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Abstract—We study how to design edge server placement and
server scheduling policies under workload uncertainty for 5G
networks. We introduce a new metric called resource pooling
factor to handle unexpected workload bursts. Maximizing this
metric offers a strong enhancement on top of robust optimiza-
tion against workload uncertainty. Using both real traces and
synthetic traces, we show that the proposed server placement and
server scheduling policies not only demonstrate better robustness
against workload uncertainty than existing approaches, but also
significantly reduce the cost of service providers. Specifically,
in order to achieve close-to-zero workload rejection rate, the
proposed server placement policy reduces the number of required
edge servers by about 25% compared with the state-of-the-
art approach; the proposed server scheduling policy reduces
the energy consumption of edge servers by about 13% without
causing much impact on the service quality.

Index Terms—Edge Computing, Server Placement, Server
Scheduling, Robust, Workload Uncertainty

I. INTRODUCTION

We study the edge server placement problem for 5G net-
works in this paper. By moving storage, compute, control, etc.,
closer to the network edge, Edge Computing (EC) could offer
higher bandwidth, lower latency and better security to users,
and thus has become a key enabling technology for 5G. As
5G takes off, deploying edge computing servers also becomes
a priority for service providers.

The key challenge of edge server placement in 5G net-
works comes from workload uncertainty. 5G adopts small-
cell deployment to allow end users to communicate at high
data rate using millimeter wave. But on the other hand, as the
cell size reduces, the number of users served by each base
station decreases and thus the aggregated workload at each
base station becomes highly variable. One possible solution
to handle such workload uncertainty is to over-provision edge
computing resources based on the peak workload of all the
base stations. However, this approach not only incurs high
deployment and energy cost, but also leads to low average
resource utilization.

Most server placement literature [1]–[13] does not account
for workload uncertainty explicitly. In general, these server
placement proposals take a predicted edge workload vector as
input, and compute server placement solutions with optimal
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expenditure, optimal access delay, or minimal energy con-
sumption. However, we cannot keep updating server placement
based on the real-time workload. When the real-time work-
load patterns deviate from the predictions, the performance
guarantee offered by these proposals become questionable.
Some recent works [14]–[17] studied how to design edge
server placement policies that are robust to server failures.
However, workload uncertainty is inherently different from
server failures, and thus may need completely new handling
mechanisms.

Handling workload uncertainty is a challenging task. One
may use stochastic optimization to handle workload uncer-
tainty. However, this approach requires knowing the detailed
distribution of the random workload beforehand, which can
be extremely difficult to obtain. Further, this approach may
also suffer from the curse of dimensionality as the edge work-
load is actually a high-dimensional random vector containing
thousands of entries. Another approach to handle uncertainty
is robust optimization. This approach formulates uncertainty
using a set, and could offer strong performance guarantee as
long as the uncertainty is bounded by this set. However, finding
an appropriate set for robust optimization can be difficult in
practice. If we find a set that only covers a majority, (e.g.,
99%) of the workload patterns, then the robust optimization
approach cannot offer any guarantee for the out-of-bound
workload patterns. In contrast, if we find a set that covers all
the potential workload patterns, this set can be extremely large
because the workload uncertainty is heavy-tailed (see Table
I in Section III-C), drastically weakening the performance
guarantee of robust optimization. Further, in some situations,
it may not even be feasible to find such an uncertainty set.

We propose RO-RP, to explicitly account for workload
uncertainty in the edge server placement problem. RO-RP is
built on top of robust optimization, with newly developed
techniques to handle out-of-bound workload patterns. The
detailed techniques are described below:

1) Robust Optimization (RO): Our trace analysis in
Section III-B suggests that the edge workload exhibits
different patterns during workdays and holidays. Using
robust optimization, we can optimize server placement
based on multiple representative workload patterns.
As a result, we can offer a strong performance guarantee
as long as the future workload patterns are within the
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convex hull formed by these representative workload
patterns.

2) Resource Pool Optimization (RP): However, robust
optimization alone cannot offer good guarantee when
the future workload patterns are outside of the above
convex hull. To overcome this challenge, we introduce
a new concept called resource pooling factor. By
maximizing this resource pooling factor, the impact of
large workload bursts can be minimized.

3) Robust Rounding: Both of the above two techniques
involve solving integer programming problems, which
can be computationally expensive. To reduce complex-
ity, we first relax the integer requirement of server
placement, and then propose a smallest resource pool
first rounding approach to round a fractional solution
to an integer solution. This rounding approach turns
out to be more robust than other candidate rounding
approaches.

In addition to a robust edge server placement solution,
we also propose server scheduling to reduce the energy con-
sumption of edge computing. Note that the cumulative edge
workload has strong diurnal patterns (see Section III-A). Thus,
turning off some servers (or changing servers to power-saving
mode) during idle hours could potentially save significant
amount of energy cost. However, toggling servers between
on/off states may incur additional cost. We have explicitly
accounted for the switching cost in our server scheduling
formulation.

