
VEP: A Two-stage Verification Toolchain for Full eBPF Programmability

Abstract
Extended Berkely Package Filter (eBPF) is a revolu-
tionary technology that can safely and efficiently ex-
tend kernel capabilities. It has been widely used in net-
working, tracing, security, and more. However, existing
eBPF verifiers impose strict constraints, often requiring
repeated modifications to eBPF programs to pass verifica-
tion. To enhance programmability, we introduce VEP, an
annotation-guided eBPF program verification toolchain.
VEP consists of three components: VEP-C, a verifier for
annotated eBPF-C programs; VEP-compiler, a compiler
targeting annotated eBPF bytecode; and VEP-eBPF, a
lightweight bytecode-level proof checker. VEP allows
users to verify the correctness of their programs with ap-
propriate annotations, thus enabling full programmability.
Our experimental results demonstrate that VEP addresses
the limitations of existing verifiers, i.e. the Linux verifier
and PREVAIL, and provides a more flexible and auto-
mated approach to kernel security.

1 Introduction

Recently, eBPF [13] has gained significant popularity as
a versatile technique. This innovative technology enables
users to load programs into the Linux kernel dynami-
cally, proving to be highly advantageous across various
domains, including networking [5, 15, 19, 31, 36, 45],trac-
ing [4, 10], security [9, 12, 25], storage [7, 47, 48], and
more. In contrast to traditional Linux kernel modules,
eBPF programs offer enhanced stability, as each program
undergoes a rigorous verification process before attach-
ment to the kernel. This verifier meticulously screens
programs for unsafe behaviors, such as infinite loops and
out-of-bound memory access, thus preventing potential
crashes.

Existing eBPF verifiers (e.g., the Linux verifier [8]

and PREVAIL [28]) often compromise programmability
for security, sometimes rejecting safe eBPF programs.
The Linux verifier [8] uses register value tracking to
simulate the execution paths but limits programmabil-
ity by imposing constraints such as maximum program
size and loop complexity to prevent path explosion. PRE-
VAIL [28] addresses this issue using abstract interpre-
tation to merge paths, allowing variable-sized loops in
eBPF programs. However, when loops involve complex,
dynamic behaviors—such as termination conditions de-
pendent on runtime data—PREVAIL’s analysis could
become imprecise, leading to safe programs being incor-
rectly rejected.

The eBPF maintainers have acknowledged this issue
and have developed methods to mitigate these restric-
tions on program size and loop complexity. Since kernel
version 3.18, the Linux verifier has employed pruning
to eliminate redundant code paths [3, 8]. Kernel version
5.2 raised the instruction limit from 4096 to 1 million,
and version 5.3 added support for bounded loops [1]. In
version 5.13, map iterators were introduced to allow it-
eration through map elements [2], as loops are always
unrolled by the verifier, which can lead to excessive code
lengths when iterating over large maps. However, map
iterators require a function pointer, which, while suited
for functional languages, is cumbersome in C. Despite
all these ad-hoc features, some safe programs remain
impossible to pass the Linux verifier.

In fact, state-of-the-art verification tools possess the
potential for full programmability. We broadly categorize
modern verification tools into the following three types,
depending on their design approaches faced with intricate
algorithms, complex program properties, and demand for
a high level of automation. (1) Fully automatic verifiers.
CBMC [21], a bounded model checker, verifies array
bounds, pointer safety, and other properties in C programs
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by unrolling loops a fixed number of times. Infer [18], a
static analysis tool developed by Facebook, automatically
checks memory safety in mobile and server-side code.
These tools can automatically handle millions of lines of
source codes. But their users have to tolerate false posi-
tives and negatives, especially when verifying complex
programs with intricate algorithms and data structures.
(2) Verifiers based on interactive theorem provers. This
method can verify complex programs, but it requires sig-
nificant manual effort in developing machine-checkable
proof code. VST [26], as a representative of this type
of tools, verifies properties of programs in the theorem
prover Coq [6] by requiring users to describe the desired
properties and manually write proof code to complete the
proof. This approach lacks automation, and the time and
memory consumption can be significant 1. (3) Annota-
tion verifiers based on SMT solver. This approach relies
heavily on the SMT solver. VeriFast [33] allows users
to provide assertions within the program that describe
relevant properties, which are then evaluated by the SMT
solver for correctness. Similarly, Dafny [35] leverages
the Z3 [16] SMT solver to automate the verification of
annotated programs. Unfortunately, even powerful and
industry-standard SMT solvers such as Z3 and cvc5 [14]
still encounter numerous unsolvable or incorrectly solved
problems. Moreover, these SMT solvers are often of con-
siderable scale, requiring substantial amounts of time and
memory. In short, it is possible for verification tools to
verify complex programs without posing any limitation
(i.e. achieve full programmability) but with an additional
cost such as requiring users to write annotations. Mean-
while, the tools must make trade-offs among efficiency,
resource consumption, and potential false negatives and
false positives (see Table 1).

