 8, if the

4Note that it suffices to consider work-conserving actions/policies [4].
5The maximum operator is to handle the case s = (∅, · · · , ∅), for which

we still have an “idle action”.



transmission is successful, then X3 will arrive at user 1 and
will thus be removed from the queue. At the same time,
since Y2 will always expire at slot 9, it will also be removed
from the queue. The network state at slot 9 thus becomes
S9 = (∅, {Y3}). The probability of this transition is thus p1.

Definition of the reward: Based on the weights w1 to wK
in (P1) and we define r(s, a) =

∑K
k=1 wkrk(s, a), where

rk(s, a) is the individual reward for flow k:

rk(s, a) =pk · 1{a flow-k pkt is scheduled under state s & action a} (4)

That is, the indicator function 1{·} counts whether the chosen
action schedules a flow-k packet and pk is the probability that
the scheduled packet is successfully delivered. Eq. (4) calcu-
lates the expected value of the flow-k contribution for a given
(s, a). Note that since our definition of state s only keeps those
unexpired packets in the queue, any successful transmission is
always unexpired and will contribute to rk(s, a).

For example, at slot 8, if S8 = ({X3}, {Y2, Y3}) (see
Fig. 2(a)) and A8 is “Action 1: schedule link 1 and transmit
packet X3”, then the overall reward is

r(S8, A8) = w1r1(S8, A8) + w2r2(S8, A8) = w1 · p1 + w2 · 0.

The overall MDP-based optimization: The problem (P1)
is equivalent to the following infinite-horizon MDP problem:

(P2) max
solutions of the MDP

lim inf
T→∞

∑T
t=1 E{

∑K
k=1 wkrk(St, At)}

T

where the underlaying MDP is characterized by (S, {As : s ∈
S}, {Pt}, r) described previously.

Note that the essence/difficulty of the timely throughput
problem is that when we schedule a particular flow k at time
t, the remaining packets in the queues are getting “older”
and some may even expire. Therefore, the decision of sending
which flow not only affects the instantaneous “reward” in time
t, but it will also change the subsequent network state at time
(t+ 1). The effect of a decision at time t can even propagate
over multiple time slots, which makes it difficult to find the
optimal solution. Such a phenomenon is captured naturally by
our new MDP formulation where the control variable At not
only affects r(St, At) but also affects the next network state
St+1 through the transition probability (3).

Remark 3: Although the above MDP captures the essence
of timely throughput optimization, it is highly non-trivial to
find the optimal solution. Specifically, the MDP of interest has
an infinite state space S and is of infinite horizon. A closer
look at the MDP also shows that it is time inhomogeneous,
which is difficult to solve, since the transition probability Pt
depends on whether there is any packet arrives or expires at the
beginning of time (t+ 1) and thus varies for different t’s (see
(1) and (2)). Next we will provide three lossless simplification
methods that circumvent these obstacles and solve the infinite-
size MDP problem (P2) by a finite-size LP problem. ♦

IV. SIMPLIFICATION

The first contribution of this work is to observe that the
optimal timely throughput problem (P1) is in essence an
infinite-dimension, infinite-horizon, time-inhomogeneous MD-
P problem (P2). In this section, we demonstrate how to

reduce S and As to finite sets. On the other hand, the time-
inhomogeneity cannot be easily circumvented. Instead, we
show that our MDP is actually almost cyclostationary. We then
adapt the existing time-homogeneous infinite-horizon MDP
literature for our almost-cyclostationary setting, and derive the
corresponding finite-size LP problem that can find the optimal
solution of (P2).

A. Reduce The State Space
Define the lead time (see [17] for further discussion) of the

m-th flow-k packet at slot τ ∈ [t
[k]
arr (m), t

[k]
exp(m)− 1] as

t
[k]
lead(m) = t[k]exp(m)− τ. (5)

Clearly, we have t[k]lead(m) ∈ [1,Dk], which can be interpreted
as the remaining time before expiration. Moreover, at any slot
t, there exists at most one flow-k packet in the queue whose
lead time is τ , for any τ ∈ [1,Dk]. Therefore, the state of flow
k, which was originally defined as the set of unexpired flow-k
packets in the queue, can be rewritten as an equivalent binary
string, Skt , l

k
1 l
k
2 , · · · lkDk

where

lki =

{
1, if ∃ a flow-k packet with lead time i at t;
0, otherwise.