Finally, we evaluate our server placement policy based
on both real traces from Shanghai Telecom and synthetic
traces. Compared to the existing server placement policies,
RO-RP significantly reduces the workload rejection rate given
the same number of edge servers. To achieve close-to-zero
workload rejection rate, RO-RP requires 25% fewer edge
servers when compared with the state-of-the-art approach. We
also evaluate our server scheduling policy using the real trace.
Compared to the strategy that turns on all the servers at all
times, server scheduling could reduce energy consumption by
13%.

II. RELATED WORK

Prior work has studied how to deploy edge servers based on
workload distribution. However, the workload distribution may
not be accurate. Workload uncertainty may have a big impact
on the eventual network performance, but unfortunately has
not yet received much attention in the existing literature.

Many server placement proposals [1]–[9] have assumed that
each base station can be only associated with one edge cloud
in their formulations. With this assumption, many standard
algorithms, e.g., k-means clustering algorithm, set cover al-
gorithm, etc., can be used to design heuristic solutions for
the server placement problem. However, this formulation is
inherently non-robust to demand uncertainty. Whenever the
workload of a base station bursts, the edge cloud that serves
this base station has to bear the burden by itself. In fact, for a
given server placement, EC users do benefit from offloading

their job requests to multiple edge clouds [18], [19]. There
does exist literature [10]–[13] that allows serving workload
from the same base station in different edge clouds. However,
workload uncertainty is not considered therein.

To improve the robustness of edge server placement, [14]–
[17] studied how to account for server failures in their server
placement formulations. However, workload uncertainty is
inherently different from server failures, and may happen much
more frequently in real time.

One natural idea to deal with workload uncertainty is to
use robust optimization. This idea has been used to study
the service scheduling problem [20] in EC and the replica
server placement problem [21] in CDN. However, robust
optimization cannot offer any guarantee when the workload
is outside of the predicted set. Note that, unlike service
scheduling, server placement results cannot be adjusted based
on the real-time workload.

In addition to the server installation cost, energy also
accounts for a big portion of the cost for edge computing.
The energy-optimization literature on edge computing mostly
focuses on the edge/IoT devices [22]–[24], but not on the edge
servers. In this paper, we study how to perform server on-off
scheduling for edge computing to save energy cost. As far as
we know, this server scheduling problem was only studied in
data centers [25]–[28], but has never been explored in edge
computing. The biggest difference is that we need to account
for the collaboration among different edge clouds when we
study server scheduling in edge computing.

III. WORKLOAD ANALYSIS

The appropriate design of server placement policies requires
a deep understanding of the potential workload patterns of EC.
However, EC has not seen widespread deployment yet, and
thus there may not be any real data for its workloads. Instead,
we perform workload analysis based on Shanghai Telecom
dataset [1], [9], [29], [30], which includes communication
records collected about 3042 base stations and 6236620 user
requests. We believe that the workload patterns of these
communication records can provide a good estimate for the
workload patterns of EC.

A. Observation 1: The cumulative workload has strong diur-
nal patterns

We study how the cumulative workload across all base
stations in Shanghai varies at different times of a day using
a consecutive of 30 days of data. As shown in Fig. 1(a), the
total number of requests are the lowest from midnight to about
6:00am every day. As people get up around 6:00-8:00am,
the requests rise and peak at around 6:30-7:30am. Then, the
requests are relatively consistent until 20:00pm, after which
the requests gradually decrease. Another observation from the
curves is that the number of requests on workdays (solid lines)
is generally higher than that on holidays (dashed lines). This
implies that one should not use workday’s workload patterns
to predict the workload patterns on holidays, and vice versa.



TABLE I
THE STATISTICS OF WORKLOAD AND INTER-ARRIVAL TIME OVER A TIME SPAN OF SIX MONTHS.

Max Average std 99.999% 99.99% 99.9% 99% 90% 80% 70% 60% 50% 40%
Workload 40877 2314 3283 27144 10804 10800 10796 8857 3910 2097 1216 728 499
Inter-arrival time 13953857 7174 64180 7246866 2584387 584956 82414 10731 5001 3002 1990 1374 899
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(a) Number of Requests at different time of the day
during one month.
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(b) Hour-level workload variation for two consecu-
tive weeks.

(c) Hourly workload statistics for each base station
over a period of 6 months.

Fig. 1. Data set analysis.

(a) 12:00-14:00 on Holiday

(b) 12:00-14:00 on Workday

Fig. 2. Requests distribution at different days.

The strong diurnal patterns of edge workload motivates us
to perform server on-off scheduling for EC. The objective
is to reduce energy cost, without impacting on service quality.

B. Observation 2: The spatial workload patterns of different
days can be highly skewed and dramatically different

As shown in Fig. 2, we randomly pick a holiday and a
workday, and study their workload patterns at the same time
of a day. Fig. 1(a) demonstrates that the total workloads
at workdays and holidays are approximately the same for
most times of a day. However, when we compare the spatial
workload distributions in Fig. 2, the workload patterns are
apparently different. This observation suggests that we should
use multiple different workload patterns to compute server
placement solutions.

