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Abstract—In this paper, we are interested in online multi-
stage decisions to ensure robust power grid operations under
high renewable uncertainty. We jointly consider both the relia-
bility assessment commitment (RAC) and the real-time dispatch
problems. We first focus on the real-time dispatch problem and
define “maximally robust algorithms,” which can provably ensure
grid safety whenever there exists any other algorithm that can
ensure grid safety under the same level of future uncertainty. We
characterize a class of maximally robust algorithms using the
concept of “safe dispatch set,” which also provides conditions for
verifying grid safety for RAC. However, in general such safe dis-
patch sets may be difficult to compute. We then develop efficient
computational algorithms for characterizing the safe dispatch
sets. Specifically, for a simpler single-bus two-generator case, we
show that the safe dispatch sets can be exactly characterized
by a polynomial number of convex constraints. Then, based on
this two-generator characterization, we develop a new solution
for the multi-bus multi-generator case using the idea of virtual
demand splitting (VDS), which can effectively compute a suitable
subset of the safe-dispatch set. Our numerical results demonstrate
that a VDS-based economic dispatch algorithm outperforms the
standard economic dispatch algorithm in terms of robustness,
without sacrificing economy.

I. INTRODUCTION

The high variability and uncertainty of renewable energy
poses an immense challenge to the existing power grid. Note
that in a power grid, the demand and supply must be bal-
anced at all times. Otherwise, the grid will reach an unsafe
state. Thus, with high penetration of renewable energy, the
grid needs to prepare a sufficient amount of other resources
(e.g., traditional fossil-fuel generation) to compensate for the
variability and uncertainty of the renewable supply. However,
these generation resources and the transmission grid have their
own physical constraints, which cannot be violated. Hence, it
becomes extremely challenging to determine which set of re-
sources needs to be procured before-hand, and how to dispatch
these resources in real time, in order to ensure demand-supply
balance at all times subject to the various physical constraints.

In most parts of the US, the responsibility of maintaining
grid satety at all times is on the Independent Systems Operator
(ISO) [1][2][3]. An ISO typically runs (at least) two markets.
In the day-ahead market, a unit-commitment and economic-
dispatch schedule is computed for every hour of the next day,
based on some forecast of the future demand and renewable
supply. Then, in the real-time market during the following day,
the ISO must adjust the dispatch decisions every 5 minutes
to match the actual demand and supply, which may have
deviated from their day-ahead forecasts. In-between the real-

time market and the day-ahead market (or even multiple times
during the following day), the ISO runs a RAC1 (Reliability
Assessment Commitment) stage to determine whether addi-
tional generators need to be committed so that it has sufficient
resources to compensate for future uncertainty in the real-
time market. Note that these commitment decisions must be
made before-hand because most generators need a substantial
amount of lead time to start or stop. In this work, we are most
interested in the decisions for both the RAC stage and the real-
time dispatch stage, in order to ensure grid safety under high
penetration of renewable energy.

Most existing approaches for ensuring reliable grid oper-
ations, however, are not suitable for dealing with renewable
uncertainty. For example, a majority of the studies, e.g., [4]
and [5], have focused on ensuring the so-called N -k reliability
upon contingency events, when any k large generators or
transmission lines fail. However, renewable uncertainty is
present at all times, and thus is intrinsically different from rare
contingency events. Recently, two-stage stochastic or robust
optimization has been used to study operations under renew-
able uncertainty [6][7][8][9]. In two-stage optimization, there
is a second stage where the future renewable energy supply for
all time slots is assumed to be known. In practice, however,
the uncertainty of the renewable supply is sequentially revealed
as time evolves. Thus, there are naturally many stages where
decisions must be made in an online manner. As a result, not
only that the real-time dispatch decisions produced under such
a two-stage assumption cannot be executed in practice, the
decision is also too optimistic for the RAC stage, i.e., it may
incorrectly identify a system as safe, even though the system
is unsafe [10].

In this work, we aim to account for the multi-stage nature
of renewable uncertainty in the RAC and the real-time dispatch
decisions. We note that dynamic decision and control prob-
lems have been studied in many communication/networking
settings. However, it is non-trivial to design solutions that
can provide strong safety guarantees in a computationally
efficient manner. If one assumes a probabilistic model of the
future uncertainty, then this problem can be solved by dynamic
programming [11]. However, such an approach suffers from
the curse of dimensionality when the problem size is large.
Lyapunov-based stochastic optimization does not assume any
probabilistic model, and has been very successful in many
communication/networking problems [12]. However, when
faced with tight safety constraints, this approach can only

1Depending on the ISOs [3], this stage may also be called RUC (Reliability
Unit Commitment)



provide a weaker notion of order-optimality. In contrast, in
this paper we assume that the renewable uncertainty is in
a bounded set, and we are interested in designing causal
online algorithms that can ensure safe operations of the power
grid at all times, as long as the renewable uncertainty is in
this uncertainty set. Thus, our approach is at the intersection
of robust optimization [13] (which uses bounded uncertainty
sets and typically neglects multi-stage decisions) and online
algorithms [14] (which consider multi-stage decisions but
typically are not designed for a given uncertainty set).

Towards this end, we introduce the concept of “safe dis-
patch sets” (see Sec. III for the rigorous definition): at the RAC
stage, we only need to verify that the safe dispatch sets are
non-empty; at the real-time stage, a robust online algorithm
only needs to control the dispatch decision to be within the
safe dispatch set. We argue that such decisions produce the
“most robust” system (see Sec. III for details). Thus, once
these safe-dispatch sets are computed, both the RAC problem
and the real-time dispatch problem are solved. However, for
general settings, computing these safe dispatch sets incurs high
computational complexity. Our main contribution is to develop
in Sec. IV efficient computational algorithms for characterizing
these safe dispatch sets. Specifically, for a simpler single-bus
two-generator case, we show that the safe dispatch set can be
accurately characterized by a polynomial number of convex
constraints. Then, based on this two-generator characterization,
we develop a new solution for the multi-bus multi-generator
case using the idea of virtual demand splitting (VDS), which
can effectively compute a suitable subset of the safe-dispatch
set.

Our study is closely related to the work in [10] that studies
multi-stage robust optimization for power-system operations.
In fact, our approximation method in Section IV-B of restrict-
ing to a pre-computed demand splitting factor may also have
some similarity to the restriction to affine real-time dispatch
policies in [10]. However, there is one key difference. In robust
optimization, the goal is to minimize the worst-case future
cost of generation. Thus, only for the worst-case input, one
can claim that the affine real-time dispatch policy found in
[10] is better. However, the worst case only occurs rarely.
For most other future inputs, the economy of such a real-
time policy could be poorer than other policies. In contrast,
in our solution, we only use the pre-computed splitting factors
to determine the safe-dispatch set. Once the safe-dispatch set is
found, any decision (in particular, the most economic dispatch
decision) in the set can be used (see Section IV-B4 for more
details). As we illustrate in the numerical results in Sec. V, our
proposed online solution allows the grid operator to balance
both reliability and economy, which we believe is highly-
appealing in practice.

II. SYSTEM MODEL

We study a power grid with Nb buses interconnected by
Nl transmission lines. Let B = {1, 2, ..., Nb} denote the set of
buses, and let L = {1, 2, ..., Nl} denote the set of transmission
lines. Each bus b could have some power generators, renewable
supply and demand.

Assume that the RAC (Reliability Assessment Commit-
ment) stage is conducted every T time slots. The purpose

of RAC is to ensure that future real-time dispatch decisions
can always balance the supply and demand for all possible
realizations of demand and renewable supply in the following
T time slots. Below, we define both the characteristics of the
demand and the power generating capabilities of the supply.

Demand: We first model the demand side. At each bus,
there may exist many loads and many renewable energy
plants. In this work, we assume that the renewable supply is
cheaper than fossil-fuel generation, and will always be used
to provide energy when available. As a result, the renewable
supply can be viewed as negative demand. Thus, we only
need to care about the net-demand, i.e., the total demand
minus the total renewable supply, at each bus. Let Db(t)
(b ∈ B, t = 1, 2, ..., T ) be the net-demand at bus b and
time t. Then, the entire net-demand time-sequence can be
denoted as D(1:T ) = {Db(1:T ), b ∈ B}, where Db(1:T ) =
{Db(t), t = 1, 2, ..., T} is the net-demand time-sequence for
each bus b ∈ B.

Uncertainty: We now model the uncertainty due to renew-
able supply that the multi-stage decisions must deal with. Like
[8][10], we assume that the net-demand sequence D(1:T ) may
be any sequence in an uncertainty set D, which is given as part
of the problem formulation. In practice, this uncertainty set is
typically constructed from forecasts performed before time 1
[8]. However, unlike the two-stage assumption in [8] that the
entire sequence D(1:T ) is known precisely at the second stage,
here at each time t, only the subsequence D(1:t) is known,
while the future subsequence D(t + 1:T ) remains uncertain.
While our proposed methodology can be applied to any form
of uncertainty sets, for clarity we will use the following form
for the rest of the paper. The uncertainty set D consists of all
D(1:T ) such that the following two constraints (1) and (2) are
satisfied:

Dmin
b (t) ≤ Db(t) ≤ Dmax

b (t), (1)

∆down
b (t1, t2) ≤ Db(t1)−Db(t2) ≤ ∆up

b (t1, t2), (2)

where the parameters Dmin
b (t) and Dmax

b (t) denote the lower
and upper limits, respectively, of the net-demand of bus b at
time t, and the parameters ∆up

b (t1, t2) and ∆down
b (t1, t2) denote

the maximum downward and upward speed of change for the
net-demand of bus b. We note that although the uncertainty
set D is given for the entire time horizon, in a multi-stage
setting the constraint (2) can be used to refine the remaining
uncertainty at time t. Specifically, we introduce the following
notation:

D[t1,t2]|D(1:t) = {D(t1:t2)|there exists D′(1:T ) ∈ D,

such that D′(1:t) = D(1:t), D′(t1:t2) = D(t1:t2)}, (3)

which captures the remaining future uncertainty in the interval
[t1, t2], given the past net-demand trajectory D(1:t). Note that
this remaining uncertainty is usually smaller than the range of
D(t1:t2) in the original uncertainty set D, since the past net-
demand D(1:t) has been fixed. If t1 = t2, we will simplify the
notation as Dt1|D(1:t). If t = 0, we will simplify the notation as
D[t1,t2], which is just the original uncertainty set D restricted
to the time interval [t1, t2].

Supply: We then model the supply side, i.e., the fossil-
fueled generators in the power system. We use G =
{1, 2, ..., Ng} to denote the set of generators in the system,



and use Pg(t) to denote the power level at each generator g
and each time slot t. Denote

P(1:T ) = {Pg(1:T ), g ∈ G} = {Pg(t), g ∈ G, t = 1, 2, ..., T}.

For a bus b ∈ B, we use Gb ⊆ G to denote the set of generators
located at the bus b. Further, different generators have different
power generating constraints. Specifically, for each generator
g ∈ G, Pg(t) must be within the generators’ capacity range
[Pminimum

g , Pmaximum
g ], i.e.,

Pminimum
g ≤ Pg(t) ≤ Pmaximum

g , t = 1, 2, ..., T, (4)

Further, the power levels across time must obey the ramping
constraints, i.e.,

|Pg(t)− Pg(t− 1)| ≤ Rg, t = 2, 3, ..., T. (5)

where Rg is the generator g’s ramping capability in one time
slot (typically 5 minutes [1]).

