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Abstract—Reconfigurable data center networks (DCNs) en-
hance traditional architectures with optical circuit switches
(OCSs), enabling dynamic reconfiguration of inter-PoD links, i.e.,
the logical topology. Optimizing this topology is crucial for adapt-
ing to traffic dynamics but is challenging due to its combinatorial
nature. The complexity increases further when demands can be
distributed across multiple paths, requiring joint optimization
of topology and routing. We propose Alternating Topology and
Routing Optimization (ATRO), a unified framework that sup-
ports both one-hop topology optimization (where traffic is routed
via direct paths) and multi-hop joint optimization (where routing is
also optimized). Although these settings differ in constraints, both
are combinatorially hard and challenge solver-based methods.
ATRO addresses both cases efficiently: in the one-hop case, it
guarantees the global optimum via an accelerated binary search;
in the multi-hop case, it alternates between topology and routing
updates, with routing steps optionally accelerated by existing
traffic engineering (TE) methods. ATRO supports warm-starting
and improves solution quality monotonically across iterations.
ATRO remains competitive even when paired with solver-free
TE methods, forming a fully solver-free optimization pipeline
that still outperforms prior approaches in runtime and maximum
link utilization across diverse workloads.

Index Terms—Reconfigurable Data Center Networks, Optical
Circuit Switches, Topology Engineering, Traffic Engineering.

I. INTRODUCTION

The explosive growth of social networks and the rapid
evolution of large language models (LLMs)—which demand
massive GPU clusters—are placing unprecedented pressure
on data center infrastructures [1]. In response, operators are
scaling up their networks and constructing increasingly larger
data centers [2]. To improve scalability and efficiency, many
operators are turning to optical circuit switches (OCSs), which
enable reconfigurable and dynamic logical topologies [3].

Reconfigurable DCNs adapt logical topologies to traffic
patterns via two paradigms: multi-hop and one-hop. Multi-
hop designs, e.g., Jupiter Evolving [4], rely on dynamic
routing over relatively static structures. Conversely, one-hop
designs [5], [6] reconfigure OCSs to directly connect Points
of Delivery (PoDs), often bypassing routing decisions to min-
imize latency [3]. Consequently, topology optimization (TO)
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dominates one-hop settings, while joint topology and routing
optimization (TRO) is vital for multi-hop networks.

These two scenarios correspond to optimization problems
that share the same underlying structure, but differ in deci-
sion variable. Both one-hop and multi-hop settings can be
modeled as Mixed Integer Nonlinear Programming (MINLP)
problems [7], [8]. In the multi-hop case, the joint Topol-
ogy and Routing Optimization problem involves optimizing
both topology and routing variables, leading to approximately
O(N2) integer variables andO(N3) continuous variables for a
network comprising N PoDs. For example, with N = 128, the
problem includes more than 16 thousand integer and 2 million
continuous variables, making it intractable for commercial
solvers. In the one-hop case, the routing is fixed to direct paths,
optimizing only the logical topology. This reduces the problem
to O(N2) integer variables and one continuous variable,
but it remains complex due to combinatorial nature. More
importantly, because one-hop optimization is typically used in
latency-sensitive reconfiguration scenarios, it requires efficient
algorithms that can deliver near-instantaneous solutions.

Prior work has addressed these challenges via relaxation
and heuristic methods. COUDER [7] relaxes the joint problem
into a linear program (LP) and rounds the solution to a
feasible topology, but suffers from rounding errors due to LP
relaxation and incurs high solver overhead, limiting scalability
to large networks. TO-specific methods typically adopt either
maximum-cost flow (MCF) formulations [9] or Birkhoff–von
Neumann (BvN) decomposition-based matching [10], [11],
which improve tractability but offer limited control over global
metrics such as maximum link utilization (MLU). These
limitations highlight the need for a unified, efficient, and
flexible framework that supports both architectural paradigms.

Our key insight is that the core challenge in both TRO and
TO lies in the combinatorial nature of topology decisions,
where integer-valued link allocations must satisfy port and
capacity constraints under given traffic demand. To address
this, we propose two complementary ideas. First, we de-
compose TRO into two coordinated sub-problems: topology
optimization (TO) and routing optimization (RO). This decou-
pling enables an alternating optimization strategy, where TO
is solved under fixed routing and RO under fixed topology.
Second, we observe that the TO subproblem exhibits a useful
monotonicity: increasing the maximum link utilization (MLU)
enlarges the feasible set of link allocations. This property



allows TO to be solved optimally via an efficient binary search,
which significantly outperforms general-purpose solvers in
runtime while preserving exact optimality.

Building on these insights, we propose Alternating Topol-
ogy and Routing Optimization (ATRO), a modular and
scalable framework that alternates between TO and RO to
progressively improve network performance. ATRO guaran-
tees monotonic improvement in MLU and supports warm-
starting from any feasible initialization, including solutions
produced by existing methods such as COUDER [7]. To
implement this framework, we develop the Accelerated Binary
Search Method (ABSM) for TO and adopt Traffic Engineering
(TE) [12]–[18] accelerators for RO. These components allow
ATRO to efficiently support both one-hop and multi-hop
scenarios; notably, when routing is performed using solver-
free TE accelerators, ATRO operates entirely without invoking
any commercial solver.