For example, for flow 2 in Fig. 2(a), the state at slot 8 is
S2
8 = 1001. The reason is that both Y2 and Y3 are in the queue.

The lead time of Y2 is t[2]lead(2) = t
[2]
exp(2)− 8 = 1 and the lead

time of Y3 is t[2]lead(3) = t
[2]
exp(3) − 8 = 4. At slot 9, the state

becomes S2
9 = 0010 since only Y3 remains and its lead time is

now changed to t[2]lead(3) = t
[2]
exp(3)− 9 = 3. For Fig. 2, similar

reasoning can be used to show S1
8 = 010 and S1

9 = 000. The
network state thus becomes S8 = (S1

8 , S
2
8) = (010, 1001) and

S9 = (S1
9 , S

2
9) = (000, 0010).

The new binary-string-based representation is equivalent to
the original set-based representation since for any time t, we
can use (2) and (5) to infer whether the m-th flow-k packet
is in the queue or not.

Since each state sk is a binary string of length Dk, if we
denote Sk as the set of all possible sk, then we have |Sk| ≤
2Dk . The total number of network states is thus

|S| = |S1| · |S2| · · · · · |SK | ≤ 2D1+D2···DK <∞. (6)

The new lead-time-based state space S is therefore bounded
even though our MDP is of infinite horizon.

The reason that (6) is only an upper bound is that for any
given traffic pattern, some binary strings do not represent any
state. This fact can be used to further reduce the state space
for some special traffic patterns. For example, for the frame-
synchronized traffic pattern in Sec. II-B, at each time t, the
flow-k state Skt = lk1 l

k
2 , · · · lkT can only be one of the following{

lki = 0,∀i ∈ [1, T ], if no flow-k packet;
lkg(t) = 1, lki = 0,∀i 6= g(t), if ∃ a flow-k packet.

(7)

where g(t) = T − ((t− 1) mod T ). Since there are only two
possible states for each flow-k at any slot, we can perform a
“lossless compression” and use Skt = 0 to represent the first
case, and use Skt = 1 for the second case. In this way, the state
space is further reduced and we have |Sk| = 2. The number



of network states is then equal to |S| = 2K , much smaller
than the upper bound (6).

B. Reduce The Action Space
Recall that the action At consists of two parts: (i) which

flow to schedule, say flow k, and (ii) which flow-k packet
to transmit. However, by some simple sample-path-based
arguments, one can prove that it is always better to schedule
the oldest flow-k packet (the one with the smallest lead time)
than to schedule any of the younger packets. Consequently,
we can reduce the action space to

As =

{
{idle}, if sk = ~0,∀k ;
{k : sk 6= ~0}, otherwise.

(8)

Once flow k is chosen, we automatically schedule the packet
with the smallest lead time. For ease of exposition, we
sometimes enlarge the individual action space in (8) and just
write As = {1, 2, · · · ,K}6 or simply A = {1, 2, · · · ,K} by
omitting the subscript s.

C. Solving The Infinite-Horizon MDP
With the above simplifications, the new MDP is of finite

dimension (but still of infinite horizon). However, it is still time
inhomogeneous, which makes it difficult to apply the existing
techniques that solve infinite-horizon MDP. To circumvent this
difficulty, we make another critical observation:

Lemma 1: Using the new network state representation, the
transition probabilities Pt are almost cyclostationary. Namely,
define

Prd , Least.Common.Multiple(prd1, prd2, · · · , prdK),

and choose L as a constant positive integer such that

L · Prd ≥ max
k∈[1,K]

(offsetk + Dk).