Another observation from Fig. 2 is that the workload
patterns are highly skewed, with much higher workload in
the central area of Shanghai. Hence, traffic agnostic server
placement strategies may not perform well, which is verified
via simulation in Section VII-B.

C. Observation 3: The edge workload is highly bursty

To understand the burstiness of edge workload, we analyze
the workload sizes and the inter-arrival times of all the requests
at each base station over a time span of six months. Table I
summarizes the average, standard deviation and percentile
values of these two metrics. Note that the inter-arrival time
is heavy tailed, meaning that it is possible for a base station
to receive a large request after being idle for a long period of
time.

Since edge workload is highly bursty, accurately predicting
edge workload can be very difficult. For example, we can use
historical workday/holiday patterns to predict future workload.
For the t-th hour in every day, we could compute the following
workload variation ratio:

Vt =

∑M
m=1 |wm(t)− w′m(t)|∑M

m=1 w
′
m(t)

,

where wm(t) is the total workload of the m-th base station in
the t-th hour of the day, and w

′

m(t) is the total workload of
the m-th base station in the t-th hour seven days ago. From



Fig. 1(b), we see that the workload variation ratio can be as
large as 70%. Hence, using historical patterns to predict future
workload can be highly inaccurate.

We are also interested in the relationship between the
average workload and the workload uncertainty. For every base
station and every hour in a week, we collect a sequence of
workload values over 6 months with one value per week. We
then compute the average value and the standard deviation for
every workload sequence, and plot them in Fig. 1(c). From
this figure, we can see that the workload’s worst-case standard
deviation grows approximately linearly with respect to its
average value. However, the range of the standard deviation
values is pretty large, and thus there may not be a rule of
thumb to accurately predict the workload uncertainty.

The above analysis demonstrates that edge workload is
highly variable. Thus, how to handle workload uncertainty
becomes a primary focus in this paper.

IV. MODEL

We study edge server placement from a service provider’s
aspect. A service provider (SP) is responsible for managing the
base stations, the central cloud and the edge servers (see Fig.
3(a)), with an objective to provide ubiquitous communication
and computation services to its users. Users access SP’s
network through base stations, usually via wireless links. The
base stations and the central cloud are typically interconnected
through wired links. As we go into the 5G era, when millions
of devices connect to the network, and data from each device
floods in, edge computing also becomes critical to provide low
latency, high reliability, and immense bandwidth.

In general, edge computing consists of two stages: server
placement and service scheduling. For server placement, the
SP needs to determine where to deploy servers and how many
servers to deploy. Typically, edge servers are co-located with
base stations. Server placement usually happens at the plan-
ning stage. For service scheduling, the SP is responsible for
routing users’ edge computing requests to nearby edge servers
in real time. In this paper, we focus on server placement.
Note that running edge servers may incur high energy cost.
To reduce energy consumption, we introduce an additional
stage, i.e., server on-off scheduling, to make an on-off schedule
for edge servers based on predicted workloads. The overall
workflow of edge computing is depicted in Fig. 3(b).

(a) Edge computing network.

Server On-off
Scheduling

Server
Placement

Service
Scheduling

The stages that this paper focuses on

(b) Overall workflow.

Fig. 3. Overall Architecture.

A. Mathematical Models

Let {B1, B2, ..., BM} denote the set of base stations (BSs)
in an 5G network, where M is the total number of base
stations. Assume time is slotted. wm(t) denotes the total edge
computing workload of BS Bm at slot t. The workloads
at different base stations form a workload vector w(t) =
[wm(t),m = 1, 2, ...,M ]. Since the edge workload wm(t)
has stringent latency requirements, such workload can be only
processed by the edge servers deployed at the BS Bm or the
nearby BSs of Bm. In this paper, we use Ωm to denote the
set of BSs whose edge servers can serve the workload of the
BS Bm.
Remark on Ωm: One can define Ωm using different ap-
proaches, including latency requirement, hop-count require-
ment, distance requirement, k-nearest neighbor requirement,
etc. The methodology in this paper works for all the possible
definitions of Ωm.

1) Server Placement: Server placement typically happens
at the planning stage. Once the edge servers are deployed,
it may not be easy to change the server deployment. Hence,
server placement must be robust against the potential workload
variations. The easiest approach to deal with workload varia-
tions is to over-provision edge servers. However, this approach
increases both equipment cost and energy cost. In this paper,
given a historical trace of workload vectors, we study how to
assign a total number of K servers to each BS, such that

S1 + S2 + · · ·+ SM = K, where Sm’s are integers, (1)

where Sm is the number of edge servers to be deployed at the
BS Bm.