We extensively evaluate ATRO in both scenarios and find
that it consistently outperforms previous methods in maximum
link utilization (MLU) and runtime, achieving up to 10×
speed-ups while maintaining high solution quality. Its modular
structure, scalability, and practical efficiency make it suitable
for a wide range of deployment scenarios. To facilitate further
research, our code is available at [19].

In summary, this paper makes three primary contributions:
• We propose ATRO, a unified and modular framework for

efficiently solving both topology-only and joint topology-
routing optimization problems in reconfigurable DCNs.

• We develop ABSM, a fast and exact topology optimizer
based on binary search, and integrate TE accelerators for
scalable routing updates.

• We evaluate ATRO on both one-hop and multi-hop sce-
narios, demonstrating superior MLU and significantly
faster runtime compared to prior methods.

II. PROBLEM FORMULATION AND KEY INSIGHT

A. Problem Formulation

Similarly to [7], [8], we consider a reconfigurable DCN with
N P, modeled as a directed graph G = (V,E), where V is
the set of Po and E comprises all potential logical links. Each
PoD i has Ri ports, each of capacity Si, and the capacity
of any logical link (i, j) is Si,j = min(Si, Sj). The traffic
demand from PoD i to PoD j is denoted Di,j . Let ni,j ∈ Z≥0

be the number of logical links from PoD i to j and each PoD
i ∈ V has Ri ports. Similar to Google [4], we assume traffic
is routed via at most two hops. We define a path as a triad
(s, k, d), where s is the source, d is the destination, and k is
either an intermediate relay (if k ̸= d) or the destination itself
(if directly routed). The set of all permissible paths is denoted
P , and for each source-destination pair (i, j), we define the
set of valid relay options as Kij = {k | (i, k, j) ∈ P}. We
introduce fi,j,k to denote the fraction of i → j traffic routed
through node k (with k = j representing direct routing). Our
goal is to jointly optimize the integer-valued logical topology
ni,j and the continuous routing variables fi,j,k to minimize the

maximum link utilization u. The joint topology and routing
optimization (TRO) problem is formulated as Equation (1).

Constraint (1b) limits the total number of logical links per
PoD by available port count. Constraint (1c) enforces link
symmetry, and requires that ni,j ∈ Z≥0, i.e., each logical link
count must be a non-negative integer. Constraints (1d)–(1e)
restrict routing to valid two-hop paths. Constraint (1f) bounds
link load by capacity. While our framework naturally gener-
alizes to longer path-based routing [8], we adopt the two-hop
model for clarity and tractability.

min
fi,j,k, ni,j , u

u (1a)

s.t.
N∑

j=1,j ̸=i

ni,j ≤ Ri, ∀i, (1b)

ni,j = nj,i, ni,j ∈ Z+, ∀i ̸= j, (1c)
fi,j,k ≥ 0, fi,j,k = 0 if k /∈ Kij , ∀i, j, k, (1d)∑
k∈Kij

fi,j,k = 1, ∀i ̸= j, (1e)

N∑
j′=1

fi,j′,jDi,j′ +

N∑
i′=1

fi′,j,iDi′,j ≤ uni,jSi,j , ∀i ̸= j.

(1f)

One-Hop Special Case. In the one-hop case, where all traffic
is routed directly without intermediate relays, the routing
variable fi,j,k becomes fixed (i.e., fi,j,k = 1k=j). Under this
setting, constraints (1d)–(1f) collapse into a single per-link
capacity constraint:

Di,j ≤ u · ni,j · Si,j , ∀i ̸= j.

This yields a topology optimization (TO) problem over {ni,j},
which remains challenging due to its combinatorial nature.

B. Limitations of Relaxation-Based Approaches

The TRO problem defined in (1) is a mixed-integer nonlin-
ear program (MINLP), due to the coupling of integer-valued
topology variables ni,j and continuous routing variables fi,j,k
via bilinear constraints (e.g., u · ni,j). A common approach,
adopted by COUDER [7], is to first linearize the formulation
into a mixed-integer linear program (MILP), then relax it to
an LP, and finally perform heuristic rounding to recover an
integral topology.

However, this three-stage pipeline—MINLP → MILP →
LP + rounding—has two key drawbacks. First, it fails to
capture the combinatorial structure of topology selection, often
producing fractional link allocations that cannot be feasibly
rounded (Fig. 1). Second, even the relaxed LP becomes
intractable at scale, containing millions of variables for large
DCNs. These limitations also apply to simpler one-hop TO
scenarios, where fast and reliable decisions are essential.