Then, for any τ ∈ [1,Prd], l ≥ L, the transition probability
Pl·Prd+τ for slot t = l · Prd + τ is identical to the transition
probability P(l+1)Prd+τ for slot t′ = (l + 1) · Prd + τ . ♦

Due to the space limit, we refer the proof to our technical
report [13]. The intuition behind is that when l ≥ L, then at
time t = (l · Prd + τ), the first packet of flow k has expired
for all k. Therefore, all K flows have left their transient
“initialization phase” and entered their “steady state”. Also,
since Prd is the least common multiple of all prdk, then after
every Prd time slots the arrival and expiration patterns of all
K flows will repeat themselves. Since the inhomogeneity of
the transition probability Pt is only caused by different arrival
and expiration events for each time t, the transition probability
Pt will also repeat itself after every Prd time slots since the
traffic patterns are periodic. A subtle point of the above new
observation, i.e., Lemma 1, is that the “period” of Pt depends
only on the arrival period prdk but is independent of the
deadlines Dk. For future reference, we define τtrans = L · Prd
and call the time interval [1, τtrans] the transient duration.

Next we will use the fact that Pt is almost cyclostationary
to adapt the existing LP methods [16], previously developed
for time-homogeneous MDP, and use it to solve (P2). We

6For simplicity, we omit the “idle action” here.

will particularly emphasize how to interpret the LP solution
and use it to design the optimal scheduling solution.

Definition 1: A scheduling policy π is randomized if for
every time t, the action At is described by a probability

ProbAt|St
(a|s) = Prob(At = a|St = s).

For our given MDP, a randomized policy π is almost cyclo-
stationary if the following two conditions hold: (i)

ProbAt|St
(a|s) = ProbAt+Prd|St+Prd

(a|s),
for all s ∈ S, a ∈ A, t ≥ τtrans. Namely, for all t ≥ τtrans,
the conditional probabilities repeat themselves after Prd slots,
and (ii) the random process7 of the MDP state after time τtrans,
{Sτtrans+t : ∀t ≥ 1}, is cyclostationary with period Prd. ♦

We now have the following result.
Theorem 1: The optimal objective value of the MDP (P2)

can always be achieved by a randomized almost cyclostation-
ary (RAC) policy. ♦

Proof: Please see Appendix A for the proof sketch.
Theorem 1 shows that to achieve the optimal timely

throughput we only need to search for the best RAC scheme.
This greatly reduces the search space since, if we ignore the
transient phase (t ≤ τtrans), an RAC scheme can be specified
by the conditional probability ProbAt|St

(a|s) and the resulting
state distribution ProbSt(s) for one period of Prd slots. The
search space is now bounded even though we consider an
infinite-horizon MDP problem.

The following theorem describes how to search for the
optimal ProbAt|St

(a|s) and ProbSt
(s). Our solution can be

viewed as a generalization of [16, Chap. 8] from time-
homogeneous MDPs to cyclostationary MDPs.

Theorem 2: The optimal objective of the MDP (P2) can
be found by solving the following finite-size LP

(P3) max
~R,~x≥0

K∑
k=1

wkRk (9a)

s.t.
∑
a∈A

xt+1(s′, a) =
∑
s∈S

∑
a∈A

Pt(s
′|s, a)xt(s, a),

∀s′ ∈ S, t ∈ [T1, T2 − 1] (9b)∑
a∈A

xT1
(s′, a) =

∑
s∈S

∑
a∈A

PT2
(s′|s, a)xT2

(s, a),

∀s′ ∈ S (9c)

Rk ≤
T2∑
t=T1

∑
s∈S

∑
a∈A

rk(s, a)

Prd
xt(s, a),∀k ∈ [1,K] (9d)∑

s∈S

∑
a∈A

xt(s, a) = 1,∀t ∈ [T1, T2] (9e)

where we define [T1, T2] , [L · Prd + 1, (L+ 1)Prd]. ♦
The intuition of Theorem 2 is as follows. The variable

xt(s, a) = ProbSt,At
(s, a) is the probability that the system

state is s and the action is a at slot t under an RAC policy,
which is why the total sum of xt(s, a) is 1 (see (9e)). Once