2) Service Scheduling: Service scheduling happens at the
real time stage. At time t, for the workload wm(t) at the BS
Bm, the objective of service scheduling is to determine the
fraction umn(t) of the workload wm(t) that is assigned to the
base station Bn ∈ Ωm. Clearly,{ ∑

Bn∈Ωm
umn(t) = 1, for m = 1, 2, ...,M,

0 ≤ umn(t) ≤ 1 and umn(t) = 0, for Bn /∈ Ωm.
(2)

3) Server On-off Scheduling: Server on-off scheduling hap-
pens in-between server placement and service scheduling.
Fig. 1(a) suggests that the cumulative edge workload has daily
peaks and troughs. Server placement needs to account for
the daily peaks. However, keeping all the servers always on
incurs significant energy cost, especially during idle hours.
Let S(t) = [Sm(t),m = 1, 2, ...,M ], where Sm(t) is the
number of active servers at the BS Bm at time t. The objective
of server on-off scheduling is to reduce energy cost, without
impacting on users’ service quality. Clearly,

Sm(t) ≤ Sm,∀m = 1, 2, ...,M and t. (3)

B. Performance Metrics

While we design server placement and server on-off
scheduling strategies, we are interested in optimizing the
following three performance metrics.



1) Rejected Workload: When edge servers run out of re-
sources to serve some portion of edge workload, such edge
workload is considered as rejected. (Offloading this work-
load to the central cloud may violate latency requirement.)
This could happen when the real-time workload w(t) =
[w1(t), w2(t), ..., wM (t)] bursts at some BSs. Given the num-
bers of active servers S(t) and the workload vector w(t), the
total amount of rejected workload can be computed by

min
umn(t)

M∑
n=1

max

{
0,

M∑
m=1

wm(t)umn(t)− CSn(t)

}
s.t. umn(t) satisfy (2),

(4)
where C is the capacity of one server. Note that
max

{
0,
∑M
m=1 wm(t)umn(t)− CSn(t)

}
is the total rejected

workload at the BS Bn. Solving (4) gives the minimum
possible amount of workload to be rejected.

2) Number of Servers Required: From service providers’
aspect, rejecting EC requests is highly undesirable, because
they may lose customer loyalty. Then, another important
metrics arises, i.e., what is the minimum number of servers
required in order to guarantee zero workload rejection rate?
Certainly, this number depends on the server placement strat-
egy and the workload patterns. In Section VII-B, we will use
extensive simulation to obtain an estimate of this metric for
different server placement strategies.

3) Cost: The cost of edge servers consists of two parts:
• Server running cost Er +Ew ·x, where Er is the energy

cost of running an idle server for one time slot, and
Ew is the energy cost per workload unit. Note that Er
may account for more than 50% of the energy cost in a
server [31].

• Switching cost Es, which models the cost of toggling a
server between on/off states. As stated in [25], if only
energy cost matters, then Es is on the order of the cost
of running a server for a few seconds to several minutes;
if the increased wear-and-tear is accounted for, then Es
becomes on the order of the cost of running a server for
a hour. In this paper, we use the latter to measure the
switching cost Es.

Note that the total energy cost of all the workload equals
Ew
∑M
m=1

∑
t wm(t), which is out of our control. Hence, in

this paper, we mainly focus on the idle-server cost and the
switching cost, which in total can be calculated as

W =

M∑
m=1

∑
t

(
Er ×Sm(t) +Es× (Sm(t)−Sm(t− 1))+

)
,

(5)
where x+ = max{0, x}. Clearly, if we choose not to perform
server on-off scheduling, then the switching cost becomes
zero, but the running cost increases.

V. SERVER PLACEMENT

The primary objective of server placement is to reduce the
workload rejection rate. Since this metric is closely related to

service scheduling, our server placement strategy will account
for the effect of service scheduling.

A. A robust joint optimization approach

Owing to the fact that edge workload exhibits different
patterns at different time of different days, our first idea is
to use robust optimization to compute a server placement
solution. Specifically, given a sequence of historical workload
vectors, we pick multiple representative workload vectors
using the following steps:

Step 1 Divide historical workload vectors into L groups
such that the workload vectors in the same group
are all 1) from workdays or holidays, and 2) from
the same time period (e.g., 8:00-11:59am) of a day.

Step 2 Compute an average workload vector wl =
[wlm,m = 1, 2, ...,M ] for the l-th group of workload
vectors1. Note that the following analysis also works
for other choices of workload vectors.

In total, we obtain L workload vectors.
For each workload vector wl, we introduce service schedul-

ing variables ul = [ulmn,m, n = 1, 2, ...,M ] satisfying (2).
Then, we jointly optimize the server placement variables
S = [Sm,m = 1, 2, ...,M ] satisfying (1) and the service
scheduling variables [u1, u2, ..., uL].

For each workload vector wl and the corresponding service
scheduling variables ul, it is easy to obtain the total workload
allocated to the BS Bn, i.e.,

∑M
m=1 w

l
mu

l
mn. To reduce the

likelihood of workload rejection, we impose the following
constraint that restricts the edge server utilization to be less
than β for any BS Bn and any workload vector wl:

M∑
m=1

wlmu
l
mn ≤ SnCβ, for any Bn and wl. (6)

Then, the overall formulation is given as

min
S,ul,β

β

s.t. S satisfy (1),

S, ul, β satisfy (2)(6) for l = 1, 2, ..., L.