C. Key Insight and Theoretical Discussion

We propose ATRO, a scalable and fast framework for TRO,
based on two core insights. First, the TRO problem can
be decomposed into two interacting subproblems—topology
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Fig. 1: Illustration of infeasibility in the rounded TRO solution
produced by COUDER. Assume each PoD has Ri = 4 ports.
Subfigure (b) shows a relaxed LP solution with fractional link
allocations. Subfigure (c) demonstrates an infeasible rounding
outcome where PoD A and B are disconnected. Subfigure (d)
shows a feasible and optimal integer solution.

optimization (TO) and routing optimization (RO)—that are
coupled only through the capacity constraints Equation (1f).
Specifically, given routing decisions {fi,j,k} and demands
Di,j , we define the total load on each logical link (i, j) as:

Ti,j =

N∑
j′=1

fi,j′,jDi,j′ +

N∑
i′=1

fi′,j,iDi′,j . (2)

This representation allows all flow-related constraints in the
original TRO problem to be expressed through the per-link
loads {Ti,j}, thereby decoupling the routing logic from the
topology variables in the capacity constraint (1f). Conversely,
for fixed topologies {ni,j}, the routing problem reduces to
computing {fi,j,k} under fixed capacity constraints. Second,
the TO subproblem exhibits a monotonic feasibility structure:
for fixed {Ti,j}, increasing the utilization threshold u enlarges
the feasible set of integer topologies. This property enables
efficient binary search to identify the optimal u without
requiring general-purpose solvers.
Decomposition Strategy. We alternate between solving the
following subproblems:

(i) Topology Optimization (TO): Given fixed routing {fi,j,k}
and corresponding Ti,j , solve:

min
ni,j , u

u

s.t.
∑
j ̸=i

ni,j ≤ Ri, ni,j = nj,i ∈ Z+,

Ti,j ≤ u · ni,j · Si,j , ∀i ̸= j.

(3)

We exploit monotonicity to perform binary search on u.

(ii) Routing Optimization (RO): Given fixed topology {ni,j}
and link capacities, solve:

min
fi,j,k,u

u

s.t. fi,j,k ≥ 0,
∑

k∈Kij

fi,j,k = 1, ∀i ̸= j,

N∑
j′=1

fi,j′,jDi,j′ +

N∑
i′=1

fi′,j,iDi′,j ≤ uni,jSi,j , ∀i ̸= j.

(4)
Equation (4) is a standard traffic engineering problem that can
be solved using LP solvers or accelerated using TE accelerator.
Theoretical Discussion. ATRO enjoys several desirable prop-
erties that stem from its decomposition-based design and
alternating optimization structure. These include modularity,
convergence guarantees, and robust performance.

• Modular decomposition. ATRO decouples topology and
routing to simplify the joint optimization, allowing each
subproblem to be solved independently via special-
ized techniques. This modularity naturally generalizes to
multi-hop routing: while our TO component optimizes
links based on aggregate loads, the RO component can
seamlessly integrate any standard multi-hop TE algo-
rithm.

• Monotonic objective descent. Each TO update reduces
the utilization threshold u (or leaves it unchanged), and
the subsequent RO step recomputes routing under the up-
dated topology. This guarantees non-increasing objective
values and convergence to a fixed point.

• Synergy and Robustness. ATRO converges to near-
optimal solutions through the synergy of its components:
TO reshapes the global topology while RO mitigates
local congestion. In rare sparse-demand cases, ATRO
may retain links that an exact solver would prune. This
occurs because the routing step lacks an incentive to
drive specific link loads to absolute zero, preventing the
topology step from removing them. While slightly sub-
optimal in link count, this behavior enhances robustness
by maintaining additional path diversity.

We next describe the algorithmic design of ATRO and how
the alternating updates are coordinated.

III. ATRO DESIGN

Building on the decomposition strategy introduced in §II-C,
we now present the design of Alternating Topology and
Routing Optimization (ATRO), a scalable and fast framework
that alternately solves the topology and routing subproblems.

A. Overview

ATRO consists of three coordinated components: TO, RO,
and a Refinement module. The TO Component computes
a logical topology minimizing MLU using an Accelerated
Binary Search Method (ABSM). The RO Component then
determines routing decisions using general traffic engineering
techniques. Between these two, the Refinement Component
opportunistically reallocates unused ports to alleviate link
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Fig. 2: Overview of ATRO’s architecture. The framework
iteratively coordinates three components—TO Component, Re-
finement Component, and RO Component—through shared
intermediate variables.

overloads, improving routing flexibility without increasing
MLU. These modules form an iterative loop: routing informs
topology updates and refinement, which in turn guide routing.
For one-hop cases, ATRO simplifies to a single TO invocation.
Fig. 2 illustrates the architecture.

B. TO Component

The Topology Optimization (TO) subproblem in ATRO is
responsible for determining the logical topology {ni,j} that
minimizes the MLU u, given the current traffic load Ti,j and
the port limits Ri. Formally, TO aims to find the minimum u
such that the total traffic Ti,j can be delivered over a topology
that satisfies port constraints and supports link capacities Si,j .
Since link counts ni,j are required to be integers, this is a
combinatorial problem.

Our approach is based on the observation that for a given
target utilization level u > 0, we can efficiently test whether
a feasible topology exists by constructing a minimal link
allocation that supports the traffic under that u. This leads
to an efficient binary search scheme for solving TO.