Other Constraints: Given the demand D(1:T ), the power
dispatch decision P(1:T ) must satisfy both the demand-supply
balance constraints and the transmission limit constraints. The
demand-supply balance constraints require that the total power
generation must be equal to the total net-demand (here, we
ignore the transmission loss), i.e.,∑

g∈G
Pg(t) =

∑
b∈B

Db(t), t = 1, 2, ..., T. (6)

To model the transmission limit constraints, we assume a
simplified DC model [15]. Let S = [Sl,b] be the shift factor
of the power network, which is determined by the network
topology and the reactance of the transmission lines. Then, the
amount of power transmitting on line l at time slot t cannot
exceed the power line l’s transmission limit, denoted by TLl,
i.e.,∣∣∣∣∣∣

Nb∑
b=1

Sl,b

(
Db(t)−

∑
g∈Gb

Pg(t)

)∣∣∣∣∣∣ ≤ TLl, for any t, l. (7)

A. Real Time Dispatch and RAC

As we discuss earlier, at each time t, the ISO must
dispatch the generators so that the demand-supply balance
and various constraints are met at time t. In practice, such
dispatch decisions must respect causality, i.e., at each time
t, the real-time decision can only be made based on the
net-demand subsequence D(1:t) already revealed and the
uncertainty set D[t+1,T ]|D(1:t) (i.e., prediction) of the future
subsequence D(t + 1:T ), but cannot depend on the exact
values of D(t + 1:T ). Due to the causality requirement, it
is possible that, if an incorrect decision was made at an earlier
time, then at a future time, no dispatch decisions can meet all
the constraints. As a result, the system may enter an unsafe
state. Thus, it is imperative that the decisions at each time take
future uncertainty into account, so that such unsafe scenario
will never occur. Towards this end, we introduce the following
concept.

Definition 1: Given an uncertainty set D, we call π(D)2 a
causal real-time dispatch algorithm under D, if at each time t,

2Since D is a part of the problem formulation, the algorithm π may thus
behave differently for different uncertainty sets D.

the dispatch decision Pπ(D)(t) = {Pπ(D)
g (t), g ∈ G} produced

by the algorithm π(D) is a function of D(1:t).

Definition 2: We say that a causal real-time dispatch algo-
rithm π(D) is robust for the uncertainty set D, if and only
if for all the demand sequence D(1:T ) ∈ D and all time
t = 1, ..., T , the dispatch decision Pπ(D)(t) produced by the
algorithm π(D) satisfies constraints (4)-(7).

The objectives of this work are then the following. First,
at the RAC stage, given an uncertainty set D, and a set of
generators committed, we would like to know whether there
exist causal real-time dispatch algorithms that are robust for
the uncertainty set D. Then, if the answer at the RAC stage
is positive, we would like to find a causal real-time dispatch
algorithm that is indeed robust for the uncertainty set D. Note
that unlike robust optimization [8], our formulation does not
aim to minimize the worst-case future cost. As was discussed
in the introduction and will be presented next, our solution
produces “safe-dispatch sets” that allow the operator to balance
both reliability and economy.

B. A Motivating Example for Multi-stage Decisions

Before we present our solution, we briefly contrast our
problem formulation to typical two-stage methods in the liter-
ature for studying power-system operations under uncertainty,
such as two-stage optimization [6][7][8][9]. A common feature
of these two-stage methods is to assume that there exists a
second stage where future uncertainty is fully revealed. In our
setting, since the goal is to ensure that the physical constraints
(4)-(7) are met at all times (see Definition 2), such a two-stage
method would have corresponded to the following formulation:

Find a mapping from D(1:T ) to the dispatch decisions
P(1:T ) such that for all D(1:T ) ∈ D, the corresponding
dispatch decision P(1:T ) satisfies constraints (4)-(7) for all
t.

However, such a mapping clearly violates the causality re-
quirement in Definition 1. In practice, at any time t < T , only
the subsequence D(1:t) is known, while the future D(t+1:T )
remains unknown. Thus, the dispatch decisions computed by
the above two-stage formulation cannot be executed in real
time. More importantly, an RAC decision based on such a two-
stage formulation would reach incorrect conclusions regarding
system safety. Specifically, one may be tempted to declare the
system to be safe under a given uncertainty set D, whenever the
above mapping in the two-stage formulation can be found for
all D(1:T ) ∈ D. However, there may be no causal algorithms
that are robust for the same uncertainty set D! The following
simple example demonstrates this incorrect RAC decision3.

A Motivating Example: Suppose that there are two gener-
ators on a single bus. The first generator can operate between
0MW and 90MW, with ramping speed of +/-40MW per time-
slot. The second generator can operate between 0MW and
10MW, with a ramping speed of +/-10MW per time-slot.
Consider two possible net-demand sequences over 3 time-
slots. The first sequence is (50,50,100)MW, and the second
sequence is (50,50,0)MW. Under the two-stage formulation,
for the first sequence, the mapped dispatch decision could
be (50,50,90)MW for the first generator and (0,0,10)MW for

3A related but different example was also presented in [10].



the second generator. Similarly, for the second sequence, the
mapped dispatch decision could be (40,40,0)MW for the first
generator and (10,10,0)MW for the second generator. Thus, the
two-stage formulation would declare such a setting as safe.
However, it is easy to see that no causal algorithm can be
robust for this level of uncertainty. Specifically, in order to
reach 100MW in time-slot 3, the dispatch decision of the first
generator at time-slot 2 must be greater than or equal to 50MW.
On the other hand, in order to reach 0MW in time-slot 3,
the dispatch decision of the first generator at time-slot 2 must
be lower than or equal to 40MW. However, since the future
demand at time-slot 3 is still unknown to the operator at time-
slot 2, there exists no causal dispatch decision at time-slot 2
that can simultaneously meet the physical constraints for both
possibilities.

This example illustrates the limitation of two-stage method-
s. In the following, we will present our solutin for multi-stage
decisions that correctly determines system reliability.

III. MAXIMALLY ROBUST ALGORITHM

Clearly, the two problems of RAC and real-time dispatch
are tightly coupled. If the real-time dispatch algorithms are
sub-optimal, more resources may need to be set aside at the
RAC stage. Below, we first consider the real-time dispatch
algorithm. Our goal is to design an “optimal” real-time dis-
patch algorithm regardless of the RAC decision. The notion of
optimality is defined below.

Definition 3: Let Λ = {D| There exists a causal real-time
dispatch algorithm π0 that is robust for the uncertainty set D}.
A causal real-time dispatch algorithm π is said to be maximally
robust if and only if π(D) is robust for all the uncertainty sets
D ∈ Λ.

In other words, if any other algorithm is robust for an
uncertainty set D, then a maximally robust algorithm π must
also be robust for D. Thus, a maximally robust algorithm is
the “most robust” among all algorithms. It turns out that this
problem of determining dynamic control decisions so that the
system states remain in a desired set of trajectories has been
studied by dynamic programming (see section 4.6.2 in [11,
p197]). In order to use the methodology of [11], we can treat
the pair D(1:t) and P(t) as the state of the system at the end
of time t. Then, similar to the “target set” in [11, p197], we
can introduce the notion of “safe-dispatch sets” as follows:

Definition 4: Given an uncertainty set D, a demand history
D(1:t) and a power dispatch decision P(t), a causal real-time
dispatch algorithm π is said to be robust given D(1:t) and
P(t), if and only if for any D(t+ 1:T ) ∈ D[t+1,T ]|D(1:t), the
algorithm π produces dispatch decisions {Pπ

g (t1), t1 > t, g ∈
G} satisfying constraints (4)-(7) for all t1 > t. (Note that (4)-
(7) are defined for the entire range of t, but here Pπ

g (t1) is
only defined for t1 > t.)

Definition 5: Given the demand history D(1:t), the safe
dispatch set F(D(1:t)) at time t is defined as:

F(D(1:t)) = {P(t)|P(t) can balance the demand D(t)

subject to the constraints (4), (6) and (7), and there exists a
causal algorithm π that is robust given D(1:t) and P(t)}.(8)

Intuitively, a maximally-robust algorithm simply needs to
pick a dispatch decision at each time t from the safe-dispatch
set F(D(1:t)). As in [11, p197], this safe-dispatch set can
be generated via backward induction. For ease of exposition,
we use At(D(t)) to denote the set of all dispatch decisions
that balance the net-demand D(t) at time t subject to the
generators’ capacity constraint and the transmission constraint:

At(D(t)) = {P(t)|P(t), D(t) satisfy (4)(6)(7) at time t}.
(9)

Note that At(D(t)) does not include the ramping constraint
(5). At t = T , the safe-dispatch set is simply given by (note
that no ramping constraints need to be considered since T is
the last time-slot):

F(D(1:T )) = AT (D(T )).

For all other t < T , suppose that F(D(1:t+1)) is known for
every possible D(1:t+ 1). Let

ft(A) = {P(t)| There exists P(t+ 1) ∈ A,

such that |Pg(t+ 1)− Pg(t)| ≤ Rg}, (10)

which can be interpreted as the set of dispatch decisions at
time t that can ramp to one dispatch decision in A at time
t+ 1. Then, the induction formula is given by

F(D(1:t)) =

 ∩
D(t+1)

ft(F(D(1:t+ 1)))

∩At(D(t)),

(11)
where the set intersection is taken over all D(t + 1) ∈
Dt+1|D(1:t) (recall that D(1:t+ 1) = [D(1:t), D(t+ 1)]). The
detailed proof of the induction formula (11) is available in
Appendix A. We now summarize the results that can be shown
based on [11, p197]:

Proposition 6: Given the uncertainty set D, there exists a
causal and robust real-time dispatch algorithm if and only if
F(D(1)) ̸= ∅ for all D(1) ∈ D1 , {D(1)|D(1:T ) ∈ D}.

Proof: See Appendix B.

Proposition 7: If F(D(1)) ̸= ∅ for all D(1) ∈ D1, then
any algorithm in the following class is maximally robust:

Step 1: at time slot 1, pick an arbitrary dispatch decision
P (1) ∈ F(D(1));

Step 2: at time slot t > 1, pick an arbitrary dispatch decision
P(t) ∈ F(D(1:t))

∩
C(P(t− 1)), where

C(P(t−1)) = {P(t) : |Pg(t)−Pg(t−1)| ≤ Rg, g ∈ G} (12)

is the set of dispatch decisions that can be reached at time t
from the dispatch decision P(t− 1) at time t− 1.

Proof: See Appendix C.

According to Propositions 6 and 7, once we know how
to calculate the safe-dispatch set F(D(1:t)), both the RAC
decision (Proposition 6) and the real-time dispatch decision
(Proposition 7) are solved. However, in general the complexity
of the backward induction (11) is high because there exist
uncountably many demand sequences. Thus, the backward
induction is useful only for theoretical analysis. In the next
section, we will develop new algorithms for generating the
safe-dispatch sets (or subsets) that are more computationally
efficient.



IV. COMPUTATIONALLY-EFFICIENT ALGORITHMS

In this section, we study how to compute F(D(1:t)) in
polynomial time with respect to both T and Nb. Through-
out this section, we will fix t and D(1:t), and will derive
F(D(1:t)). We first study a simpler case where there are
only one bus and two generators. In this case, we will show
that F(D(1:t)) can be exactly characterized by a polynomial
number of linear constraints. We then study the general case
with multiple buses and multiple generators, and proposed
a new idea of virtual demand splitting (VDS), which can
effectively compute a suitable subset of the safe dispatch set.

A. One Slow Generator + One Fast Generator

We first consider a one-bus two-generator case. We assume
that the first generator is a slow generator, with time-varying
generation limits [P vmin

slow (t), P vmax
slow (t)], and time-varying up-

ramping rate Rvup
slow(t) and down-ramping rate Rvdown

slow (t). Thus,
the dispatched power level P v

slow(t) for this slow generator must
satisfy

0 ≤ P vmin
slow (t) ≤ P v

slow(t) ≤ Pmax
slow(t),

−Rvdown
slow (t) ≤ P v

slow(t+ 1)− P v
slow(t) ≤ Rvup

slow(t).

The second generator is a fast generator. We assume that
this fast generator can generate both negative and positive
power in the range [−rv-

fast(t), r
v+
fast(t)], and there is no ramping

constraint, i.e., this generator can ramp from any dispatch
decision in [−rv-

fast(t), r
v+
fast(t)] to any dispatch decision in

[−rv-
fast(t + 1), rv+

fast(t + 1)]. Then, the dispatched power level
P v

fast(t) of the fast generator must satisfy

−rv-
fast(t) ≤ P v

fast(t) ≤ rv+
fast(t).