7Condition (i) requires that the way we make the decision is periodic and
condition (ii) requires that the resulting state distribution is periodic. Although
condition (i) generally means that condition (ii) is satisfied asymptotically
when t→∞, here we require condition (ii) to be satisfied for small finite t.



the joint probability ProbSt,At
(s, a) is specified by xt(s, a),

we can uniquely compute the marginal probability ProbSt
(s)

and the conditional probability ProbAt|St
(a|s) by

ProbSt(s) =
∑
a∈A

ProbSt,At(s, a) =
∑
a∈A

xt(s, a), (10)

ProbAt|St
(a|s) =

ProbSt,At(s, a)

ProbSt
(s)

=
xt(s, a)∑

a′∈A xt(s, a
′)
. (11)

The RAC policy is thus uniquely decided by xt(s, a). Also
note that the total number of such variables xt(s, a) is Prd ·
K · 2

∑K
k=1 Dk .

In (P3), the right-hand side of (9d) computes the average
reward of flow k under such an RAC policy. Eq. (9b) is the
consistency condition for time [T1, T2−1]. The left-hand side
of (9b) is the marginal probability ProbSt+1

(s′). The right-
hand side of (9b) starts from the joint distribution ProbSt,At

and uses the transition probability Pt(St+1|St, At) to compute
ProbSt+1(s′). Similarly, (9c) is the consistency condition from
time T2 back to T1 since we require the periodicity condition
ProbST2+1

(s′) = ProbST1
(s′).

Theorem 2 answers the two key questions proposed in
Sec. I. Firstly, it computes the optimal value of (P1) and
shows that the K-dimensional rate region ~R = (R1, · · · , RK)
can be characterized as a polygon specified by (9b) to (9e).
Secondly, once we found the optimal solution of (P3), de-
noted by x∗t (s, a), we can plug into (10) and (11) to find the
optimal RAC scheduling policy. When we actually run the
RAC algorithm in a practical system, we do the following.8

For each time t, we use the set of packets that remain in the
queue of the AP to decide the current network state St. Then
we randomly choose an action by flipping a coin according to
the conditional probability (11) computed from x∗t (s, a).

Remark 4: The existing elegant framework in [4], [5], [7]
is based on the frame-synchronized setting. In contrast, our
framework applies to arbitrary traffic patterns. Further, the
existing framework is based on first deriving an idle-time-
based outer bound. Then a largest-deficit-first (LDF) scheme
is proposed that attains any point within the outer bound.
However, for general settings, how to find a tight outer
bound is highly non-trivial and remains open as of today.
Instead of finding an outer bound and an achievability scheme
separately as in [4], our approach is fundamentally different.
By proposing a new MDP framework, we first establish that
any optimal point can always be achieved by an RAC policy.
Then we search for the optimal RAC by solving a finite-
size LP problem. The solution is thus simultaneously an outer
bound (no scheme can do better) and an inner bound (as it
explicitly leads to an optimal design). In the broadest sense,
our approach can be viewed as directly finding the maximum
flow instead of indirectly finding the minimum cut. ♦

V. COMPLEXITY REDUCTION AND HEURISTIC
SCHEDULING ALGORITHMS

Thus far we have characterized the optimal timely through-
put region and designed the corresponding optimal RAC

8For ease of exposition, we omit the design of the transient state t ≤ τtrans.
The complete RAC design can be found in our technical report [13].

scheduling policy. To our best knowledge, it is the first time in
the literature that one can fully answer these two questions for
arbitrary traffic patterns. However, our MDP-based solution
(P3), though being finite and computable, has quite high
complexity, which is ≈ Prd · K · 2

∑K
k=1 Dk (see Sec. IV-C).

This makes it less practical as an online9 solution.
On the other hand, this section shows that our MDP-based

framework (P3) also allows us to systematically design new
polynomial-time sub-optimal schedulers that perform quite
well numerically for general settings, which is a feature absent
from the existing idle-time-based framework [4], [5], [7].