We first formalize the feasibility condition that serves as the
backbone of our algorithm in Theorem 1.

Theorem 1 (Feasibility of TO for fixed u). Let u > 0 be a
candidate MLU. Define the number of logical links required
between each PoD pair (i, j) as:

n
(U)
i,j = n

(U)
j,i =

⌈
max

{
Ti,j

u · Si,j
,

Tj,i

u · Sj,i

}⌉
, ∀i ̸= j. (5)

Then u is a feasible solution to the TO subproblem if and only
if ∑

j ̸=i

n
(U)
i,j ≤ Ri, ∀i. (6)

Proof. We prove both sufficiency and necessity.
Sufficiency. According to (5), we know:

n
(U)
i,j ≥

Ti,j

u · Si,j
, ∀i ̸= j, (7)

which implies:
u · n(U)

i,j · Si,j ≥ Ti,j . (8)

We consider the allocation ni,j = n
(U)
i,j . This yields a total

capacity of ni,j · Si,j between PoD i and j, which, by (8),

suffices to carry the traffic Ti,j . If the port constraint in (6)
also holds, then the total number of links at each PoD i does
not exceed its limit Ri, and the resulting topology satisfies all
constraints in (3), making it feasible under u.

Necessity. If u is a feasible solution to the TO subprob-
lem (3) we know that there exists a group of ni,j such that
all constraints in (3) are satisfied by (u, ni,j). Therefore we
have:

ni,j ≥
Ti,j

u · Si,j
, and similarly nj,i ≥

Tj,i

u · Sj,i
. (9)

Due to the symmetry constraint ni,j = nj,i, we have:

ni,j ≥
⌈
max

{
Ti,j

u · Si,j
,

Tj,i

u · Sj,i

}⌉
= n

(U)
i,j . (10)

Therefore, ∑
j ̸=i

n
(U)
i,j ≤

∑
j ̸=i

ni,j ≤ Ri, (11)

which proves the necessity of (6).

Theorem 1 result enables closed-form feasibility checking
for any given u and yields the minimal link allocation n

(U)
i,j

satisfying both capacity and port constraints. Since feasibility
is monotonic in u—i.e., if u is feasible, any u′ > u is
also feasible—binary search can efficiently find the minimum
feasible value. Furthermore, each successful test returns a
topology that allows us to tighten the upper bound: given
n
(U)
i,j from (5), the smallest u supporting the current allocation

satisfies:
u ≥ Ti,j

n
(U)
i,j · Si,j

, ∀i ̸= j. (12)

This yields a refined upper bound on feasible utilization:

ũ = max
i̸=j

{
Ti,j

n
(U)
i,j · Si,j

}
. (13)

Theorem 2. If u is feasible for the TO subproblem, then ũ
computed via (13) is also feasible.

Proof. By definition of n
(U)
i,j and the sufficiency proof of

Theorem 1, we have that if u is feasible, then n
(U)
i,j supports all

traffic. The refinement in (13) ensures that no link utilization
exceeds ũ. Therefore, the same topology n

(U)
i,j remains feasible

under ũ.

According to Theorem 2, we solve the TO subproblem via
a binary search over the utilization threshold u, and accelerate
convergence by refining the upper bound using (13) whenever
feasibility is confirmed. To initialize the search interval, we
start from u = 1 and increment it step by step (e.g., by 1)
until the feasibility condition in Theorem 1 is satisfied; the
first feasible value is recorded as the initial upper bound M .
This adaptive initialization avoids manual tuning and typically
completes in under 5 iterations, with M usually no greater than
5. Once the interval [u, u] = [0,M ] is established, we itera-
tively bisect it to test feasibility at the midpoint. If feasible, the
upper bound is tightened to the implied minimum utilization ũ



Algorithm 1 Accelerated Binary Search Method (ABSM)

Require: Traffic matrix Ti,j , link capacities Si,j , port limits
Ri, threshold ε

Ensure: Optimal link allocation ni,j and MLU u
1: Initialize bounds: u← 0, u←M
2: while u− u > ε do
3: u← (u+ u)/2

4: Compute n
(U)
i,j using Eq. (5)

5: if
∑

j ̸=i n
(U)
i,j ≤ Ri ∀i then

6: ũ← maxi̸=j
Ti,j

n
(U)
i,j ·Si,j

7: u← ũ
8: else
9: u← u

10: end if
11: end while
12: return u, {n(U)

i,j }

computed from the current link allocation; otherwise, the lower
bound is raised. This dynamic tightening is what accelerates
the binary search. The full process is outlined in Algorithm 1.
Complexity. Given the upper bound M and convergence
threshold ε, ABSM performs at most O(log2(M/ε)) itera-
tions. Each iteration consists of simple element-wise opera-
tions—vectorized division, max, and summation—over N×N
matrices. These operations are highly parallelizable and ex-
ecute in near-constant time on modern hardware. Thus, the
total runtime is dominated by O(log(M/ε)) lightweight steps,
ensuring excellent scalability even for large DCN.