Remark 1: It may seem unnatural to allow for negative
power in the above constraints: this is to allow more flexibility
in the generalization to the multi-bus multi-generator case in
Section IV-B. Clearly, if one does not wish to allow negative
power, the lower bound rv-

fast(t) can be set to 0. Hence, the
above formulation is more general. Besides, this two-generator
formulation also includes the single-generator case as a special
case. Specifically, if we set both rv-

fast(t) and rv+
fast(t) to be 0, then

this two-generator formulation reduces to a single-generator
formulation.

Remark 2: Readers may notice that there is always a “v”
in the superscript of the notations in this section. The reason is
that in the future multi-bus multi-generator case, we will create
virtual generator pairs, each of which corresponds to a pair of
slow generator and fast generator as in this subsection. Thus,
we add a superscript “v” (meaning “virtual”) to distinguish
virtual generators from physical generators.

Since there is only one bus, D(t) becomes a scalar. Thus,
if we know the dispatch level P v

slow(t) of the slow generator,
we can immediately obtain the dispatch level P v

fast(t) of the
fast generator through P v

fast(t) = D(t) − P v
slow(t). Hence, in

the following discussion, we will only focus on the dispatch
level P v

slow(t) of the slow generator. We first assume that
F(D(1:t)) ̸= ∅, and derive some necessary conditions that the
generator parameters (P vmin

slow (t), P vmax
slow (t), Rvdown

slow (t), Rvup
slow(t),

rv-
fast(t), rv+

fast(t)) need to satisfy. We then show that these
conditions are also sufficient. As a result, we will obtain a
close-form formula for F(D(1:t)).

1) Necessary Conditions for F(D(1:t)) ̸= ∅: The first set
of necessary conditions are quite obvious and they simply
check whether the lower/upper limits of the slow generator
are consistent with its ramping speed.

Lemma 8: (Parameter-checking condition) Given D(1:t),
if F(D(1:t)) ̸= ∅, then for any t ≤ t0 ≤ t1, the following
conditions hold:

P vmin
slow (t0)−

t1−1∑
s=t0

Rvdown
slow (s) ≤ P vmax

slow (t1), (13)

P vmax
slow (t0) +

t1−1∑
s=t0

Rvup
slow(s) ≥ P vmin

slow (t1). (14)

Clearly, if (13) is violated, then from any allowed power
level at time t0 (above P vmin

slow (t0)), the slow generator would
have no way to ramp down to an allowed power level at t1
(below P vmax

slow (t1)). Thus, F(D(1:t)) would have been empty.
The necessity of (14) is similar.

Even if conditions in (13) and (14) hold, the slow gen-
erator still may not be able to use all the power levels in
[P vmin

slow (t0), P
vmax
slow (t0)]. For instance, if t0 < t′ and P vmin

slow (t0) <

P vmin
slow (t′)−

∑t′−1
s=t0

Rvup
slow(s), then the slow generator should not

use any power level below P vmin
slow (t′)−

∑t′−1
s=t0

Rvup
slow(s) at time

t0. Otherwise, it will not be able to ramp up to any allowed
power level (above P vmin

slow (t′)) at time t′. Similarly, if t′ < t0
and P vmin

slow (t0) < P vmin
slow (t′)−

∑t0−1
s=t′ R

vdown
slow (s), then from any

allowed power level at t′ (above P vmin
slow (t′)), the slow generator

will never be able to reach below P vmin
slow (t′)−

∑t0−1
s=t′ R

vdown
slow (s)

at time t0. Thus, we can define the “effective lower limit” of
the slow generator at time t0 ≥ t as

P eff-vmin
slow (t0) = max{ max

t0<t′≤T
{P vmin

slow (t′)−
t′−1∑
s=t0

Rvup
slow(s)},

max
t≤t′≤t0

{P vmin
slow (t′)−

t0−1∑
s=t′

Rvdown
slow (s)}}. (15)

Similarly, we can define the “effective upper limit” of the slow
generator at time t0 ≥ t as

P eff-vmax
slow (t0) = min{ min

t0<t′≤T
{P vmax

slow (t′) +
t′−1∑
s=t0

Rvdown
slow (s)},

min
t≤t′≤t0

{P vmax
slow (t′) +

t0−1∑
s=t′

Rvup
slow(s)}}. (16)

Clearly, the power level of the slow generator at time t0 should
be within [P eff-vmin

slow (t0), P
eff-vmax
slow (t0)]. The following necessary

condition is then obvious.

Lemma 9: (Capacity condition) Given D(1:t), if
F(D(1:t)) ̸= ∅, then for any t0 ≥ t, the following
conditions must hold:

min
D(t0)∈Dt0|D(1:t)

{D(t0)} ≥ P eff-vmin
slow (t0)− rv-

fast(t0), (17)

max
D(t0)∈Dt0|D(1:t)

{D(t0)} ≤ P eff-vmax
slow (t0) + rv+

fast(t0). (18)



In other words, no future demand can exceed the combined
limits of the slow and fast generators.

While the above conditions are more obvious, the next
condition is the key to capture the safety requirement in multi-
stage decisions.

Lemma 10: (Load-following condition) Given D(1:t), if
F(D(1:t)) ̸= ∅, then for any t ≤ t0 ≤ min{t1, t2}, the
following condition must hold:

rv+
fast(t1) +

t1−1∑
s=t0

Rvup
slow(s) + rv-

fast(t2) +

t2−1∑
s=t0

Rvdown
slow (s)

≥ max
D(1:t0)∈D[1,t0]|D(1:t)

{
max

D(t1)∈Dt1|D(1:t0)

{D(t1)}−

min
D(t2)∈Dt2|D(1:t0)

{D(t2)}
}
. (19)

Proof: Given any net-demand sequence D(1:t0) ∈
D[1,t0]|D(1:t), consider the dispatch decision (P v

slow(t0),
P v

fast(t0)) at time t0. We need to ensure that for any time
t1 ≥ t0, the maximum demand is reachable. (If not, the safe
dispatch set F(D(1:t)) would have been empty.) Thus, we
have

P v
slow(t0)+

t1−1∑
s=t0

Rvup
slow(s)+rv+

fast(t1) ≥ max
D(t1)∈Dt1|D(1:t0)

{D(t1)}.

Similarly, in order to reach the minimum demand at time t2 ≥
t0, we must have

P v
slow(t0)−

t2−1∑
s=t0

Rvdown
slow (s)− rv-

fast(t2) ≤ min
D(t2)∈Dt2|D(1:t0)

{D(t2)}.

Let

γmin
t1 (D(1:t0)) , max

D(t1)∈Dt1|D(1:t0)

{D(t1)}

−
t1−1∑
s=t0

Rvup
slow(s)− rv+

fast(t1), (20)

and let

γmax
t2 (D(1:t0)) , min

D(t2)∈Dt2|D(1:t0)

{D(t2)}

+

t2−1∑
s=t0

Rvdown
slow (s) + rv-

fast(t2). (21)

Then, we must have

γmin
t1 (D(1:t0)) ≤ P v

slow(t0) ≤ γmax
t2 (D(1:t0)), t1, t2 ≥ t0.

(22)

Substitute γmin
t1 (D(1:t0)) and γmax

t2 (D(1:t0)) by (20) and
(21) in (22) and rearrange the obtained inequality. We can get

rv-
fast(t2) +

t2−1∑
s=t0

Rvdown
slow (s) + rv+

fast(t1) +

t1−1∑
s=t0

Rvup
slow(s)

≥ max
D(t1)∈Dt1|D(1:t0)

{D(t1)} − min
D(t2)∈Dt2|D(1:t0)

{D(t2)},

The above inequality must hold for all possible net-demand
subsequences D(1:t0) ∈ D[1,t0]|D(1:t). We maximize the right-
hand-side of the above inequality over all possible D(1:t0) ∈
D[1,t0]|D(1:t), and the condition (19) then follows.

Remark 3: Note that the proof of Lemma 10 highlights
a key difference between multi-stage and two-stage methods.
Recall that, in the two-stage formulation in Section II-B, one
assumes that the future demand is known at the second stage.
As a result, for two-stage methods, one only need to check that,
for either the maximum future demand at t1 or the minimum
future demand at t2, there exists a power level P v

slow(t0) at
time t0 and a corresponding future dispatch trajectory that can
balance the future demand. However, the two corresponding
power-levels P v

slow(t0) may differ depending on which future
demand one wishes to check. In contrast, in the proof of
Lemma 10, the operating point P v

slow(t0) must be simultane-
ously capable of balancing both future demands. As readers
may recall from the motivating example in Section II-B, this
requirement leads to more restrictive conditions for system
reliability, which is stated above in Lemma 10.

Remark 4: Since the uncertainty set D only consists of
linear constraints (1) and (2), it is easy to see that the terms
“minD(t0)∈Dt0|D(1:t)

{D(t0)}”, “maxD(t0)∈Dt0|D(1:t)
{D(t0)}”

in (17)-(18), and the right-hand-side of (19), are all convex
optimization problems, and thus can be computed efficiently.

2) Sufficiency of Conditions (13)-(14),(17)-(19): While the
necessity of the above conditions (13)-(14),(17)-(19) are easy
to follow, the next result is more surprising and it shows
that these conditions are also sufficient for F(D(1:t)) ̸= ∅.
Establishing this sufficiency is the first main contribution of
our work.

Theorem 11: Given D(1:t), if all the five conditions (13)-
(14),(17)-(19) hold, then the safe dispatch set F(D(1:t)) is not
empty. Further, it can be explicitly expressed as follows:

F(D(1:t)) = {(P v
slow(t), P

v
fast(t))|P v

slow(t) ∈ h(D(1:t)),
P v

slow(t) + P v
fast(t) = D(t)}. (23)

where h(D(1:t)) is an interval computed as follows

h(D(1:t))=
[
max

{
P eff-vmin

slow (t),
T

max
t1=t

γmin
t1 (D(1:t))

}
,

min

{
P eff-vmax

slow (t),
T

min
t1=t

γmax
t1 (D(1:t))

}]
. (24)

Note that the upper and lower limits in h(D(1:t)) are
simply combinations of the limits in (22) and the effective
limits [P eff-vmin

slow (t), P eff-vmax
slow (t)]. Thus, it naturally produces an

outer bound on F(D(1:t)). To show that h(D(1:t)) produces
the exact form of F(D(1:t)) as in (23), we will have to show
that, for any P (t) = (P v

slow(t), P
v
fast(t)) within the right hand

side of (23), we can construct a causal real-time dispatch
algorithm π (like in Prop. 7), such that this algorithm π is
robust given D(1:t) and P (t). The detailed construction is in
the proof of Theorem 11 (see Appendix D).

B. Multiple Buses + Multiple Generators

Part of the reason why the above two-generator case is eas-
ier is because the allowed dispatch level of the slow generator
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Fig. 1. Illustration of the VDS approach

can be captured by a one-dimensional interval. Unfortunately,
this is no longer true when we move to the general case of
multiple generators and multiple buses, which becomes more
difficult. In this subsection, we focus on obtaining a subset
FVDS(D(1:t)) ⊂ F(D(1:t)) for the general case. Then, if
we can show that FVDS(D(1:t)) ̸= ∅, we will immediately
have F(D(1:t)) ̸= ∅. Our basic idea is demand splitting,
i.e., fractions of the future net-demand uncertainty are sent
to the generators according to pre-computed splitting factors.
However, due to the physical constraints of the generators,
assigning a splitting factor for each physical generator will lead
to severely-reduced safe-dispatch sets, an example of which
is shown in Appendix E. This observation thus motivates us
to consider the following idea of virtual demand splitting,
where a splitting factor is assigned to each pair of virtual
slow generator (VSG) and virtual fast generator (VFG). The
corresponding fraction of net-demand uncertainty is then sent
to such a virtual generator pair (VGP). For each VGP, we
can then use the two-generator characterization in Section
IV-A. This pairing of virtual generators is performed using
the concept of VFG pool defined below. Before we describe
the details, we emphasize that such pairing relationships and
the corresponding splitting factors computed by the procedure
below is only used to determine a subset FVDS(D(1:t)) of
the safe-dispatch set F(D(1:t)). They are not used for the
actual dispatch of the generators. Rather, once FVDS(D(1:t)) is
known, the actual dispatch decisions can be done as described
in Section IV-B4 to balance both reliability and economy.