A. RAC Approximation

Our first efficient but sub-optimal policy consists of two
steps. Step 1: Derive a relaxed verson of the LP (P3), called
(P4), such that the optimal objective value of (P4) is larger
than that of (P3) but (P4) can be solved in polynomial time.
This thus gives a loose but efficient outer bound. Step 2:
We replace (11) by a new formula based on the efficiently-
computed solution of (P4). Heuristically, if the problems
(P4) and (P3) are close, then their optimal solutions are
also “close”, and the resulting control probabilities in (11)
will be similar. Our new RAC solution based on (P4) will
thus have near-optimal performance of the solution of (P3).
Our numerical experiment shows that it is indeed the case.

Step 1: In our original system, the AP schedules one and
only one flow at each slot. We can equivalently convert this 1-
to-many system to K parallel 1-to-1 systems (srck, dstk) for
each k in the following way. We allow each srck to make
their own decision Akt ∈ {1, · · · ,K} and srck transmits only
when Akt = k and remains idle whenever Akt 6= k. We further
impose that Ak1t = Ak2t for any two flows k1 and k2. This
ensures that even though we have K parallel 1-to-1 systems,
their decisions are strictly synchronized, and only one of them
can be active in any time t. Therefore, the K parallel 1-to-1
systems are equivalent to the original 1-to-many AP network.

Now we relax this synchronized action constraint Ak1t =
Ak2t by replacing them with a common scheduling frequen-
cy constraint. Namely, for each parallel system k, we use
zkt (sk, a) to denote the probability that flow k is in state sk

and the action is a at slot t. The common scheduling frequency
constraint imposes that the K parallel systems must share a
common scheduling frequency, i.e.,∑

sk∈Sk

zkt (sk, a) = zt(a),∀k ∈ [1,K], t (12)

Obviously, the sample-path-based synchronized action con-
straint Ak1t = Ak2t implies the distribution-based common
scheduling frequency constraint (12).

Following very similar derivation process as discussed in
Sec. IV, we can characterize the performance of the relaxed

9The main complexity is the computation of the optimal x∗t (s, a) in (P3).
Once x∗t (s, a) is known, the actual RAC scheduler is quite simple and
involves only coin-flipping with conditional probability (11). Therefore, for
a relatively stable system, the optimal RAC policy can still be implemented
by computing the optimal x∗t (s, a) offline. For references, using off-the-shelf
LP solvers, (P3) can be solved in a few seconds with K = 7 to 12 flows
and moderate Dk values.



system by the following LP problem.

(P4) max
~R,~z≥0

K∑
k=1

wkRk (13a)

s.t.
∑
a∈A

zkt+1(s̃k, a) =
∑
sk∈Sk

∑
a∈A

P kt (s̃k|sk, a)zkt (sk, a),

∀k ∈ [1,K], s̃k ∈ Sk, t ∈ [T1, T2 − 1] (13b)∑
a∈A

zkT1
(s̃k, a) =

∑
sk∈Sk

∑
a∈A

P kT2
(s̃k|sk, a)zkT2

(sk, a),

∀k ∈ [1,K], s̃k ∈ Sk (13c)

Rk ≤
T2∑
t=T1

∑
sk∈Sk

∑
a∈A

rk(sk, a)

Prd
zkt (sk, a),

∀k ∈ [1,K] (13d)∑
sk∈Sk

zkt (sk, a) = zt(a),∀k ∈ [1,K], t ∈ [T1, T2] (13e)∑
sk∈Sk

∑
a∈A

zkt (sk, a) = 1,∀k ∈ [1,K], t ∈ [T1, T2] (13f)

where P kt (s̃k|sk, a) is the transition probability from state sk

to state s̃k for flow k, rk(sk, a) is the flow-k per-slot reward
under state sk and action a (defined similarly as (4)), and T1
and T2 are defined as the same in (P3). One can see that
the form of (P4) is very close to that of (P3) except that
(P4) deals with each 1-to-1 system separately and links them
through the common scheduling frequency constraint (13e).

As discussed previously, (P4) is a relaxed version of (P3).
In return for the relaxation, we can solve (P4) more efficiently
since the state of each flow k is considered separately (rather
than considered as a joint network state). The new complexity
thus becomes,

(2D1 + 2D2 + · · ·+ 2DK + 1) ·K · Prd.