C. RO Component

The routing optimization (RO) subproblem is a standard
traffic engineering (TE) task under fixed topology. It can be
directly solved via linear programming (LP); however, LP
solvers often incur high computational cost at large scale. To
enhance scalability, we adopt recent TE accelerators that sub-
stantially reduce runtime without sacrificing solution quality.
Learning-based TE accelerators. Deep learning methods
such as Figret [16] and DOTE [18] achieve fast inference but
are typically limited to fixed logical topologies. More recent
techniques, including FNC [14], RedTE [20], and HARP [13],
have extended this capability to partially variable topologies,
offering potential integration into hybrid systems.
Decomposition-based TE accelerators. These approaches
partition the TE problem into tractable subproblems that can
be solved efficiently in sequence or parallel. Notable examples
include POP [12], LP-top [17], and SSDO [15]. Among them,
SSDO offers a compelling balance of speed and quality. It
is solver-free, supports warm-start from previous solutions,
and delivers near-optimal results, making it well-suited for
integration into ATRO.
ATRO Integration. While ATRO is compatible with any TE
algorithm, we adopt SSDO in all subsequent experiments due
to its efficiency and natural alignment with our alternating
framework. The RO module remains modular and can readily

integrate more advanced or domain-specific TE methods as
they become available.

D. Refinement Component

ATRO converges to a fixed-point solution that satisfies two
conditions: (1) given the current topology, no routing update
can further reduce the MLU, and (2) given the current routing,
no topology adjustment can further reduce the MLU without
violating port constraints. While such a solution is both feasi-
ble and stable, it may still be suboptimal. This is because the
topology optimization (TO) subproblem often admits multiple
distinct optimal solutions that yield the same MLU. However,
some of these topologies may severely constrain the routing
optimization (RO) subproblem by limiting path diversity and
underutilizing available network capacity, thereby reducing its
ability to distribute traffic effectively.

To address this, we introduce a lightweight refinement
mechanism that selectively increases routing flexibility. The
key idea is to identify high-load logical links and augment
them with additional connections where possible, provided
both endpoints have idle ports. Fig. 3 illustrates this in a 3-PoD
example. In the initial topology (Fig. 3b), PoD A connects to
both B and C with one link each and routes traffic directly. Due
to port limits, only one extra link can be added, and neither
A–B nor A–C improves the MLU under fixed routing, leading
to a local optimum. The refinement step adds links between
A–C and B–C (Fig. 3c), which unlocks better routing options
(Fig. 3d) by relaying through PoD C, reducing MLU from 0.2
to 0.15. This strategy preserves feasibility while expanding the
solution space for subsequent routing updates.

The refinement procedure is detailed in Algorithm 2. It
computes the current link utilization, ranks PoD pairs by
descending utilization, and iteratively adds links where both
sides have residual port capacity. Importantly, this process
does not alter existing traffic allocations or exceed port limits.
It is applied immediately after each TO update, preserving
feasibility while strategically improving routing flexibility. In
practice, this helps ATRO escape local optima and achieve
more balanced traffic distributions.

E. ATRO Algorithm Summary

ATRO proceeds in an iterative loop with three modular
components—TO, Refinement, and RO—each addressing a
distinct aspect of the joint optimization. Starting from an
initial traffic load estimate, the TO component solves for a
feasible topology; the Refinement step reallocates unused ports
to improve balance; and the RO component computes optimal
routing under the current topology. The procedure repeats
until convergence, with each step maintaining feasibility and
improving MLU.

ATRO presents numerous practical advantages.
• Any-time usability. Every intermediate solution remains

feasible, allowing early termination with valid topology
and routing, adaptable to varying run-time budgets.

• Warm-start and hybrid integration. ATRO supports
initialization from arbitrary feasible states, and can be
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Algorithm 2 Traffic-Aware Topology Refinement (Refine)

Require: Topology matrix ni,j , Traffic load Ti,j , link capac-
ities Si,j , port limits Ri

Ensure: Refined topology ni,j

1: Compute used ports: Rc[i]←
∑

j ̸=i ni,j

2: Compute remaining ports: Rremain[i]← Ri −Rc[i]
3: Compute utilization: ui,j ← Ti,j/Si,j

4: Let SortedPairs← PoD pairs (i, j) sorted by ui,j in
descending order

5: for each (i, j) ∈ SortedPairs do
6: if i = j or Rremain[i] = 0 or Rremain[j] = 0 then
7: continue
8: end if
9: ∆← min(Rremain[i], Rremain[j])

10: ni,j ← ni,j +∆, nj,i ← nj,i +∆
11: Rremain[i]← Rremain[i]−∆, Rremain[j]← Rremain[j]−∆
12: end for
13: return ni,j

combined with external heuristics or prior solutions en-
abling efficient online re-optimization and collaborative
algorithm design.

• Solver-free and lightweight. By decomposing the TRO
into combinatorial TO and continuous RO, ATRO elimi-
nates the need for general-purpose solvers. TO is solved
via binary search with closed-form checks, and with
solver-free TE methods, RO can be executed without
solvers, enabling full-pipeline scalability.