1) Creating VGPs (Virtual Generator Pairs): This part
involves the following steps and parameters (see also Fig. 1).
(i) There is a VFG (Virtual Fast Generator) pool on each
bus b. (ii) Each generator g ∈ Gb on bus b contributes
Rv+

fast,g(t0), t0 ≥ t to the upward direction of the VFG
pool on the bus, and contributes Rv-

fast,g(t0), t0 ≥ t to the
downward direction (see the upper solid arrows in Fig. 1).
Thus, the overall VFG pool is able to ramp from any
point in [−

∑
g∈Gb

Rv-
fast,g(t0),

∑
g∈Gb

Rv+
fast,g(t0)] to any point in

[−
∑

g∈Gb
Rv-

fast,g(t0+1),
∑

g∈Gb
Rv+

fast,g(t0+1)] in one time-slot.
(iii) Each generator g reduces its ramping speed and power
limits to Rvup

slow,g, Rvdown
slow,g , P vmax

slow,g and P vmin
slow,g according to how

much it contributes to the VFG pool. Specifically,

Rvup
slow,g(t0) = Rg −Rv+

fast,g(t0 + 1)−Rv-
fast,g(t0) ≥ 0, (25)

Rvdown
slow,g (t0) = Rg −Rv-

fast,g(t0 + 1)−Rv+
fast,g(t0) ≥ 0, (26)

P vmax
slow,g(t0) = Pmaximum

g −Rv+
fast,g(t0), (27)

P vmin
slow,g(t0) = Pminimum

g +Rv-
fast,g(t0). (28)

These parameters define a remaining generator with reduced
capabilities, which we refer to as the VSG (Virtual Slow
Generator) g. (iv) Each VSG g is then paired with a VFG
with range [−rv-

fast,g(t0), r
v+
fast,g(t0)]. They combined form a VGP

(virtual generator pair). All the VFGs on a bus come from the
same VFG pool on the same bus (see the upper dashed arrows
in Fig. 1). Hence, the total range of the VFGs on a bus cannot
exceed the range of the VFG pool on the same bus, i.e.,∑

g∈Gb

Rv+
fast,g(t0) ≥

∑
g∈Gb

rv+
fast,g(t0), (29)

∑
g∈Gb

Rv-
fast,g(t0) ≥

∑
g∈Gb

rv-
fast,g(t0). (30)

2) Demand Splitting for VGP: For every t0 ≥ t, we
divide the net-demand Db(t0) into two parts, i.e., Db(t0) =
Dmain

b (t0) + (Db(t0) − Dmain
b (t0)), where Dmain

b (t0) =
(max{Db(t0)} + min{Db(t0)})/2 is called the main part of
Db(t0), and (Db(t0)−Dmain

b (t0)) is called the uncertain part.

In order to characterize FVDS(D(1:t)), we assume that
the following dispatch decisions will be carried out in the
future. Specifically, we dispatch4 the two parts of net-demand
separately. For the main part, we dispatch Pmain

VGP,g(t0) amount
of power to each VGP g such that

Nb∑
b=1

Dmain
b (t0) =

Ng∑
g=1

Pmain
VGP,g(t0).

For the uncertain part, we introduce the concept of the splitting
factor η = [ηb,g, b ∈ B, g ∈ G]. For each bus b and each VGP
g, ηb,g is the fraction of the uncertain part of Db(t0) to be
dispatched to the VGP g (see the lower arrows in Fig. 1).
Clearly, we need∑

g∈G

ηb,g = 1, for all b ∈ B.

Thus, each VGP will be allocated
∑

b∈B ηb,g(Db(t0) −
Dmain

b (t0)) amount of demand from the uncertain part of
Db(t0). Hence, the total demand Dg(t0) allocated to the VGP
g at time slot t is

Dg(t0) = Pmain
VGP,g(t0) +

∑
b∈B

ηb,g(Db(t0)−Dmain
b (t0)). (31)

Finally, the quantities {Dg(t0), g ∈ G, t0 = t, ..., T} need
to satisfy the following transmission limits (TL):

max
D(t0)∈Dt0|D(1:t)

Nb∑
b=1

Sl,b

(
Db(t0)−

∑
g∈Gb

Dg(t0)

)
≤ TLl (32)

4As we discussed earlier, although we use the word “dispatch”, the
corresponding equations are only used to compute the subset FVDS(D(1:t)).
They are not used to compute the actual dispatch decision in real time.



min
D(t0)∈Dt0|D(1:t)

Nb∑
b=1

Sl,b

(
Db(t0)−

∑
g∈Gb

Dg(t0)

)
≥ −TLl

(33)

Remark 5: Note that both (32) and (33) are convex con-
straints. Take (32) for example. For each value of D(t0),∑Nb

b=1 Sl,b(Db(t0) −
∑

g∈Gb
Dg(t0)) is a linear function of

P̄ v
g (t0) and ηb,g. Then, the left-hand-side is a maximum of

linear functions, and hence is convex [16]. Similarly, (33) is
also convex.

3) Deriving FVDS(D(1:t)): We are now ready to give the
detailed definition of FVDS(D(1:t)).

The set of variables Z(t) = {ηb,g, Rv-
fast,g(t0), Rv+

fast,g(t0),
rv-

fast,g(t0), rv+
fast,g(t0), Pmain

VGP,g(t0), t0 ≥ t, b ∈ B, g ∈ G} are
under our control. Each Z(t) gives a parameterization of VGP
g for each g and its demand uncertainty. We can then apply
Theorem 11 to obtain a set of constraints under which the
safe dispatch set for each VGP g, denoted by FZ(t)

g (D(1:t)),
is not empty. Note that any set of safe dispatch decisions
(P v

slow,g(t), P
v
fast,g(t)) ∈ FZ(t)

g (D(1:t)) for all VGPs g, can
be mapped to dispatch decisions P(t) on real generators that
satisfy the following constraints:

−Rv-
fast,g(t) ≤ Pg(t)− P v

slow,g(t) ≤ Rv+
fast,g(t), (34)∑

g∈Gb

Pg(t) =
∑
g∈Gb

(P v
slow,g(t) + P v

fast,g(t)). (35)

In (34), Pg(t)−P v
slow,g(t) is the amount of power generated by

the VFG contributed from the physical generator g, and thus
must be within the range [−Rv-

fast,g(t), R
v+
fast,g(t)]. In (35), the

total power generated by the VGPs at one bus must be equal
to the total power generated by the physical generators at the
same bus. Finally, any dispatch decision P(t) = {Pg(t), g ∈
G} obtained in this way will also balance the net-demand.
Hence, we define FVDS(D(1:t)) as follows:

FVDS(D(1:t)) = {P(t)|There exists Z(t) satisfying
all admissible constraints in Sec. IV-B1 and IV-B2
including (25)-(30) and (32)-(33), and there exists
(P v

slow,g(t), P
v
fast,g(t)) ∈ FZ(t)

g (D(1:t)) ̸= ∅, g ∈ G,
satisfying (34) and (35)} (36)

Clearly, FVDS(D(1:t)) is a subset of F(D(1:t)). Further, it
consists of a polynomial number of convex constraints.

Remark 6: We note that our idea of demand splitting
shares some similarity to the choice of affine policies in the
multi-stage robust-optimization approach in [10]. However,
there are two key differences. First, we assign a splitting factor
for each pair of VSG and VFG. This is possible because we
have already derived in Section IV-A the precise conditions
for the safe-dispatch sets given such a pair of generators.
In contrast, [10] assigns a splitting factor for each physical
generator. Note that the latter can be viewed as a special case
of the former by setting all the VFGs to zero. As we argue
earlier (and see details in Appendix E), the additional flexi-
bility by using VGPs will likely enlarge the obtained subset
FVDS(D(1:t)). Second, unlike [10], we do not use the splitting
factors for the actual real-time dispatch. Rather, they are only
used for computing FVDS(D(1:t)). Once FVDS(D(1:t)) is

known, in real-time one can choose any operating point within
this subset, e.g., the one that is most economic. The details are
provided next.

4) Balancing Reliability and Economy: Once we obtain
a subset FVDS(D(1:t)) of the safe-dispatch set, in the RAC
stage we can simply verify system reliability by checking
FVDS(D(1:t)) ̸= ∅ for all D(1) ∈ D1 , {D(1)|D(1:T ) ∈ D}.
Further, in real-time dispatch we can combine with economic
dispatch to obtain the following VDS-ED (Virtual Demand
Splitting-Economic Dispatch) algorithm that balances both
reliability and economy.

1 At time slot 1, pick the dispatch decision P(1) ∈
FVDS(D(1)) that minimizes the generation cost∑

g∈G Costg(Pg(1)) at time 1, where Costg(·) is the
cost function for generator g.

2 At time slot t > 1, pick the dispatch decision P (t) ∈
FVDS(D(1:t))

∩
C(P(t− 1)) that minimizes the

generation cost
∑

g∈G Costg(Pg(t)) at time t, where
C(P(t− 1)) is given by (12).

Algorithm 1: VDS-ED Algorithms

The robustness of the VDS-ED algorithm can be shown
similar to Prop. 7 (see Appendix F for the detailed proof).
To see how the VDS-ED algorithm allows us to balance both
reliability and economy, suppose that the standard real-time ED
(Economic Dispatch), which minimizes the generation cost at
each time t without the constraints from the set FVDS(D(1:t)),
produces a decision that falls within the set FVDS(D(1:t)).
Then, the VDS-ED algorithm will obviously follow the same
dispatch decision as the ED algorithm. On the other hand, if the
decision of the ED algorithm exceeds the set FVDS(D(1:t)),
the VDS-ED will modify the dispatch decision to be within the
set. In this way, the VDS-ED algorithm can be viewed as the
“robustified” version of the standard ED algorithm [17]: it only
intervenes when necessary. As a result, the VDS-ED algorithm
achieves robustness in the worst case, without sacrificing
economy in the average case. We emphasize that this flexibility
is new to the multi-stage robust optimization work in [10],
which requires that real-time decision must follow the affine
policy that are tailored to the worst case. Finally, even though
the set FVDS(D(1:t)) looks quite complicated, it is convex and
can be written as a polynomial number of linear or convex
constraints. Therefore, the optimization problems in VDS-ED
can be effectively solved.

V. SIMULATION

In this section, we present preliminary simulation results
based on the 4-bus system in Fig. 2(a). Although this system
is undoubtedly small, it allows us to illustrate the key ad-
vantage of our proposed approach compared to the two-stage
methods and the standard economic dispatch. (More extensive
simulation results will be reported in our future work.) This
4-bus system has 4 transmission lines, each of which has a
transmission limit of 2500MW . There is load at buses 2 and 3,
and wind supply at bus 3. The demand data and the renewable
energy data are both borrowed from Elia [18], Belgium’s
electricity transmission system operator. Specifically, we split
the load data from 6am to 9am on 01/01/2015 evenly into two



parts, and feed them into buses 2 and 3 (see Fig. 2(b)). The
wind data is also from 6am to 9am on 01/01/2015 (see Fig.
2(c)), and we simply feed it to bus 3. Note that the load data
is more predictable than the wind data. Hence, for simplicity,
we assume that the exact values of the load are known at the
RAC stage, and thus the uncertainty all comes from the wind
energy. The uncertainty set of the wind is modeled according
to (1) and (2). Specifically, the upper bound and the lower
bound are shown in Fig. 2(c), and the maximum variation
∆up

w (∆t) = ∆up
w (t, t+∆t) and ∆down

w (∆t) = ∆down
w (t, t+∆t)

of wind (here we assume that the maximum variation only
depends on the time difference) is shown in Fig. 2(d).

This system has fossil-fueled generators at buses 1 and 4.
We use 4 types of fossil-fueled generators in our simulation,
which are listed in Table I. In our 4-bus system, there are 2
type-A generators, 3 type-B generators, and 7 type-D gener-
ators at bus 1, and there are 2 type-B generators, 5 type-C
generators, and 6 type-D generators at bus 4.