(7)

Understanding the performance guarantee of (7): Let
Ŝ, ûl, β∗ be the optimal solution of (7). Consider a future
workload vector w ≤

∑L
l=1 λlw

l, where λl ≥ 0, l = 1, 2, ..., L

and
∑L
l=1 λl = 1. In other words, the workload vector

w is bounded by the convex hull of the workload vectors
[w1, w2, ..., wL]. We construct the service scheduling variable
u for w as follows:

umn =

L∑
l=1

λlw
l
m∑L

i=1 λiw
i
m

ûlmn (8)

1We have also tried using the component-wise max workload vector
to compute a server placement solution. However, our simulation results
in Section VII-C2 cannot give any conclusive answer that one option is
better than another. Hence, one may use a different approach to compute
representative workload vectors.



It is easy to check that u satisfies (2). Further,

M∑
m=1

wmumn =

M∑
m=1

wm

L∑
l=1

λlw
l
m∑L

i=1 λiw
i
m

ûlmn

≤
M∑
m=1

L∑
l=1

λlw
l
mû

l
mn =

L∑
l=1

λl

M∑
m=1

wlmû
l
mn

≤
L∑
l=1

λlŜnCβ
∗ = ŜnCβ

∗.

Hence, the workload w is supportable by the server placement
solution Ŝ with max server utilization no greater than β∗.
Understanding the drawback of (7): When future workload
vectors are bounded by the convex hull of [w1, w2, ..., wL], the
above analysis indicates that (7) can offer strong performance
guarantee. However, some future workload vectors can be out
of bound, owing to the fact that edge workload is highly
bursty. Certainly, one can increase the convex hull by scal-
ing up the representative workload vectors [w1, w2, ..., wL].
Unfortunately, β∗ will also increase, making the performance
guarantee of robust optimization weaker. Further, if β∗ > 1,
then the performance guarantee becomes useless.

B. Handling Out-of-bound Workload with Resource Pooling

Intuition: We first introduce the concept of resource pool. For
the workload at the BS Bm, its resource pool is defined as the
total amount of server resources that can serve the workload,
which equals to

∑
Bn∈Ωm

Sn. To understand how resource
pooling helps mitigate the impact of out-of-bound workload,
we consider the motivation example in Fig. 4. The predicted
MEC workloads at the base stations A and B are both 10,
while the real time workloads turn out to be 8 and 12. If we
deploy 10 units of computing resources at A and B each (see
Fig. 4(a)), then in real time, 2 units of B’s workload will be
rejected owing to the fact that 1) B’s MEC servers are already
fully utilized, and thus cannot serve B’s burst; 2) A is too far
from B, and thus cannot serve B’s burst either. On the other
hand, if we deploy computing resources at the base stations C
and D (see Fig. 4(b)), the computing resources of C and D
can serve the workloads from both A and B, because C and
D are both within an acceptable distance from A and B. As
a result, the resource pools of both A and B increases from
10 to 20. Then, as B’s workload bursts from 10 to 12, we
can offload 2 units of workload from the edge cloud D to the
edge cloud C. With an increase resource pool, the workload
from the base station B will not be rejected any more.

10 10 128
A B

C

D

(a) Small resource pool.

20
8

A B
C

D 12

Resource
Pooling

(b) Large resource pool.

Fig. 4. Motivation example of resource pooling.

Formulation: Motivated by the above example, we introduce
a resource pooling factor η, such that

η
L

max
l=1
{wlm} ≤

∑
Bn∈Ωm

Sn. (9)

Then, we compute the server placement result by maximizing
the resource pooling factor η:

Maximize resource pooling factor:
max
S,ul,η

η

s.t. S, η satisfy (1)(9),

S, ul, β∗ satisfy (2)(6) for l = 1, 2, ..., L.

(10)

Note that our server placement policy involves two steps: 1)
compute β∗ using the robust optimization formulation (7); 2)
optimize resource pooling based on (10). Hence, we will also
use RO-RP to represent our server placement policy.
Understanding the performance guarantee of (10): Let
S∗, η∗ be the optimal solution of (10). Consider an arbitrary
workload vector w. If the workload vector w is within the
convex hull of [w1, w2, ..., wL], then the max server utilization
can be bounded by β∗. Otherwise, we could find a w

′
in

the convex hull, such that the distance between w and w
′

is
minimized. We can view w as a workload vector bursted on top
of w

′
. Assume that the workload at a base station Bm increases

by a percentage of γ, i.e., wm = w
′

m(1 +γ). Then, if we load
balance the additional workload w

′

mγ uniformly among all the
edge servers at base stations Bn ∈ Ωm (other workloads are
load balanced based on the service scheduling ratio computed
by (8)), then the maximum server utilization will be upper

bounded by β∗ +
w
′
mγ∑

n∈Ωm
S∗m
≤ β∗ + γ

η∗ . Certainly, if we
only solve (7) to obtain a server placement solution, we can
still compute a resource pooling factor. However, this resource
pooling factor can be much smaller than the optimal value
η∗. As a result, the maximum server utilization can be much
higher in case of workload burst. When the maximum server
utilization is above one, some workload would be rejected.