Special Case: One-Hop Topology Optimization. In one-
hop scenarios where routing is fixed to direct paths, only
the TO subproblem is relevant. In this setting, ATRO reduces
to a single call to the TO Component (i.e., ABSM), which
efficiently computes the optimal one-hop topology via binary

search. This highlights ATRO’s versatility: it serves both as
a high-speed optimizer for one-hop reconfiguration and as a
general framework for multi-hop DCNs.

While ATRO supports arbitrary feasible initializations for
routing, we empirically find that using direct-path routing
consistently leads to faster convergence and better final per-
formance. Unless otherwise specified, all evaluations in this
paper adopt direct-path initialization by default. The complete
procedure is summarized in Algorithm 3.

Algorithm 3 ATRO: Alternating Topology and Routing Opti-
mization
Require: Traffic demand Di,j , port limits Ri, link capacity

Si

Ensure: Topology ni,j , routing fi,j,k, and maximum utiliza-
tion u

1: Initialize routing: any feasible f
(0)
i,j,k is allowed

(e.g., direct path routing: f
(0)
i,j,k ← 1 if k = j, else 0,

for i ̸= j)
2: Compute initial traffic:

T
(0)
i,j ←

∑
j′ f

(0)
i,j′,j ·Di,j′ +

∑
i′ f

(0)
i′,j,i ·Di′,j

3: Initialize utilization: u(0) ← +∞, t← 0
4: repeat
5: TO Component:

n
(t+1)
i,j ← ABSM(T (t)

i,j , Ri, Si,j)
6: Refinement Component:

n
(t+1)
i,j ← Refine(n(t+1)

i,j , T
(t)
i,j , Si,j , Ri)

7: RO Component:
(f

(t+1)
i,j,k , u(t+1))← SSDO(Di,j , n

(t+1)
i,j , Si,j)

8: Traffic Update:
T

(t+1)
i,j ←

∑
j′ f

(t+1)
i,j′,j ·Di,j′ +

∑
i′ f

(t+1)
i′,j,i ·Di′,j

9: t← t+ 1
10: until |u(t) − u(t−1)| < ε

IV. NUMERICAL TEST

We evaluate ATRO using the experimental setup described
in §IV-A, focusing on two representative scenarios: one-hop
settings, where only direct path are considered (§IV-B) ,
and multi-hop settings, which require joint optimization of
topology and routing over longer timescales (§IV-C). For both
cases, we compare ATRO against solver-based and heuristic
baselines in terms of solution quality (MLU) and computation
time. We further analyze its convergence behavior (§IV-D),
warm-start capabilities, and the contribution of components
through ablation studies (§IV-E).

A. Methodology

Topologies. We evaluate ATRO on two categories of topolo-
gies: Meta’s production DCNs [21], including PoD and ToR
levels, and four synthetically generated full-mesh topologies.
As in prior studies [7], [22], all logical links are assumed
to have the same fixed capacity across the network during
evaluation. Summary statistics are shown in Table I.
Traffic. For Meta topologies, we use a public production
trace [21], aggregated at 1-second (PoD) and 100-second
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Fig. 4: Average normalized MLU of ATRO and baselines on
one-hop setting.

TABLE I: Network topologies used in evaluation.

Type Name Nodes Edges Ports

Meta Meta PoD 4 12 16
Meta ToR 155 23870 256

Synthetic

Topo 16 16 240 32
Topo 32 32 992 64
Topo 64 64 4032 128
Topo 128 128 16256 256

(ToR) intervals. For synthetic topologies, we combine AI
traffic from RapidAISim in [22] with gravity model-based
background flows [23], [24].
Scenarios and Baselines. We evaluate ATRO in both one-
hop and multi-hop settings, comparing it against representative
solver-based and heuristic methods:

• MILP-TO (one-hop): An oracle baseline for the one-hop
TO subproblem (3) using commercial solver.

• MCF (one-hop): A fast approximation using minimum-
cost flow models [9], where logical links are treated as
unit flows. The resulting solution may violate symmetry
constraints and is post-processed by downscaling asym-
metric allocations to their minimum.

• BvN (one-hop): A heuristic based on Birkhoff–von Neu-
mann decomposition and disjoint perfect matchings [10].
Like MCF, it does not enforce symmetry and applies a
similar minimum-based adjustment.

• MILP (multi-hop): Directly solves linearized TRO using
Gurobi, achieving optimal MLU but poor scalability.

• COUDER (multi-hop): A two-stage relaxation-based
method that solves a relaxed LP and heuristically recon-
structs integer topologies [7].

Implementation. Algorithms are implemented in Python 3.8
using Gurobi 9.5.1 for solver-based baselines. Evaluations are
conducted on an AMD EPYC 9654 with 384 GB RAM.