TABLE I. LISTS OF FOSSIL-FUELED GENERATORS

Type Generator Limits Ramping Rate Price
A 600-1200MW 30MW/min 15$/MWh
B 420-600MW 4MW/min 10$/MWh
C 300-900MW 30MW/min 15$/MWh
D 0-200MW 100MW/min 30$/MWh

We use the VDS approach at the RAC stage to verify power
system safety under different penetration levels of wind energy
(i.e., by checking whether FVDS(D(1:t)) ̸= ∅ for all D(1) ∈
D1 = {D(1)|D(1:T ) ∈ D}). We then compare the real-time
dispatch of both the VDS-ED algorithm and the standard ED
algorithm. (The ED algorithm, which is commonly used by
the ISOs [1], picks a P (t) satisfying (4)-(7) that minimizes
the total power-generation cost at each time t.) Specifically,
we scale up the wind energy (together with its bounds and
maximum variation) by a scaling factor ranging from 1 to 2.5,
and summarize the results in Table II. We can see that, as long
as the system is safe under VDS in the RAC stage (the first
row), the VDS-ED algorithm can also ensure system safety
in real time (the second row). In contrast, if the standard ED
algorithm is used for real-time dispatch, the system can be
unsafe at high wind penetration levels (the third row), even
though it could be safe when VDS-ED is used.

TABLE II. SAFETY CHECK AND REAL TIME DISPATCH (“1” MEANS
SAFE)

scaling factor 1 1.4 1.8 1.9 2.1 2.2 2.3 2.6
VDS-RAC 1 1 1 1 1 1 0 0
VDS-ED 1 1 1 1 1 1 0 0

ED 1 1 1 0 0 0 0 0
Two-Stage 1 1 1 1 1 1 1 1

We also compare with the two-stage formulation in Section
II-B for checking system safety. As readers can see from the
fourth row of Table II, even when the scaling factor is as large
as 2.6, the two-stage formulation still declares that the system
is safe. However, as we discussed in Section II-B, in practice
one cannot use the dispatch decisions produced by such a two-
stage formulation. If we just used standard ED algorithm, the
system would be unsafe once the scaling factor is beyond 1.8.
Even if we used the VDS-ED algorithm, the system would still
be unsafe for scaling factors above 2.2. Between 2.2 and 2.6,

we do not know whether there exist causal real-time dispatch
algorithms that can be robust at the corresponding levels of
uncertainty (because the VDS-ED algorithm is based on a
subset of the true safe-dispatch set). Nonetheless, this example
illustrates that the two-stage formulations alone can easily
lead to incorrect conclusions on system safety. In contrast,
our proposed VDS approach produces consistent and correct
conclusions for both the real-time and RAC stages.

We also compare the total generation cost (i.e., the summa-
tion of the cost at all times) between the VDS-ED algorithm
and the standard ED algorithm. We can see from Table III
that, when the ED algorithm is safe, which is the case when
the scaling factor is 1, 1.4 and 1.8, our VDS-ED achieves the
same cost. The reason is that, if the ED decision is within
the safe dispatch set computed from the VDS approach, our
VDS-ED algorithm will follow the same dispatch decision.
Only when the ED decision is outside the safety set, our
VDS-ED algorithm will modify the ED decision to another
decision within the safety set, which occurs when the scaling
factor is 1.9. (A more detailed analysis based on simulation
data is provided in Appendix G.) Based on this simulation, we
can see that the VDS-ED algorithm achieves a higher level of
robustness than the standard ED algorithm, without sacrificing
much economy.

TABLE III. TOTAL COST COMPARISON

scaling factor 1 1.4 1.8 1.9
VDS-ED 234320$ 218255$ 204928$ 201760$

ED 234320$ 218255$ 204928$ Inf

VI. CONCLUSION

We study online multi-stage decisions to ensure grid safety
under high renewable uncertainty. Using the concept of safe
dispatch sets, we first construct a class of maximally robust
algorithms for real-time dispatch. Further, the non-emptiness
of the safe dispatch sets also provides a natural condition
for verifying grid safety at the RAC stage. Unfortunately,
computing such safe-dispatch sets is in general very difficult.
We then develop efficient methods to exactly characterize the
safe-dispatch set for the two-generator case and compute a
suitable subset of the safe-dispatch set in the general case. Our
simulation results show that the resulting VDS-ED algorithm
outperforms the standard real-time economic dispatch algo-
rithm in terms of robustness, without sacrificing economy. For
future work, we will perform more extensive experiments for
larger settings, such as the IEEE power system test cases [19].
Further, we will study how to integrate the safety condition at
the RAC stage with unit-commitment to determine the most
suitable set of resources that should be set aside in advance.
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(a) Topology of the 4-bus system.
(“L” stands for “load”, “W” stands
for “wind generators”, and “G” s-
tands for “fossil-fueled generators”.

6:00am 7:00am 8:00am 9:00am
3500

3550

3600

3650

3700

Time

Lo
ad

 (
M

W
)

 

 

Load at Bus 2
Load at Bus 3

(b) Load at bus 2 and bus 3. Data are
obtained from Elia load from 6am to
9am on 01/01/2015.

6:00am 7:00am 8:00am 9:00am
600

800

1000

1200

1400

1600

Time

W
in

d 
P

ow
er

 (
M

W
)

 

 

Real−time wind power
Upper Bound
Lower Bound

(c) Renewable energy and its up-
per/lower bounds. Data are obtained
from Elia wind from 6am to 9am on
01/01/2015.

0 1 hour 2 hours 3 hours
−800

−400

0

400

800

Time difference ∆t

W
in

d 
P

ow
er

 
V

ar
ia

tio
n 

(M
W

)

 

 

∆
w
up(∆t)

∆
w
down(∆t)

(d) The maximum variation of
Renewable energy ∆

up
w (∆t) and

∆down
w (∆t), computed based on a

one-month trace in Dec. 2014.

Fig. 2. Simulation data: (a) topology; (b) load; (c) wind and its range; (d) maximum variation of wind.

[6] Q. P. Zheng, J. Wang, P. M. Pardalos, and Y. Guan, “A decomposition
approach to the two-stage stochastic unit commitment problem,” Annals
of Operations Research, November 2013.

[7] P. P. Varaiya, F. F. Wu, and J. W. Bialek, “Smart Operation of Smart
Grid: Risk-Limiting Dispatch,” Proceedings of the IEEE, vol. 99, no. 1,
pp. 40–57, 2011.

[8] D. Bertsimas, E. Litvinov, X. A. Sun, J. Zhao, and T. Zheng, “Adap-
tive robust optimization for the security constrained unit commitment
problem,” IEEE Trans. on Power Systems, vol. 28, no. 1, 2013.

[9] C. Zhao and Y. Guan, “Unified stochastic and robust unit commitment,”
IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3353–3361,
2013.

[10] A. Lorca, A. Sun, E. Litvinov, and T. Zheng, “Multistage Adaptive
Robust Optimization for the Unit Commitment Problemj,” Available at
http://www2.isye.gatech.edu/%7exsun84/publications/, 2014.

[11] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific Belmont, MA, 2007, vol. 1.

[12] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource Allocation and
Cross-Layer Control in Wireless Networks,” Foundations and Trends in
Networking, vol. 1, no. 1, pp. 1–144, 2006.

[13] D. Bertsimas, D. B. Brown, and C. Caramanis, “Theory and applications
of Robust Optimization,” SIAM review, vol. 53, no. 3, 2011.

[14] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. Cambridge University Press, 2005.

[15] A. J. Wood and B. F. Wollenberg, Power generation operation and
control. Wiley-Interscience, 1996.

[16] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[17] S. Zhao, X. Lin, and M. Chen, “Peak-Minimizing Online EV Charging:
Price of Uncertainty and Algorithm Robustification,” in IEEE INFO-
COM, Hong Kong, China, April 2015.

[18] http://www.elia.be/en/grid-data/.
[19] https://www.ee.washington.edu/research/pstca/.

APPENDIX A
PROOF OF EQUATION (11)

Proof: In order to prove Equation (11), we first show that

F(D(1:t)) ⊆

 ∩
D(t+1)

ft(F(D(1:t+ 1)))

∩At(D(t)).

(37)

Consider an arbitrary dispatch decision P(t) ∈ F(D(1:t)).
Then, there exists an algorithm π that is robust given D(1:t)
and P(t). This indicates that for any D(t+1) ∈ Dt+1|D(1:t), if
the dispatch decision at time t+1 is Pπ(t+1), the algorithm
π will also be robust given D(1:t+1) and Pπ(t+1). Hence,
Pπ(t+ 1) ∈ F(D(1:t+ 1)). According to the definition (10)

of the function ft(·), we then have

P(t) ∈ ft(F(D(1:t+ 1))) (38)

Note that (38) holds for all D(t+1) ∈ Dt+1|D(1:t), and P(t) ∈
At(D(t)) according to (8). Therefore,

P(t) ∈

 ∩
D(t+1)

ft(F(D(1:t+ 1)))

∩At(D(t)).

Thus, (37) holds.

We then show that

F(D(1:t)) ⊇

 ∩
D(t+1)

ft(F(D(1:t+ 1)))

∩At(D(t)).

(39)
We only need to show that for any

P(t) ∈

 ∩
D(t+1)

ft(F(D(1:t+ 1)))

∩At(D(t)),

there exists a causal algorithm π that is robust given D(1:t)
and P(t).

Note that P(t) ∈ ft(F(D(1:t + 1))) for all D(t +
1) ∈ Dt+1|D(1:t). Hence, for any D(t + 1) ∈ Dt+1|D(1:t),
there exists a dispatch decision PD(t+1)(t + 1) such that
|PD(t+1)

g (t + 1) − Pg(t)| ≤ Rg for any g ∈ G, and there
exists an algorithm, denoted by πD(t+1), that is robust given
D(1:t+1) and PD(t+1)(t+1). We then construct an algorithm
π as follows:

• At time t+1, based on D(t+1), the algorithm π set
its dispatch as PD(t+1)(t+ 1);

• After time t+1, the algorithm π uses the same dispatch
as the algorithm πD(t+1).

It is easy to check that π is robust given D(1:t) and P(t). Note
that P(t) is also in At(D(t)). Then, according to Definition 5,
we must have P(t) ∈ F(D(1:t)). Equation (39) then follows.

Combining (37) and (39), we complete the proof.



APPENDIX B
PROOF OF PROPOSITION 6

Proof: Necessity: Let π be a causal real-time dispatch
algorithm that is robust for the uncertainty set D. Let Pπ(1) be
the dispatch decision at time-slot 1 under the algorithm π that
balances the demand D(1) ∈ D1. Obviously, this algorithm
π is robust given D(1) and Pπ(1). Thus, Pπ(1) ∈ F(D(1)),
which indicates that F(D(1)) is not empty for all D(1) ∈ D1.

Sufficiency: Given F(D(1)) ̸= ∅ for all D(1) ∈ D1, we
only need to construct a causal algorithm π that is robust for
the uncertainty set D. Specifically,

(i) at time 1, based on the demand D(1), this algorithm π
picks an arbitrary dispatch decision P (D(1)) from F(D(1)).

Based on Definition 5, we know that there must exist a
causal real-time dispatch algorithm πD(1) that is robust given
D(1) and P (D(1)). Then,

(ii) after time 1, the algorithm π simply follows the
algorithm πD(1).

Based on the above construction of the algorithm π, it is
easy to see that the algorithm π is robust for the uncertainty
set D.

APPENDIX C
PROOF OF PROPOSITION 7

In order to prove Proposition 7, we only need to
show that any algorithm defined in Proposition 7 can pro-
duce safe dispatch decisions for any demand sequence
D(1:T ) ∈ D. Specifically, we need to show that F(D(1))
and F(D(1:t))

∩
C(P(t− 1)), t = 2, ..., T are all nonempty.

Proof: We have assumed that F(D(1)) is not empty, then
the algorithm defined in Proposition 7 can give a valid dispatch
decision at time 1. Next, we prove by induction. Assume that
the algorithm defined in Proposition 7 can pick a valid dispatch
decision at time t − 1. We will show F(D(1:t))

∩
C(P(t −

1)) ̸= ∅.