C. Reduce Algorithmic Complexity for Server Placement

We compute server placement results by solving (7) and
(10). However, both (7) and (10) are integer programming
problems, which are computationally expensive. In fact, we
have tried solving (10) directly based on the Shanghai Telecom
dataset with 3042 base stations, but unfortunately the state-of-
the-art integer programming solver, Gurobi [32], cannot finish
with a solution even after running a few hours.

To reduce computational complexity, we adopt a relaxing
and rounding approach. Specifically, we first allow the server
placement variables S to take fractional values. Then, both (7)2

and (10) can be converted to linear programming problems,
which can be solved in polynomial time. After obtaining a
fractional server placement solution of S, we can then round

2The constraints (6) contains a multiplicity term Snβ. To convert (7) into
a linear programming problem, we need to substitute Sn by Ŝn = Snβ in
(6), and replace (1) by

∑M
m=1 Ŝn = Kβ in (7).



the fractional solution to an integer solution. Note that we need
to ensure that (1) is satisfied after rounding.

Let S̃∗ = [S̃∗1 , S̃
∗
2 , ..., S̃

∗
M ] be a fractional server placement

solution. We have tried different rounding schemes as follows:
1) Smallest Resource Pool First (SRPF): Each base sta-

tion Bm has a resource pool, whose size is
∑
Bn∈Ωm

S̃∗n.
The base stations with smaller resource pools are given
higher priority to round up its fractional solution.

2) Random Rounding (RR): Randomly select some base
stations to round up their fractional server counts.

3) Largest Resource Pool First (LRPF): Contrary to the
Smallest Resource Pool First policy, the base stations
with larger resource pools are given higher priority to
round up its fractional solution.

4) Largest Decimal First (LDF): The base stations with
larger decimal part (S̃∗m−bS̃∗mc) are given higher priority
to round up their fractional server counts.

5) Largest Scale-down First (LSF): When we round down
a number S̃∗m, the server placement solution is scaled
down by S̃∗m−bS̃

∗
mc

S̃∗m
. The base stations with larger scale-

down values are given higher priority to round up.
Eventually, We adopt the Smallest Resource Pool First

approach to perform rounding. This approach is the most
robust against workload uncertainty, and our simulation results
in Section VII-C1 further show that this approach yields the
lowest workload rejection rate under bursty workload.

VI. SERVER SCHEDULING

When service providers deploy edge servers, they must
ensure that there are enough servers even during peak hours.
However, edge workloads exhibit strong diurnal pattern (see
Figure 1(a)). Then, during idle hours, these edge servers
may incur significant energy consumption unnecessarily, thus
increasing the cost of edge computing.

To reduce cost, we study how to dynamically adjust the
number of active servers based on the time-varying workload.
When workload is low, we turn off some servers (or change to
power saving mode) to save energy; when workload becomes
higher, we will turn on some servers.

We perform server on-off scheduling on daily basis. Specif-
ically, We divide a day into N equal-length time intervals
T = {t1, t2, ..., tN}, where tn is the timestamp of the
middle point of the n-th interval. At the day-ahead planning
stage, we first predict the average workload vector w̄(tn) =
[w̄1(tn), w̄2(tn), ..., w̄M (tn)] in each time interval tn based on
historical traces, and then compute a server on-off schedule for
the following day.

A. Server Scheduling without Considering Switching Cost

We first ignore the switching cost of toggling servers
between on/off states. Then, we can study server scheduling in
each time interval separately. In this case, the server schedul-
ing problem becomes very similar to the server placement
problem, and thus the methodology used in Section V can
be also applied here. The only difference is that we only need
to account for one workload vector in server scheduling.

Let K(t) be the total number of active servers at
time t. Then, the number of active servers S(t) =
[S1(t), S2(t), ..., SM (t)] at time t must satisfy (3) as well as
the following constraint:

M∑
m=1

Sm(t) = K(t). (11)

Let β(t) be the maximum server utilization at time t and
u(t) = [umn(t),m, n = 1, 2, ...,M ] be the service scheduling
variables satisfying (2). Then, we can convert (6) to

M∑
m=1

w̄m(t)umn(t) ≤ Sn(t)Cβ(t). (12)

Let η(t) be the resource pooling factor at time t. Then, the
constraint (9) can be rewritten as

η(t)w̄m ≤
∑

Bn∈Ωm

Sn(t). (13)

Then, we can compute a server scheduling solution at time
t in two steps:
Step 1: Compute the optimal β∗(t) by solving

min
S(t),u(t),β(t)

β(t)

s.t. S(t), u(t), β(t) satisfy (2)(3)(11)(12).
(14)

Step 2: Compute the optimal S∗(t) and η∗(t) by solving

max
S(t),u(t),η(t)

η(t)

s.t. S(t), u(t), β∗(t), η(t) satisfy (2)(3)(11)(12)(13).
(15)

Clearly, for different K(t), we can obtain different solutions
of S∗(t). To understand how many active servers are required,
we use historical traces to calculate the fraction of rejected
workload. From Fig. 5, we can see that different number of
active servers are required to ensure low workload rejection
rate. Specifically, the workload between time 0:00 and 1:00 is
low, and thus approximately 4500 servers are sufficient to offer
close-to-zero workload rejection rate. In contrast, the workload
at 08:00-09:00, 12:00-13:00 and 21:00-22:00 is much higher,
thus requiring more active servers.