B. One-Hop Evaluation (TO Component)

Performance Comparison. We evaluate ATRO against MILP-
TO, MCF, and BvN in one-hop settings, where only the logical
topology is optimized. As shown in Fig. 4, ATRO (which
reduces to ABSM in one-hop setting) achieves optimal MLU
in all topologies. In contrast, MCF exhibits high variance and
degrades significantly with increasing network size, while BvN
performs reasonably on sparse cases (e.g., Meta PoD) but
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Fig. 5: Average computation time of ATRO and baselines on
one-hop setting.
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Fig. 6: Comparison of ATRO and baselines on oversized
topologies: (a) MLU; (b) Computation time.

deteriorates rapidly in denser topologies. Fig. 5 further shows
that ATRO maintains runtime under 100 ms, even on Meta
ToR. MILP-TO is increasingly slower, taking over 1 seconds
on Meta ToR, while BvN and MCF are fast but offer lower
and unstable quality. Overall, ATRO dominates the tradeoff
between solution quality and computational efficiency.
Stress Test. ATRO outperforms MILP-TO in one-hop TO
problems, highlighting the need for speed in real-time topol-
ogy reconfiguration despite MILP-TO’s capability to handle
moderate sizes quickly. Stress testing with larger topologies
(see Table II) shows ATRO maintains optimal MLU (see
Fig. 6(a)) and near-second runtimes (see Fig. 6(b)), unlike
MILP-TO, which struggles with large-scale topology. These
findings demonstrate ATRO’s scalability and suitability for
latency-sensitive scenarios in one hop scenario.

TABLE II: Oversized topologies for stress testing.

Type Name Nodes Edges Ports

Synthetic Topo 256 256 65280 512
Topo 512 512 261632 1024

Link Count Analysis. In addition to MLU and runtime, we
evaluate the number of logical links each method provisions
to satisfy traffic demand. As seen in Fig. 7, ATRO consistently
provisions the fewest links, thanks to theorem 1. It minimizes
the consumption of limited OCS port resources, leaving more
”free” ports to accommodate sudden traffic bursts or back-
ground flows. MILP-TO often over-provisions due to solver
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Fig. 7: The count of logical links in practical topologies
normalized by ATRO (lower is better).
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Fig. 8: Average normalized MLU of ATRO and baselines in
multi-hop setting.

rounding effects, leading to inefficiencies. MCF and BvN
lack explicit link minimization objectives and hence result in
inflated configurations, particularly in larger topologies like
Topo 64 and 128.
Summary. ATRO offers optimal MLU and compact logi-
cal topologies, while maintaining low computation time and
scaling effectively to networks with hundreds of nodes. It
consistently outperforms MILP and heuristic baselines.

C. Multi-Hop Evaluation (TRO Problem)

We evaluate the full ATRO framework under multi-hop
settings, where both logical topology and routing must be
jointly optimized. Fig. 8 and Fig. 9 report normalized MLU
and average computation time across six topologies. The
analysis for each baseline is as follows:
MILP (oracle baseline): MILP represents the theoretical
optimum by solving the full TRO problem via Gurobi. As
shown in Fig. 8, it delivers the best MLU on small topologies
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Fig. 9: Average computation time of ATRO and baselines in
multi-hop setting.

like Meta PoD and Topo 16. However, Fig. 9 reveals its
critical weakness: computation time increases exponentially
with scale, becoming intractable beyond Topo 64. On Topo
128 and Meta ToR, it fails to complete within 20,000 seconds.
COUDER: COUDER performs reasonably well on small net-
works but exhibits clear degradation on mid-sized topologies.
On Topo 32 and Topo 64, COUDER yields over 1.5× higher
MLU than ATRO. An exception occurs on Meta ToR, where its
MLU appears competitive. This is due to the extremely skewed
traffic pattern in Meta ToR, which admits many near-optimal
configurations, allowing even COUDER’s coarse topology
recovery to perform well. Even so, as seen in Fig. 9, its runtime
remains significantly higher than ATRO.
ATRO: ATRO consistently achieves low MLU while main-
taining high efficiency. In Fig. 8, it matches MILP on small
topologies and outperforms COUDER significantly on larger
ones. In Fig. 9, ATRO’s runtime grows gradually, remaining
practical even on the largest evaluated topology. On Topo
128, it is up to 5× faster than COUDER. Unlike MILP
and COUDER, ATRO can avoid commercial solvers and
remains robust across varying traffic characteristics. On Topo
32, ATRO exhibits a slight MLU gap relative to MILP,
attributable to the extremely sparse demand matrix: many
source-destination pairs require no connectivity. While MILP
can prune such links entirely, ATRO’s alternating structure
tends to preserve minimal connectivity, as the RO step rarely
drives link utilization to zero. This leads to mild suboptimality
but ensures solution feasibility and topological stability.

D. Analysis of Convergence Process

We analyze the convergence behavior of ATRO by tracking
normalized MLU over iterations on representative samples
from Meta PoD and Topo 16, as shown in Figure 10. The
initial point is obtained by applying the TO component to the
input traffic, which often provides a strong starting topology.