Note that P(t − 1) must be in F(D(1:t − 1)). Based on
the induction formula (11), it is easy to see that P(t − 1) ∈
ft(F(D(1:t))). Then, by definition (10) of ft(·), there must
exist P(t) ∈ F(D(1:t)) such that |Pg(t) − Pg(t − 1)| ≤
Rg . Hence, P(t) ∈ F(D(1:t))

∩
C(P(t − 1)), and thus

F(D(1:t))
∩
C(P(t− 1)) is nonempty.

Based on Proposition 6, whenever there exists a causal and
robust real-time dispatch algorithm for the uncertainty set D,
F(D(1)) will be nonempty for all D(1) ∈ D1. The above
analysis implies that whenever F(D(1)) ̸= ∅ for all D(1) ∈
D1, any algorithm defined in Proposition 7 will be robust for
the uncertainty set D. Combining Proposition 6 with the above
analysis, we can then reach the conclusion that any algorithm
defined in Proposition 7 is maximally robust.

APPENDIX D
PROOF OF THEOREM 11

We use I to denote the set on the right-hand-side of (23).
The key in the proof is to construct a causal real-time dispatch
algorithm π that is robust given D(1:t) and starting from any

P(t) = (P v
slow(t), P

v
fast(t)) within the set I . (Note that any

P(t) ∈ I can balance the demand D(t) at time t.)

Consider the following causal real-time dispatch algorithm
π:

Algorithm π: At any time slot t0 > t, pick an arbitrary
dispatch decision P v

slow(t0) ∈ h(D(1:t0))
∩

C(P v
slow(t0 − 1)),

and set P v
fast(t0) = D(t0) − P v

slow(t0). Here, h(D(1:t0)) is
defined similarly to h(D(1:t)) as:

h(D(1:t0))=
[
max

{
P eff-vmin

slow (t0),
T

max
t1=t0

γmin
t1 (D(1:t0))

}
,

min

{
P eff-vmax

slow (t0),
T

min
t1=t0

γmax
t1 (D(1:t0))

}]
;(40)

C(P v
slow(t0−1)) is the set of slow-generator output levels that

can be reached at time t0 from its output P v
slow(t0− 1) at time

t0 − 1, which is defined as follows similar to “C(P(t − 1))”
in (12):

C(P v
slow(t0 − 1)) = {P v

slow(t0) : −Rvdown
slow (t0 − 1) ≤

P v
slow(t0)− P v

slow(t0 − 1) ≤ Rvup
slow(t0 − 1)}. (41)

In order to show that the above algorithm π is ro-
bust given D(1:t) and P(t), we only need to show that
h(D(1:t0))

∩
C(P v

slow(t0 − 1)) is nonempty for each t0 >
t, and that the value of P v

fast(t0) computed by the al-
gorithm π is within the fast generator’s generation limits
[−rv-

fast(t0), r
v+
fast(t0)]. We prove the above statement based on

the following three claims: As long as the conditions (13)-
(14),(17)-(19) hold, we must have

1) h(D(1:t0)) ̸= ∅ for all t0 ≥ t.
2) P v

fast(t0) = D(t0)− P v
slow(t0) ∈ [−rv-

fast(t0), r
v+
fast(t0)].

3) h(D(1:t0))
∩
C(P v

slow(t0 − 1)) ̸= ∅ for all t0 > t.

Note that Claim 1 and Claim 2 hold for t0 ≥ t. If we let
t0 = t, we immediately have I ̸= ∅. In the following three
subsections, we will prove the above three claims.

A. Claim 1

It order to prove that h(D(1:t0)) ̸= ∅, we only need to
prove that, when the conditions (13)-(14),(17)-(19) hold, the
following four inequalities must be true:

1) P eff-vmin
slow (t0) ≤ P eff-vmax

slow (t0); (42)
2) P eff-vmin

slow (t0) ≤ γmax
t2 (D(1:t0)), for all t2 ≥ t0; (43)

3) γmin
t1 (D(1:t0))} ≤ P eff-vmax

slow (t0), for all t1 ≥ t0; (44)

4) γmin
t1 (D(1:t0))} ≤ γmax

t2 (D(1:t0)), for all t1, t2 ≥ t0. (45)

1) Proof of Eqn. (42): We will show that Eqn. (42) is
implied by the conditions (13)-(14). According to (15) and



(16), (42) is equivalent to

max{ max
t0<t′≤T

{P vmin
slow (t′)−

t′−1∑
s=t0

Rvup
slow(s)},

max
t≤t′≤t0

{P vmin
slow (t′)−

t0−1∑
s=t′

Rvdown
slow (s)}}

≤ min{ min
t0<t′≤T

{P vmax
slow (t′) +

t′−1∑
s=t0

Rvdown
slow (s)},

min
t≤t′≤t0

{P vmax
slow (t′) +

t0−1∑
s=t′

Rvup
slow(s)}}. (46)

We first show that

max
t0<t′≤T

{P vmin
slow (t′)−

t′−1∑
s=t0

Rvup
slow(s)}}

≤ min
t0<t′≤T

{P vmax
slow (t′) +

t′−1∑
s=t0

Rvdown
slow (s)}}.

Equivalently, we need to show that for any t0 < t′1, t
′
2 ≤ T ,

the following inequality must hold

P vmin
slow (t′1)−

t′1−1∑
s=t0

Rvup
slow(s) ≤ P vmax

slow (t′2) +

t′2−1∑
s=t0

Rvdown
slow (s).

Note that all the Rvup
slow(·)’s and Rvdown

slow (·)’s are non-negative.
Then, if t′1 ≤ t′2, using Eqn. (13), we have

P vmin
slow (t′1)−

t′1−1∑
s=t0

Rvup
slow(s)

≤ P vmin
slow (t′1) ≤ P vmax

slow (t′2) +

t′2−1∑
s=t′1

Rvdown
slow (s) (Eqn. (13))

≤ P vmax
slow (t′2) +

t′2−1∑
s=t0

Rvdown
slow (s);

if t′1 > t′2, using Eqn. (14), we also have

P vmin
slow (t′1)−

t′1−1∑
s=t0

Rvup
slow(s)

≤ P vmin
slow (t′1)−

t′1−1∑
s=t′2

Rvup
slow(s) ≤ P vmax

slow (t′2) (Eqn. (14))

≤ P vmax
slow (t′2) +

t′2−1∑
s=t0

Rvdown
slow (s).

Using similar arguments, we can also show the following
three inequalities:

max
t0<t′≤T

{P vmin
slow (t′)−

t′−1∑
s=t0

Rvup
slow(s)}

≤ min
t≤t′≤t0

{P vmax
slow (t′) +

t0−1∑
s=t′

Rvup
slow(s)},

max
t≤t′≤t0

{P vmin
slow (t′)−

t0−1∑
s=t′

Rvdown
slow (s)}

≤ min
t0<t′≤T

{P vmax
slow (t′) +

t′−1∑
s=t0

Rvdown
slow (s)},

and

max
t≤t′≤t0

{P vmin
slow (t′)−

t0−1∑
s=t′

Rvdown
slow (s)}

≤ min
t≤t′≤t0

{P vmax
slow (t′) +

t0−1∑
s=t′

Rvup
slow(s)}.

Hence, Eqn. (46) must hold, and thus Eqn. (42) also holds.

2) Proof of Eqn. (43): Before proving Eqn. (43), we first
prove the following lemma:

Lemma 12: For any t ≤ t0 ≤ t1, we must have

P eff-vmin
slow (t0) ≤ P eff-vmin

slow (t1) +

t1−1∑
s=t0

Rvdown
slow (s). (47)

P eff-vmin
slow (t0) ≥ P eff-vmin

slow (t1)−
t1−1∑
s=t0

Rvup
slow(s). (48)

P eff-vmax
slow (t0) ≤ P eff-vmax

slow (t1) +

t1−1∑
s=t0

Rvdown
slow (s). (49)

P eff-vmax
slow (t0) ≥ P eff-vmax

slow (t1)−
t1−1∑
s=t0

Rvup
slow(s). (50)

Proof: Here, we only prove (47). Inequalities (48)-(50)
can be proved similarly. According to (15), the left-hand-side
of (47) is

max{ max
t0<t′≤T

{P vmin
slow (t′)−

t′−1∑
s=t0

Rvup
slow(s)},

max
t≤t′≤t0

{P vmin
slow (t′)−

t0−1∑
s=t′

Rvdown
slow (s)}} (51)

=max{ max
t1<t′≤T

{P vmin
slow (t′)−

t′−1∑
s=t0

Rvup
slow(s)}, max

t0<t′≤t1
{P vmin

slow (t′)

−
t′−1∑
s=t0

Rvup
slow(s)}, max

t≤t′≤t0
{P vmin

slow (t′)−
t0−1∑
s=t′

Rvdown
slow (s)}}



and the right-hand-side of (47) is

max

 max
t1<t′≤T

{P vmin
slow (t′)−

t′−1∑
s=t1

Rvup
slow(s) +

t1−1∑
s=t0

Rvdown
slow (s)} ,

max
t≤t′≤t1

{P vmin
slow (t′)−

t1−1∑
s=t′

Rvdown
slow (s) +

t1−1∑
s=t0

Rvdown
slow (s)}

}
(52)

=max

 max
t1<t′≤T

{P vmin
slow (t′)−

t′−1∑
s=t1

Rvup
slow(s) +

t1−1∑
s=t0

Rvdown
slow (s)} ,

max
t0<t′≤t1

{P vmin
slow (t′) +

t′−1∑
s=t0

Rvdown
slow (s)},

max
t≤t′≤t0

{P vmin
slow (t′)−

t0−1∑
s=t′

Rvdown
slow (s)}

}
,

Comparing (51) and (52), we can easily see that (47) holds.

We are now ready to prove Eqn. (43). Using condition (17),
Eqn. (47) in Lemma 12, and the fact that Dt2|D(1:t0) is a subset
of Dt2|D(1:t), we must have

min
D(t2)∈Dt2|D(1:t0)

{D(t2)}

≥ min
D(t2)∈Dt2|D(1:t)

{D(t2)}

≥ P eff-vmin
slow (t2)− rv-

fast(t2)

≥ P eff-vmin
slow (t0)−

t2−1∑
s=t0

Rvdown
slow (s)− rv-

fast(t2).

Thus,

P eff-vmin
slow (t0)

≤ min
D(t2)∈Dt2|D(1:t0)

{D(t2)}+
t2−1∑
s=t0

Rvdown
slow (s) + rv-

fast(t2)

= γmax
t2 (D(1:t0)).

3) Proof of Eqn. (44): Eqn. (44) can be proved similarly
as Eqn. (43). Specifically, using condition (18), Eqn. (50)
in Lemma 12, and the fact that Dt1|D(1:t0) is a subset of
Dt1|D(1:t), we must have

max
D(t1)∈Dt1|D(1:t0)

{D(t1)}

≤ max
D(t1)∈Dt1|D(1:t)

{D(t1)}

≤ P eff-vmax
slow (t1) + rv+

fast(t1)

≤ P eff-vmax
slow (t0) +

t1−1∑
s=t0

Rvup
slow(s) + rv+

fast(t1).

Thus,

P eff-vmax
slow (t0)

≥ max
D(t1)∈Dt1|D(1:t0)

{D(t1)} −
t1−1∑
s=t0

Rvup
slow(s)− rv+

fast(t1)

= γmin
t1 (D(1:t0)).

4) Proof of Eqn. (45): According to (19), we must have

rv+
fast(t1) +

t1−1∑
s=t0

Rvup
slow(s) + rv-

fast(t2) +

t2−1∑
s=t0

Rvdown
slow (s)

≥ max
D(t1)∈Dt1|D(1:t0)

{D(t1)} − min
D(t2)∈Dt2|D(1:t0)

{D(t2)}.

Rearrange the above inequality, we obtain (45).

B. Claim 2

Since P v
slow(t0) ∈ h(D(1:t0)), we must have that

γmin
t0 (D(1:t0)) ≤ P v

slow(t0) ≤ γmax
t0 (D(1:t0)).