Based on the above analysis, we can pick a K∗(t) that leads
to close-to-zero workload rejection rate for each time interval
t, and then use K∗(t) to compute S∗(t).

B. Considering Switching Cost for Server Scheduling

We account for the switching cost for server scheduling in
this section. To ensure close-to-zero workload rejection rate,
we slightly modify the constraint (11) as

M∑
m=1

Sm(t) ≥ K∗(t). (16)
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Fig. 5. Workload rejection rate under different number of servers in different
periods.

When K(t) = K∗(t), we can solve (14) and (15) to obtain
β∗(t) and η∗(t) first. Then, we can modify (12) and (13) as

M∑
m=1

w̄m(t)umn(t) ≤ Sn(t)Cβ∗(t). (17)

η∗(t)w̄m ≤
∑

Bn∈Ωm

Sn(t). (18)

Then, we can compute a server scheduling solution by
minimizing the cost function (5) as follows:

Server On-off Scheduling:

min
S(t)

M∑
m=1

∑
t

(
ErSm(t) + Es(Sm(t)− Sm(t− 1))+

)
s.t. S(t), u(t) satisfy (2)(3)(16)(17)(18) for any t.

(19)
Note that the term “Es(Sm(t) − Sm(t − 1))+” captures the
switching cost.
Remark: We need to solve (14) and (15) multiple times to
obtain K∗(t), β∗(t) and η∗(t) before solving (19). This pre-
solving step is critical to ensure low workload rejection rate.
Remark on Algorithmic Complexity: Although server on-off
scheduling is only calculated once everyday, directly solving
(14), (15) and (19) is still computationally prohibitive. To
reduce complexity, we can adopt the same relaxing and
rounding approach proposed in Section V-C.

VII. EVALUATION

A. Introduce the Trace for Evaluation

1) Shanghai Telecom’s Real Communication Records: We
have introduced this real trace in Section III. This trace
contains communication records for 3042 base stations and
6236620 user requests over a time span of six months. We
will use this trace to compare our server placement and server
scheduling solution against previous approaches.

2) Synthetic Trace: It was shown in Section III-C that edge
workload is hard to predict accurately. Hence, our solution
must be robust against potential workload bursts. Unfortu-
nately, the historical real traces may not offer a comprehensive
coverage over the burst patterns. Hence, we construct synthetic
traces to evaluate solution robustness.

Our synthetic traces are constructed as follows. Given an
arbitrary real workload vector w = [w1, w2, ..., wM ], we
randomly select a set containing 100-200 BSs out of the 3024
BSs, choose a scaling factor in {1.2, 1.5, 1.8, 2} and then scale
up the workload of all the selected BSs by this scaling factor.
For the same real workload vector, we repeat the above step
multiple times and generate a total of 240 bursty workload
vectors. Note that we generate workload bursts by multiplying
the original workload by a scaling factor. The reason is that the
workload with the highest variability has its standard deviation
scaling approximately linearly with respect to its average value
(see Fig. 1(c) in Section III).

B. Compare Different Server Placement Policies

We group existing server placement policies into three
categories and evaluate them using the real trace.
Traffic-agnostic policies: This policy does not use any work-
load information for server placement. We evaluate the fol-
lowing policies in this category:

1) Random: Place K servers at randomly chosen BSs.
2) Clustering: Use k-means algorithm to group BSs into

k clusters. Let s(C)
i be the number of BSs in the i-th

cluster. Place K s
(C)
i∑k

i=1 s
(C)
i

servers at the centroid of the
i-th cluster.

3) Uniform: Divide the geographical area into fixed-sized
zones. Let s(U)

i be the number of BSs in the i-th zone.

Place K s
(U)
i∑k

i=1 s
(U)
i

servers at the centroid of the i-th zone.

Traffic-aware but uncertainty-agnostic policies: This policy
computes server placement based on a predicted workload
vector, but does not account for the workload uncertainty. We
evaluate two policies in this category:

1) Traffic-aware without load balancing (TwithoutLB):
In this policy, the workload at each BS can be only allo-
cated to the nearest BS with edge servers. Many existing
server placement policies fall into this category [1]–
[9]. In this paper, we use k-means algorithm to group
BSs into k clusters, and assign all the workload in each
cluster to the centroid of this cluster. Let li be the total
workload of the BSs in the i-th cluster. Place K li∑k

i=1 li
servers at the centroid of the i-th cluster.

2) Traffic-aware with load balancing (TwithLB): In this
policy, the workload at each BS can be load balanced
to the close-by BSs. This setting was also adopted in
[10]–[13]. Here, we compute a server placement solution
by solving (7) with only one workload vector. (We use
historical average workload vector in the evaluation.)

Traffic and uncertainty-aware policies: This is our server
placement strategy proposed in Section V (namely RO-RP).