This allows us to solve it for significantly large K, Prd and
very reasonable practical Dk values. If we further use the
lossless simplification method in (7), then the complexity can
be further reduced to

(2

⌈
D1

prd1

⌉
+ 2

⌈
D2

prd2

⌉
+ · · ·+ 2

⌈
DK

prdK

⌉
+ 1) ·K · Prd,

which is quite manageable for almost all practical system
parameters. Note that it is possible to iteratively use this
relaxation method (with looser and looser performance) to
further bring down the complexity to purely polynomial
O((
∑K
k=1 Dk) · K · Prd). Due to the space limit, we omit

the details of the further relaxation.
Step 2: We will now use the optimal solution of (P4),

denoted by z̃kt (sk, a), to design the control probability of an
RAC policy, i.e., we will replace (11) by a new formula.

RAC-Approx Scheduling Policy: At slot t, suppose that
the system state is St = (S1

t , S
2
t , · · ·SKt ) = (s1, s2, · · · sK),

first compute10 the following conditional probability for each
action a ∈ A and each flow k ∈ [1,K],

ProbAt|Sk
t
(a|sk) =

z̃kt (sk, a)∑
a′∈A z̃

k
t (sk, a′)

, (14)

10Here we are assuming t ∈ [T1, T2]. If not, we need to take the modulo
over Prd so that we can plug into the variable z̃kt (s

k, a).

and then select action a with probability∏K
k=1 ProbAt|Sk

t
(a|sk)∑

a′∈A
∏K
k=1 ProbAt|Sk

t
(a′|sk)

. (15)

The intuition of (15) is as follows. Eq. (14) is the probability
that the k-th parallel system will choose a specific action a.
Since all parallel system choose their actions independently,
the numerator of (15) is the probability that all flows choose
the same action a. When all flows choose the same action a,
we let the AP take the same action a. Note that it is possible
that all flows choose a different action a′. By normalizing over
the probability of all possible a′ in the denominator of (15),
it is as if we directly let the AP randomly choose an action a
with probability (15).

Our RAC-Approx policy, using (P4), (14), and (15), is very
efficient since all the computation can be performed on a per-
flow base, as opposed to the network-wide computation in
(P3) and (11).

B. Deficit-based Scheduling Algorithm

Our MDP formulation shows that the lead-time-based state
representation is critical to finding the optimal solution. In
the following, we will show that by incorporating the concept
of lead time, we can further improve the performance of the
existing deficit-based policies.

In general, a deficit is the difference between the desired
number of transmissions and the actual number of transmis-
sions. Heuristically, the AP should schedule the flow with
largest deficit, which is the so-called Largest-Deficit-First
(LDF) scheduler. [4] proved that LDF is feasiblity/throughput
optimal for the frame-synchronized traffic pattern. The reason
why LDF is optimal in the frame-synchronized traffic pattern
is that all non-expired packets are equally urgent because they
have the same deadline. However, when different packets have
different deadlines, they have different levels of urgency. Since
the deficit does not contain any urgency information, unlike
the proposed RAC policy, which is always optimal, the LDF
policy is not optimal for general traffic patterns.

To handle heterogeneous deadlines, [9] proposed the
Earliest-Positive-deficit-Deadline-First (EPDF) scheduler. In
EPDF, at any slot, the AP focuses on those flows with strictly
positive deficit and among them selects the flow which has the
earliest deadline. Unfortunately, when evaluated numerically,
EPDF is strictly sub-optimal, see Fig. 5 and Sec. VI-B for
more detailed discussion of the sub-optimality of EPDF.

Inspired by our lead-time-based MDP study, we propose
the following Lead-time-normalized-Largest-Deficit-First (L-
LDF) scheduler: At each slot t, the AP computes the lead-
time-normalized deficit d̄k(t) for each flow k:

d̄k(t) ,
dk(t) · pk

smallest-lead-time(k, t)
,

where dk(t) is the deficit of flow k at slot t as defined in
[9] (with M = 1 where M is a parameter in [9]), and
smallest-lead-time(k, t) is the smallest lead time among all
flow-k packets at slot t. Then, among all flows that currently
have packets to send, we select the flow with the largest d̄k(t).
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Fig. 3. Capacity region of two flows.