Note that γmin
t0 (D(1:t0)) = D(t0) − rv+

fast(t0) and
γmax
t0 (D(1:t0)) = D(t0) + rv-

fast(t0), we then have
P v

fast(t0) = D(t0)− P v
slow(t0) ∈ [−rv-

fast(t0), r
v+
fast(t0)].

C. Claim 3

In order to show that h(D(1:t0))
∩
C(P v

slow(t0 − 1)) ̸= ∅,
we only need to show that

max

{
P eff-vmin

slow (t0),
T

max
t1=t0

γmin
t1 (D(1:t0))

}
≤ P v

slow(t0 − 1) +Rvup
slow(t0 − 1),

and

min

{
P eff-vmax

slow (t0),
T

min
t1=t0

γmax
t1 (D(1:t0))

}
≥ P v

slow(t0 − 1)−Rvdown
slow (t0 − 1).

Clearly, once we can show that the above two inequalities
hold for all P v

slow(t0−1) ∈ h(D(1:t0−1)), then we must have
h(D(1:t0))

∩
C(P v

slow(t0−1)) ̸= ∅ for that specific P v
slow(t0−

1). To show the above two inequalities, we only need to prove
the following two inequalities:

max

{
P eff-vmin

slow (t0),
T

max
t1=t0

γmin
t1 (D(1:t0))

}
≤ max

{
P eff-vmin

slow (t0 − 1),
T

max
t1=t0−1

γmin
t1 (D(1:t0 − 1))

}
+Rvup

slow(t0 − 1), (53)

and

min

{
P eff-vmax

slow (t0),
T

min
t1=t0

γmax
t1 (D(1:t0))

}
≥ min

{
P eff-vmax

slow (t0 − 1),
T

min
t1=t0−1

γmax
t1 (D(1:t0 − 1))

}
−Rvdown

slow (t0 − 1). (54)

In the following, we only prove (53). Inequality (54) can
be proved similarly. In order to prove (53), we only need to
show that the following two inequalities hold:

P eff-vmin
slow (t0) ≤ P eff-vmin

slow (t0 − 1) +Rvup
slow(t0 − 1), (55)

γmin
t1 (D(1:t0)) ≤ γmin

t1 (D(1:t0 − 1)) +Rvup
slow(t0 − 1),

for all t1 ≥ t0. (56)



To see this, note that based on (55) and (56), we must have,

max

{
P eff-vmin

slow (t0 − 1),
T

max
t1=t0−1

γmin
t1 (D(1:t0 − 1))

}
+Rvup

slow(t0 − 1)

≥ max

{
P eff-vmin

slow (t0 − 1),
T

max
t1=t0

γmin
t1 (D(1:t0 − 1))

}
+Rvup

slow(t0 − 1)

≥ max

{
P eff-vmin

slow (t0),
T

max
t1=t0

γmin
t1 (D(1:t0))

}
,

which is precisely (53). Finally, to show (55) and (56), note
that (55) is a just special case of (48) in Lemma 12. According
to (20), (56) can be proved as follows:

γmin
t1 (D(1:t0))

= max
D(t1)∈Dt1|D(1:t0)

{D(t1)} −
t1−1∑
s=t0

Rvup
slow(s)− rv+

fast(t1)

≤ max
D(t1)∈Dt1|D(1:t0−1)

{D(t1)} −
t1−1∑

s=t0−1

Rvup
slow(s)− rv+

fast(t1)

+Rvup
slow(t0 − 1)

= γmin
t1 (D(1:t0 − 1)) +Rvup

slow(t0 − 1).

This completes the proof.

APPENDIX E
DEMAND SPLITTING IDEA AND ITS SUBOPTIMALITY

In this section, we study a naive implementation of the
demand splitting idea. In this naive demand splitting (NDS)
approach, we divide the “uncertain part” (see Section IV-B2
for the detailed definition) of the net-demand into Ng parts,
each of which corresponds to a certain fraction of the total
uncertainty and is then assigned to a generator. The main
difference between the NDS approach and the VDS approach
is that the NDS approach does not pair each generator with a
virtual fast generator. In fact, the NDS approach can be viewed
as a special case of the VDS approach, where Rv+

fast,g(t) =
Rv-

fast,g(t) = rv+
fast,g(t) = rv-

fast,g(t) = 0. Next, we will show that
this NDS approach can have very poor performance.

We construct an example based on the two-generator
case in Section IV-A. Let P vmin

slow (t) = 0, P vmax
slow (t) =

PM , Rvdown
slow (t) = Rvup

slow(t) = R, rv-
fast(t) = 0, rv+

fast(t) = r be the
generator parameters, where PM , R, r are constants. As for the
net-demand, we assume that 0 ≤ D(t) ≤ DM = PM + r and
|D(t)−D(s)| ≤ a|t− s|+∆, where DM , a,∆ are constants.
The parameters DM , a,∆ determines the uncertainty set D.

We first determine the conditions for D ∈ Λ in the above
scenario. In this case, the constraints (13)-(18) always hold,
and the constraint (19) can be rewritten as follows:

(t1 − t0)R+ (t2 − t0)R+ r

≥ max
D(1:t0)∈D[1,t0]

{
max

D(t1)∈Dt1|D(1:t0)

{D(t1)}−

min
D(t2)∈Dt2|D(1:t0)

{D(t2)}
}

(57)

= min{DM , a(t1 − t0 + t2 − t0) + 2∆}, for all t1, t2 ≥ t0.

In the following, we will only focus on one case, where
a = R, r = 2∆ = 2(n− 1)R,DM = PM + r = nr. It is easy
to verify that this parameter setting satisfies the constraint (57).
Thus, this two-generator system is robust for the uncertainty
set D. We then apply the NDS approach in this parameter
setting, and show that the performance can be very poor.

Specifically, let ηs be the fraction of the uncertain part of
the demand that is assigned to the slow generator. Then, based
on Eqn. (31) in Section IV-B2, the total demand allocated to
the slow generator is

Dslow(t0) = Pmain
slow (t0) + ηs(D(t)−Dmain(t0)).

We need to make sure that this slow generator alone can serve
all possible realizations of the demand Dslow(t0). Consider the
constraint (19) in Theorem 11. Letting t = 0, t0 = t1 = t2−1,
we obtain

R ≥ max
D(1:t0)∈D[1,t0]

{
max

D(t1)∈Dt1|D(1:t0)

{Dslow(t1)}−

min
D(t2)∈Dt2|D(1:t0)

{Dslow(t2)}
}

= Pmain
slow (t0)− Pmain

slow (t0 + 1)− ηs(D
main(t0)

−Dmain(t0 + 1)) + ηs max
D(1:t0)∈D[1,t0]

{
D(t0)−

min
D(t0+1)∈Dt0+1|D(1:t0)

{D(t0 + 1)}
}

= Pmain
slow (t0)− Pmain

slow (t0 + 1)− ηs(D
main(t0)

−Dmain(t0 + 1)) + ηs(a+∆). (58)

In the last step of (58), we have used the parameter setting
that |D(t)−D(s)| ≤ a|t− s|+∆ for any t and s. Similarly,
letting t = 0, t0 = t1 − 1 = t2, we obtain

R ≥ max
D(1:t0)∈D[1,t0]

{
max

D(t1)∈Dt1|D(1:t0)

{Dslow(t1)}−

min
D(t2)∈Dt2|D(1:t0)

{Dslow(t2)}
}

= Pmain
slow (t0 + 1)− Pmain

slow (t0)− ηs(D
main(t0 + 1)

−Dmain(t0)) + ηs max
D(1:t0)∈D[1,t0]

{
−D(t0) +

max
D(t0+1)∈Dt0+1|D(1:t0)

{D(t0 + 1)}
}

= Pmain
slow (t0 + 1)− Pmain

slow (t0)− ηs(D
main(t0 + 1)

−Dmain(t0)) + ηs(a+∆). (59)

Sum up the two inequalities (58) and (59), we obtain

ηs ≤
R

a+∆
=

1

n
. (60)

Similarly, let ηf denote the fraction of the uncertain part of
the demand that is assigned to the fast generator. Then, based
on Eqn. (31) in Section IV-B2, the total demand allocated to
the fast generator is

Dfast(t0) = Pmain
fast (t0) + ηf (D(t0)−Dmain(t0)).

We need to make sure that this fast generator alone can serve
all possible realizations of the demand Dfast(t0). Consider the



constraints (17) and (18) in Theorem 11. Letting t = 0, we
obtain

0− 0 ≤ min
D(t0)∈Dt0

{Dfast(t0)}

= Pmain
fast (t0) + ηf (0−Dmain(t0)), (61)

and

0 + r ≥ max
D(t0)∈Dt0

{Dfast(t0)}

= Pmain
fast (t0) + ηf (DM −Dmain(t0)). (62)

Subtract the inequality (62) by the inequality (61), we
obtain r ≥ ηfDM , and thus,

ηf ≤ r

DM
=

1

n
. (63)

In order for this two-generator system to serve all the
uncertain part of the demand D(t), we need ηs + ηf = 1.
However, based on (60) and (63), ηs+ηf can be much smaller
than 1 if n is large. Recall that this two-generator system is in
fact robust according to (57). This example thus indicates that,
by restricting splitting the demand onto different generators,
the performance can be quite poor.

We highlight the insight in the above example. The slow
generator has large capacity. However, if its ramping rate is
low, we cannot send a large ηs to the slow generator when
the demand changing rate is large. On the contrary, the fast
generator has large ramping rate. However, because of its low
capacity, we cannot send a large ηf either. Intuitively, if we
pair a slow generator with a fast generator, they complement
each other’s constraints, and thus can be robust for a larger
uncertainty set. This observation thus motivates us to consider
demand splitting to paired set of slow+fast generators. Specif-
ically, in the next section, we will propose an improved version
of the demand splitting approach, in which a fast generator and
a slow generator are grouped into a VGP (virtual generator
pair) in order to accommodate a larger fraction of uncertainty.

APPENDIX F
ROBUSTNESS OF THE VDS-ED ALGORITHM

We study the robustness of the VDS-ED algorithm in this
section. Our objective is to prove the following theorem:

Theorem 13: Given an uncertainty set D, suppose that for
any t and demand history D(1:t), FVDS(D(1:t)) ̸= ∅. Then,
the VDS-ED algorithm is robust for the uncertainty set D,
i.e., for any t and any demand history D(1:t), the dispatch
decision P(t) chosen by the VDS-ED algorithm must satisfy
the constraints (4)-(7).

Since P(t) is chosen within the set C(P(t − 1)), the
constraint (5) must be satisfied. Further, the following lemma
states that FVDS(D(1:t)) ⊆ At(D(t)).

Lemma 14: For any t and any demand history D(1:t), we
have FVDS(D(1:t)) ⊆ At(D(t)).

Proof: See Appendix F-A.

Based on the above discussion, if we can choose a P(t)
from the set FVDS(D(1:t)) ∩ C(P(t − 1)), then P(t) must

satisfy the constraints (4)-(7). Hence, in order to show that
the VDS-ED algorithm is robust for the uncertainty set D, we
only need to show that FVDS(D(1)) ̸= ∅ and FVDS(D(1:t))∩
C(P(t− 1)) ̸= ∅ for all t > 1.

FVDS(D(1)) ̸= ∅ holds trivially according to the as-
sumption in Theorem 13. Next, we focus on the proof of
FVDS(D(1:t+ 1)) ∩ C(P(t)) ̸= ∅ for all t ≥ 1.

We have assumed that FVDS(D(1:t)) ̸= ∅. Consider
an arbitrary P(t) ∈ FVDS(D(1:t)). Based on the def-
inition (36) of FVDS(D(1:t)), there must exist Z(t) =
{ηb,g, Rv-

fast,g(t0), Rv+
fast,g(t0), rv-

fast,g(t0), rv+
fast,g(t0), Pmain

VGP,g(t0),
t0 ≥ t, b ∈ B, g ∈ G} satisfying all admissible constraints in
Sec. IV-B1 and IV-B2 including (25)-(30) and (32)-(33), and
there exists (P v

slow,g(t), P
v
fast,g(t)) ∈ FZ(t)

g (D(1:t)) ̸= ∅, g ∈
G,satisfying (34) and (35).