ATRO exhibits consistently monotonic improvement, with
MLU decreasing at each iteration, as guaranteed in §II-C. Most
samples converge within one or two rounds, and subsequent
iterations yield diminishing improvements—indicating that
early stopping is often sufficient. Since both TO and RO
components are lightweight (see §IV-B), ATRO can deliver
high-quality solutions with minimal delay.

To further quantify convergence efficiency, we measure
the number of iterations required for convergence across all
samples in six topologies. Figure 11 shows that for small to
medium-sized topologies (Meta PoD, Topo 16/32/64), over
95% of samples converge within two iterations. Even in large-
scale topologies like Topo 128 and Meta ToR, the majority of
cases require no more than three iterations. This empirical
evidence confirms ATRO’s scalability and suitability for both
low-latency and large-scale deployment.

E. Warm Start and Ablation Study

We evaluate the extensibility of ATRO in two aspects: (i)
its ability to enhance existing solutions via warm start, and
(ii) the effectiveness of its Refinement module.
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Fig. 11: Distribution of convergence rounds across six topolo-
gies. Most samples converge within 2–3 iterations, validating
the efficiency of the ATRO framework.

Warm Start Capability. ATRO accepts any feasible initializa-
tion, allowing integration with heuristic or learned solutions.
We evaluate two warm-start variants:

• ATRO-T: Initialized with COUDER’s topology (bypass-
ing the first TO step).

• ATRO-R: Initialized with COUDER’s LP-based routing
solution (bypassing the first TO and RO step).

As shown in Table III, both ATRO variants achieve comparable
MLU to COUDER across most topologies. On Meta ToR,
where the sparse traffic allows many near-optimal solutions,
all methods yield similar MLU. Nevertheless, ATRO maintains
strong runtime advantages even in this setting.
Effect of the Refinement Component. The Refinement Com-
ponent reallocates residual ports after TO, expanding the
solution space and enhancing routing flexibility in subsequent
iterations. When this step is disabled—as in the ATRO-O
variant—MLU performance degrades in several topologies,
particularly those with some AI traffic patterns (e.g., Topo 32),
where routing flexibility is more critical. In contrast, its impact
is less pronounced in topologies like Topo 128, where many
configurations already satisfy capacity constraints. Nonethe-
less, Refinement introduces minimal computational overhead
and consistently improves robustness, making it a low-cost yet
effective enhancement that we recommend by default.

TABLE III: Average normalized MLU of COUDER and
ATRO variants (values normalized to ATRO).

Topology COUDER ATRO-T ATRO-R ATRO-O

Meta PoD 1.009 0.999 1.000 1.017
Topo 16 1.025 1.022 1.003 1.049
Topo 32 1.660 1.287 1.027 1.007
Topo 64 1.440 1.237 1.070 1.001
Topo 128 1.389 1.368 1.145 1.000
Meta ToR 1.000 1.000 1.000 1.000

V. RELATED WORK

Reconfigurable DCN Designs. Reconfigurable DCNs dynam-
ically adjust logical topologies via optical circuit switches
(OCSs) to match traffic demands. Two main architectures
have emerged: multi-hop and one-hop. Multi-hop systems
like Jupiter Evolving [4] maintain a relatively fixed topology
and rely on routing adaptation, requiring joint topology and
routing optimization (TRO). In contrast, one-hop systems like
RotorNet [5] and Sirius [6] reconfigure direct PoD-to-PoD
connections per scheduling interval, focusing solely on fast
topology optimization (TO). These architectural differences
naturally lead to distinct scheduling strategies.
Scheduling Algorithms for Reconfigurable DCNs. In multi-
hop systems, COUDER [7] formulates TRO via LP relaxation
and rounding. TROD [25] avoids solvers by first estimating
topology based on link-load quantiles and then applying
threshold-based splitting for routing decisions; this decoupled
approach can be viewed as a heuristic approximation to ATRO,
which may lead to capacity waste. One-hop systems priori-
tize rapid topology computation. Many leverage Birkhoff–von
Neumann (BvN) decomposition [10] to express traffic matrices
as disjoint matchings, enabling low-latency scheduling. Earlier
systems like Helios [3] rely on repeated bipartite matchings,
incurring high computational overhead that limits scalability.

VI. CONCLUSION

We present ATRO, a modular framework for computing
logical topologies in reconfigurable data center networks
(DCNs). In the general multi-hop setting, ATRO alternates
between topology optimization (TO) and routing optimization
(RO) using lightweight, scalable subroutines. The TO step is
solver-free and solved optimally via our proposed Accelerated
Binary Search Method (ABSM), while the RO step supports
both LP solvers and TE accelerators—enabling fully solver-
free execution if desired. Extensive experiments show that
ATRO matches or outperforms existing baselines in both
performance and runtime, achieving low-latency scheduling in
one-hop settings and efficient scalability in large-scale, multi-
hop scenarios. Its convergence-guaranteed, plug-and-play de-
sign with warm-start and hybrid support makes ATRO well-
suited for real-time, dynamic DCNs. In future work, we plan
to incorporate traffic prediction mechanisms into the ATRO
framework. The authors have provided public access to their
code and/or data at https://doi.org/10.5281/zenodo.18054616.
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