Note that L-LDF collapses to the existing LDF in the
frame-synchronized traffic pattern, since in that setting all
non-expired packets at time t will have the same smallest
lead time. However, the additional normalization according to
the smallest lead time will better reflect the urgency of each
individual flow for general traffic patterns.

VI. SIMULATION

This section illustrates how to compute the capacity region
and compares the performance of the proposed schedulers.

A. Capacity Region

Since the existing idle-time-based analysis [4] can only
characterize the capacity region for the frame-synchronized
traffic pattern, we also apply our MDP-based computation
(P3) to such a simple setting. Specifically, we consider the
following frame-synchronized traffic pattern

(offset1, prd1,D1,B1, p1) = (0, 3, 3, 1, 0.8),

(offset2, prd2,D2,B2, p2) = (0, 3, 3, 1, 0.6).

Fig. 3(a) shows the capacity region of this traffic pattern. As
expected, both [4] and our results successfully characterize the
same capacity region.

Next we offset flow-2 by 2 slots. Namely, the two flows are
not frame-synchronized any more:

(offset1, prd1,D1,B1, p1) = (0, 3, 3, 1, 0.8),

(offset2, prd2,D2,B2, p2) = (2, 3, 3, 1, 0.6).

The idle-time-based analysis does not hold anymore. However,
our MDP-based formulation (P3) can still characterize the
capacity region, see Fig. 3(b), which contains three corner
points, as opposed to only two corner points in Fig. 3(a). Such
a phenomenon is observed for the first time in the literature.

In both Figs. 3(a) and 3(b), we also evaluate our relaxed LP
(P4), which computes an outer bound of the capacity region.
As can be seen, (P4) empirically characterizes a very tight
outer bound of the actual capacity region.

B. Proposed Scheduling Algorithms

This work proposes 3 different schedulers: the provably
optimal RAC scheduler, the computationally-efficient RAC-
Approx scheduler, and the deficit-based L-LDF scheduler.
We will compare them to existing LDF [4] and EPDF [9]
schedulers. Note that LDF, EPDF and L-LDF are feasibility-
check algorithms which require a given timely throughput
vector to update the deficits of all flows while the optimal

0 2000 4000 6000
0.1

0.15

0.2

0.25

Slot

R
u
n
n
in

g
 T

im
e
ly

 T
h
ro

u
.

 

 

LDF
L−LDF
RAC
Optimal

(a) Flow 1

0 2000 4000 6000
0.1

0.15

0.2

0.25

Slot

R
u
n
n
in

g
 T

im
e
ly

 T
h
ro

u
.

 

 

LDF
L−LDF
RAC
Optimal

(b) Flow 2

Fig. 4. An example showing that LDF is strictly sub-optimal.

RAC and RAC-Approx do not require such input but need to
know the utility function Uk(rk) for each flow k.

LDF is Sub-optimal: Consider a 2-flow case with

(offset1, prd1,D1,B1, p1) = (0, 4, 4, 1, 0.5), U1(R1) = R1,

(offset2, prd2,D2,B2, p2) = (2, 4, 4, 1, 0.5), U2(R2) = R2.

by solving (P3), the optimal throughput is (R∗1, R
∗
2) =

(0.2187, 0.2187). The optimal RAC converges (R∗1, R
∗
2) as

proven in Theorem 1, see Fig. 4. Using (R∗1, R
∗
2) as the rate-

vector input for LDF and L-LDF, Fig. 4 shows that LDF is
strictly sub-optimal while L-LDF is numerically optimal. L-
LDF successfully balances different urgency levels when the
flows are no longer frame-synchronized.

EPDF is Sub-optimal: Consider a 2-flow case with

(offset1, prd1,D1,B1, p1) = (0, 4, 4, 1, 0.5), U1(R1) = R1,

(offset2, prd2,D2,B2, p2) = (0, 4, 3, 1, 0.5), U2(R2) = 10−5R2.