Note that each VGP g can serve all possible realizations of
the net-demand Dg(t+1:T ). Then, given the demand Dg(t+1)
(computed from D(t + 1) using (31)), each VGP can choose
a dispatch decision

(P v
slow,g(t+ 1), P v

fast,g(t+ 1)) ∈ FZ(t)
g (D(1:t+ 1)), (64)

such that −Rvdown
slow,g (t) ≤ P v

slow,g(t+1)−P v
slow,g(t) ≤ Rvup

slow,g(t).
Let P(t + 1) be a physical generator dispatch decision, such
that Pg(t+1) and (P v

slow,g(t+1), P v
fast,g(t+1)) satisfy (34) and

(35). According to (36), we know P(t+ 1) ∈ FVDS(D(1:t+
1)). Further,

Pg(t+ 1)− Pg(t)

= Pg(t+ 1)− P v
slow,g(t+ 1) + P v

slow,g(t+ 1)

−P v
slow,g(t) + P v

slow,g(t)− Pg(t)

≤ Rv+
fast,g(t+ 1) +Rvup

slow,g(t) +Rv-
fast,g(t)

= Rg.

Similarly, we can also prove that Pg(t + 1) − Pg(t) ≥ −Rg.
Therefore, P(t+1) ∈ C(P(t)). As a result FVDS(D(1:t+1))∩
C(P(t)) contains at least P(t+ 1), and thus is not empty.

Since FVDS(D(1:t + 1)) ∩ C(P(t)) ̸= ∅, it is always
possible to pick the most economic dispatch decision in
FVDS(D(1:t + 1)) ∩ C(P(t)) in the VDS-ED algorithm.
Further, since FVDS(D(1:t+1)) ⊆ At+1(D(t+1)) according
to Lemma 14, the most economic dispatch decision chosen
in the VDS-ED algorithm must satisfy the constraints (4)-(7).
This completes the proof of Theorem 13.

A. Proof of Lemma 14

Proof: Consider an arbitrary P(t) ∈ FVDS(D(1:t)). Then,
based on the definition (36) of FVDS(D(1:t)), there must
exist Z(t) = {ηb,g, Rv-

fast,g(t0), R
v+
fast,g(t0), r

v-
fast,g(t0), r

v+
fast,g(t0),

Pmain
VGP,g(t0), t0 ≥ t, b ∈ B, g ∈ G} satisfying all admissible con-

straints in Sec. IV-B1 and IV-B2 including (25)-(30) and (32)-
(33), and there exists (P v

slow,g(t), P
v
fast,g(t)) ∈ FZ(t)

g (D(1:t)) ̸=
∅, g ∈ G,satisfying (34) and (35).

First, let t0 = t in (32) and (33) (note that Dt|D(1:t) only
contains a single demand value D(t)), we obtain∣∣∣∣∣∣

Nb∑
b=1

Sl,b

(
Db(t)−

∑
g∈Gb

Dg(t)

)∣∣∣∣∣∣ ≤ TLl.



Noting that
∑

g∈Gb
Dg(t) =

∑
g∈Gb

(P v
slow,g(t) + P v

fast,g(t)) =∑
g∈Gb

Pg(t) according to (35), we then obtain that P(t)
satisfies constraint (7).

Second, sum up the equation (35) over all b ∈ B, we obtain∑
g∈G

Pg(t) =
∑
b∈B

∑
g∈Gb

Pg(t) =
∑
b∈B

∑
g∈Gb

Dg(t)

=
∑
g∈G

(
Pmain

VGP,g(t) +
∑
b∈B

ηb,g(Db(t)−Dmain
b (t))

)
=

∑
b∈B

Dmain
b (t) +

∑
b∈B

(Db(t)−Dmain
b (t))

∑
g∈G

ηb,g

=
∑
b∈B

Db(t).

Therefore, P(t) satisfies the constraint (6).

Finally, since (P v
slow,g(t), P

v
fast,g(t)) ∈ FZ(t)

g (D(1:t)), we
must have

P vmin
slow,g(t) = P eff-vmin

slow,g (t) ≤ P v
slow,g(t) ≤ P eff-vmax

slow,g (t) ≤ P vmax
slow,g(t).

Then, according to (34), we have

Pg(t) ≤ P v
slow,g(t)+Rv+

fast,g(t) ≤ P vmax
slow,g(t)+Rv+

fast,g(t) = Pmaximum
g ,

and

Pg(t) ≥ P v
slow,g(t)−Rv-

fast,g(t) ≥ P vmin
slow,g(t)−Rv-

fast,g(t) = Pminimum
g .

Hence, P(t) also satisfies the constraint (4).

Recall the definition (9) of At(D(t)), we then have
P(t) ∈ At(D(t)). Since P(t) is chosen arbitrarily from
FVDS(D(1:t)), we must have FVDS(D(1:t)) ⊆ At(D(t)).

APPENDIX G
ADDITIONAL SIMULATION DATA

In Section V, we have demonstrated that the standard ED
algorithm will fail when the scaling factor equals 1.9, but
the VDS-ED algorithm can still ensure system safety. In this
section, we present more detailed simulation data, so that
readers can easily see the dynamics in the system, and how
the VDS-ED algorithm improves the dispatch decisions of the
ED algorithm.

In Table IV, we record all the generators’ outputs before the
ED algorithm fails. (Note that the “*” next to a output level
at 7:45am indicates that the output level reaches the lower
limit of the corresponding generator.) The ED algorithm fails
at 8:00am, when net demand (load minus renewable) drops
from 5130MW (7:45am) to 5007MW (8:00am). In order to
balance the demand at time 8am, those generators that operate
higher than their minimum need to ramp down. Here, based
on the schedule of the ED algorithm at 7:45am, only 3 of
the Type-B generators (those at levels 422MW, 568MW and
600MW) can ramp down. Recall that the ramping rate of the
Type-B generators is 4MW/min. Hence, each Type-B generator
can ramp down by at most 60MW in 15 minutes, if it has not
hit its lower generation limit. Given the dispatch decision at
time 7:45am (Table IV), it is easy to check that the demand
cannot be met at time 8am. Specifically, the generator with
output level 422MW can only ramp down by 2MW, and thus

the total output can ramp down by at most 2 + 60 + 60 =
122MW , which is smaller than total demand drop 5130 −
5007 = 123MW . In summary, even though there may exist
another dispatch decision at 7:45am that could have been safe
for 8:00am (see the dispatch decision at 7:45am of the VDS
algorithm in Table V. There are 3 type-B generators whose
levels are 515MW, 474MW, and 600MW, and thus can ramp
down by at most 60 + 54 + 60 = 174 > 123MW ), the ED
algorithm may choose an unsafe dispatch decision, because it
fails to account for the future uncertainty.

Readers may notice that the energy generation costs of the
ED algorithm and the VDS-ED algorithm are the same at most
time-slots. This indicates that in these time-slots, there happen
to be an economic dispatch decision that is also robust for the
future uncertainty. Due to this reason, the VDS-ED algorithm
often achieves low costs comparable to the ED algorithm.
However, there will be cases when the cost of the VDS-ED
algorithm is higher than that of the ED algorithm at some
time-slots, e.g., 6:45 am. This occurs when none of the most
economic decision is safe for the future. Specifically, from Fig.
2(b) and Fig. 2(c), we can see that the net-demand drops quite
rapidly around 6:45am. In this case, the VDS-ED algorithm
will pick a slightly less economic dispatch decision, in order
to ensure the system safety in the future.



TABLE IV. DISPATCH DECISIONS OF THE STANDARD ED ALGORITHM (SCALING FACTOR: 1.9)

Generators 6:00 am 6:15 am 6:30 am 6:45 am 7:00 am 7:15 am 7:30 am 7:45 am
Type-A #1 (bus 1) 600MW 750MW 715MW 606MW 600MW 600MW 600MW 600MW(*)
Type-A #2 (bus 1) 600MW 600MW 600MW 600MW 600MW 600MW 600MW 600MW(*)
Type-B #1 (bus 1) 600MW 600MW 600MW 600MW 540MW 480MW 420MW 420MW(*)
Type-B #2 (bus 1) 600MW 600MW 600MW 600MW 540MW 480MW 482MW 422MW
Type-B #3 (bus 1) 600MW 600MW 600MW 600MW 540MW 529MW 469MW 420MW(*)
Type-B #1 (bus 4) 600MW 600MW 600MW 600MW 569MW 509MW 569MW 568MW
Type-B #2 (bus 4) 600MW 600MW 600MW 600MW 540MW 600MW 600MW 600MW
Type-C #1 (bus 4) 490MW 300MW 300MW 300MW 300MW 300MW 300MW 300MW(*)
Type-C #2 (bus 4) 300MW 300MW 300MW 300MW 300MW 300MW 300MW 300MW(*)
Type-C #3 (bus 4) 300MW 300MW 300MW 300MW 300MW 300MW 300MW 300MW(*)
Type-C #4 (bus 4) 300MW 300MW 300MW 300MW 300MW 300MW 300MW 300MW(*)
Type-C #5 (bus 4) 300MW 300MW 300MW 300MW 300MW 300MW 300MW 300MW(*)

13 Type-D generators 0 0 0 0 0 0 0 0
Total Demand 5890MW 5850MW 5815MW 5706MW 5429MW 5298MW 5240MW 5130MW

Cost 18339$ 18187$ 18058$ 17646$ 16948$ 16621$ 16475$ 16199$

TABLE V. DISPATCH DECISIONS OF THE VDS-ED ALGORITHM (SCALING FACTOR: 1.9)

Generators 6:00 am 6:15 am 6:30 am 6:45 am 7:00 am 7:15 am 7:30 am 7:45 am 8:00 am 8:15 am 8:30 am 8:45 am
Type-A #1 (bus 1) 600MW 600MW 600MW 600MW 600MW 600MW 600MW 600MW(*) 600MW 600MW 600MW 600MW
Type-A #2 (bus 1) 600MW 600MW 715MW 600MW 600MW 600MW 600MW 600MW(*) 600MW 600MW 600MW 600MW
Type-B #1 (bus 1) 600MW 600MW 600MW 540MW 480MW 480MW 420MW 420MW(*) 420MW 420MW 420MW 420MW
Type-B #2 (bus 1) 600MW 600MW 600MW 600MW 600MW 575MW 575MW 515MW 455MW 420MW 420MW 480MW
Type-B #3 (bus 1) 600MW 600MW 600MW 600MW 540MW 480MW 465MW 474MW 420MW 476MW 467MW 420MW
Type-B #1 (bus 4) 600MW 600MW 600MW 600MW 583MW 583MW 600MW 600MW 540MW 540MW 480MW 480MW
Type-B #2 (bus 4) 600MW 600MW 600MW 586MW 526MW 480MW 480MW 420MW(*) 472MW 428MW 480MW 421MW
Type-C #1 (bus 4) 300MW 450MW 300MW 300MW 300MW 300MW 300MW 300MW(*) 300MW 300MW 300MW 300MW
Type-C #2 (bus 4) 300MW 300MW 400MW 380MW 300MW 300MW 300MW 300MW(*) 300MW 300MW 300MW 300MW
Type-C #3 (bus 4) 300MW 300MW 300MW 300MW 300MW 300MW 300MW 300MW(*) 300MW 300MW 300MW 300MW
Type-C #4 (bus 4) 300MW 300MW 300MW 380MW 300MW 300MW 300MW 300MW(*) 300MW 300MW 300MW 300MW
Type-C #5 (bus 4) 490MW 369MW 315MW 300MW 300MW 300MW 300MW 300MW(*) 300MW 300MW 300MW 300MW

13 Type-D generators 0 0 0 0 0 0 0 0 0 0 0 0
Total Demand 5890MW 5850MW 5815MW 5706MW 5429MW 5298MW 5240MW 5130MW 5007MW 4984MW 4967MW 4921MW

Cost 18339$ 18187$ 18058$ 17739$ 16948$ 16621$ 16475$ 16199$ 15893$ 15835$ 15792$ 15677$