We use two weeks of real traces to evaluate the workload
rejection rate for different server placement policies. In Fig. 6,
we fix the total number of servers as 8000. Apparently,
our approach achieves the lowest workload rejection rate.
In Fig. 6(c), we vary the number of servers from 7000 to
12000, and study how many servers are required in order
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(b) A zoom in of the performance for the top-3 best
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Fig. 6. Comparison of different server placement policies.
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Fig. 7. Different design choices of our server placement policy.
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(a) The switching cost is equal to running a server
in idle state for one hour.
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(b) The switching cost is equal to running a server
in idle state for 12 minutes.

0 25 50 75 100 125 150 175
time(h)

0
500

1000
1500
2000

N
um

be
r o

f o
n-

of
f

sw
itc

hi
ng

s

SSwithoutSC SSwithSC

(c) Benefit of accounting for switching cost explic-
itly.

Fig. 8. Evaluation of server scheduling.

to achieve close-to-zero workload rejection rate. Under our
policy, approximately 7500 servers are required. In contrast,
the second best option requires about 10000 servers.

C. Understand Different Design Choices of RO-RP

1) Evaluating different rounding schemes: To reduce the
computational complexity of integer programming, we use
linear programming to obtain a fractional solution first and
then use a rounding scheme to get an integer solution (see
Section V-C). Therefore, the effects of different rounding
schemes should be evaluated.

We use the synthetic trace to evaluate the workload rejection
rate of different rounding schemes, because our synthetic trace
has a better coverage over the potential bursts than the real
trace. In Fig. 7(a), we evaluate all the rounding schemes
proposed in Section V-C. Evidently, The Smallest Resource
Pool First Scheme has the best performance. In contrast, the
Largest Resource Pool First Scheme performs the worst.

2) Average workload vector vs. component-wise max work-
load vector: In Section V-A, we use the average workload

vector as the representative workload vectors. Another option
is to use the component-wise max workload vector. There may
not be a conclusive answer that one is better than another. We
compare these two options using different synthetic traces.
As shown in Fig. 7(b), using average workload vector yields
lower workload rejection rate for one trace, but leads to higher
rejection rate for the other one.

3) Understanding the effect of robust optimization and
resource pooling: Our server placement policy utilizes both
robust optimization and resource pooling to improve its ro-
bustness against workload uncertainty. To understand the con-
tribution of each technique, we evaluate four options below:

1) Robust optimization+resource pooling (RO-RP): Our
server placement strategy proposed in Section V.

2) Robust optimization only (RO-only): Only solve (7)
for a server placement solution.

3) Resource pooling only (RP-only): Use only one work-
load vector (e.g., historical average) to solve (7) & (10).

4) Not handling workload uncertainty (TwithLB): Use
only one representative workload vector to solve (7).



From Fig. 7(c), we can see that both techniques help reduce
the workload rejection rate, and the performance is the best
when both techniques are enabled.

D. Evaluate Server Scheduling

The objective of server scheduling is to reduce cost without
affecting service quality. We compare three strategies below:

1) No server scheduling (No-SS): This strategy turns on
all the deployed edge servers at all times.

2) Server scheduling without accounting for the switch-
ing cost (SSwithoutSC): Switching cost can be high.
Frequently toggling a server between on/off states may
reduce this server’s life time.

3) Server scheduling that explicitly accounts for the
switching cost (SSwithSC): This is our final server
scheduling strategy. Two settings for the switching cost
are evaluated: 1) the switching cost is equal to running a
server in idle state for 12 minutes; 2) the switching cost
is equal to running a server in idle state for one hour.
We also evaluate the number of on-off switchings to
demonstrate the benefits of this server scheduling policy.

0 25 50 75 100 125 150 175
Time(h)

0.000
0.005
0.010
0.015
0.020

W
or

kl
oa

d
re

je
ct

io
n 

ra
te No-SS

SSwithoutSC
SSwithSC

Fig. 9. Workload rejection rate under different server scheduling policies.

We first compare the energy consumption of the three
strategies in Fig. 8(a)&8(b). As expected, with server schedul-
ing, many servers are switched off during idle hours, thus
reducing the energy consumption dramatically. In total, server
scheduling could save about 13% of energy consumption.

However, toggling servers between on/off states may incur
additional cost, and thus it is better to minimize the total
number of on/off switchings. As shown in Fig. 8(c), explicitly
accounting for the switching cost reduces the total number of
switchings by about 80% compared to SSwithoutSC.

Finally, we plot Fig. 9 to evaluate the workload rejection rate
before and after performing server scheduling. The takeaway
message is that, performing server scheduling could signifi-
cantly reduce energy cost, without dramatically increasing the
workload rejection rate.

VIII. CONCLUSION

In this paper, we propose a new methodology to design
server placement and server scheduling policies that are robust
to workload uncertainty. This methodology utilizes robust
optimization to provide guarantee for workloads that are
within a predetermined uncertainty set, and performs resource
pool optimization to improve service quality for out-of-bound
workloads. Simulation results demonstrate the effectiveness of

this methodology. From a service provider’s aspect, the result-
ing server placement policy reduces the number of required
edge servers by about 25% compared with the state-of-the-art
approach and the resulting server scheduling policy reduces
the energy consumption by about 13%.
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