Choosing w2 = 10−5 means that we give absolute priority
to flow 1. The optimal rate is (R∗1, R

∗
2) = (0.2344, 0.1250).

Fig. 5 shows that the proposed L-LDF and optimal RAC again
converge to (R∗1, R

∗
2). However, EPDF is strictly sub-optimal

even when using a wide range of different M values, where M
is a tuning parameter of EPDF [9]. The reason is as follows.
The choice of U1(R1) and U2(R2) implies that to achieve
the optimal (R∗1, R

∗
2), we must always give priority to flow 1.

However, in EPDF, the periodic virtual injection of every M
time slots ensures that for a constant fraction of time slots,
the deficit of flow 2 will be strictly positive. Since flow 2
has an earlier deadline, EPDF will favor flow 2 for a constant
fraction of time slots. This is strictly sub-optimal since an
optimal policy must always give precedence to flow 1.

Performance of RAC-Approx & L-LDF: For a more
diverse traffic pattern, consider a general 3-flow case:

(offset1, prd1,D1,B1, p1) = (0, 4, 4, 1, 0.5), U1(R1) = logR1,

(offset2, prd2,D2,B2, p2) = (2, 4, 4, 1, 0.5), U2(R2) = logR2,

(offset3, prd3,D3,B3, p3) = (0, 1, 3, 0.9, 0.7), U3(R3) = logR3.

Note that here flow 3 is simply the traditional i.i.d. arrival
since prd3 = 1. By solving (P3) where we use the sum-log
utility as the objective function11, the optimal rate vector is
uniquely decided as (R∗1, R

∗
2, R

∗
3) = (0.1667, 0.1667, 0.2333).

Fig. 6 shows that both L-LDF and RAC-Approx converge to
the optimal solution, as well as the provably optimal RAC

11 Our LP (P3) can be provably extended to a convex program with general
valid utility objective function, which can solve (P0) equivalently.
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Fig. 5. An example showing that EPDF is strictly sub-optimal.
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Fig. 6. Comparison of different scheduling policies for three flows.

scheduler. This again demonstrates the effectiveness of the
proposed RAC-Approx and L-LDF schedulers.

VII. CONCLUSION & FUTURE WORK

In this paper, we show that network utility maximization
of timely flows with general traffic patterns is fundamentally
an MDP problem. This formulation allows us to system-
atically explore a design space beyond those in previous
studies. We propose three problem-structure-inspired simpli-
fication methods to convert the challenging infinite-horizon
time-heterogenous MDP problem to an equivalent finite-size
LP problem. This allows us to fully characterize the timely
capacity region of flows with general traffic patterns, which
was critically missing in the literature. We then design three
new scheduling algorithms for general timely traffic patterns.
The first algorithm achieves the optimal utility but suffers from
the curse of dimensionality. Inspired by our MDP formula-
tion, the second and third algorithms are of polynomial-time
complexity, and simulation results show that they are near-
optimal and outperform existing alternatives. An interesting
and important future direction is to extend the proposed MDP
framework to general multi-hop wireless networks.
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APPENDIX

A. Intuitive Proof of Theorem 1
The main idea is that the randomness of an RAC scheduler

allows us to “average in (probability) space” the state transition
and the reward for a given time t. On the other hand, for
any given scheme, which may be deterministic or randomized,
we can average the state transition and the reward over t =
l · Prd + τ for all l = 0, 1, 2, · · · . We call such an operation
“average in time” since it performs averages over multiple
time slots that are of the same position in the overall period
Prd. Since the transition probability Pt is almost periodic, we
can show that for any given scheme and any RAC scheduler,
if the average-in-time of the former gives the same scheduling
“frequency” as the average-in-space of the latter, then both
schemes achieve the same timely throughput. As a result, any
given scheme (deterministic or not) can be converted to an
equally good RAC scheduler. The proof is thus completed.
For the full proof, please refer to our technical report [13].