For eBPF verification, the verifier must operate within
the kernel, necessitating high efficiency, minimal re-
source usage, and the absence of false negatives. These
requirements imply several constraints: First, despite the
advanced capabilities of modern SMT solvers, their over-
head and risk of false results make them unsuitable for
kernel verification. Second, most eBPF programs are
compiled with unverified compilers such as LLVM or
GCC. We aim to minimize our Trusted Computing Base
(TCB), avoiding including such monolithic components.
Finally, verification tools must be highly automated and
user-friendly to encourage widespread adoption by eBPF
developers in practical settings.

1The resource requirements of theorem-prover-based tools, such as
VST, vary with implementation. Tools built entirely on theorem provers
such as Coq and Isabelle [39] tend to have high time and memory
demands, while implementations in languages such as C or Python
such as VST-A [49] can greatly reduce these costs.

Inspired by these considerations, we propose
verification toolchain for eBPF programs (VEP) based
on an annotation-guided verification approach. The VEP
toolchain comprises a C-level verifier, an annotation-
aware compiler, and a bytecode-level proof checker.
First, verification is conducted on the annotated C
programs. To ensure they are free of undefined behavior
(UB) per the C standard and only use limited resources.
This phase also generates additional annotations and
proof terms for later bytecode-level verification. Next,
the verified C program is transformed into an annotated
bytecode program by an annotation-aware compiler.
In this step, the code, the annotations, and the proof
terms are all converted to the bytecode level. Finally, a
bytecode proof checker re-evaluates the proofs and the
annotated bytecode to ensure compliance with eBPF
standards, thereby completing the verification process.
Our two-stage verification framework distributes
substantial time and memory overhead to user space,
while the kernel space contains only a proof checker
with minimal time and space requirements.

In summary, we have developed a verification tool
VEP for annotated eBPF programs, which offers the fol-
lowing advantages:

1. VEP achieves full programmability for eBPF pro-
grams, going beyond memory safety to verify the
functional correctness of eBPF programs.

2. In user space, the verifier is highly automatic.
3. In kernel space, the proof checker is secure and

efficient with lower time and memory consumption.
4. Our TCB is small, which includes only the proof

checker in kernel space, excluding the C verifier and
the compiler.

The structure of this paper is as follows: In Section 2,
we describe the design of VEP, including the general
framework and underlying design principles. In partic-
ular, we explain the design necessity of the two-stage
verification scheme. In Section 3, 4 and 5, we introduce
the detailed design of the three components of VEP re-
spectively. In Section 6, we show our experiments and
the performance of the proposed method. Section 7 and
8 introduce our future works and make a conclusion.

2 Overall Architecture of VEP

In this section, we will introduce the overall design of
VEP. Additionally, we will discuss the design choices of
the two-stage verification framework.
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Tool Full Programability Automation Small TCB Low Time/Memory Cost
CBMC/Infer - +++ - - - +++

VST + - - +++ depend on implementation
VeriFast + + - - - +

Table 1: Comparison of different verification tools.

2.1 Two-stage Verification

To achieve full programmability, enabling users to write
any safe and valid program, we have developed the veri-
fication tool VEP for annotated programs. Specifically,
the VEP toolchain verifies whether an eBPF program
(1) is free from aborting behaviors such as null-pointer
dereferences and division by zero, and (2) only consumes
a limited amount of resources.

VEP first utilizes a C-level verifier (referred to as VEP-
C) to perform the initial checks on user-annotated C
programs. Developers can repeatedly use VEP-C when
developing their assertion-annotated source code: in a
typical workflow, developers refine their code until VEP-
C accepts it. At this stage, VEP-C employs symbolic ex-
ecution to compute the strongest postcondition for each
program statement, and uses an SMT solver to automati-
cally derive assertions and generate corresponding proofs.
Postconditions represent the conditions that must be sat-
isfied after a program segment has been executed, and
preconditions represent the conditions that are assumed
to hold before execution begins. The process of symbolic
execution can be understood as computing the strongest
postcondition based on a given precondition.

/*@ 0 ď x < 100 */
x = x + 1;
/*@ 0 ď x ď 100 */

In this example, the precondition is P fi 0 ď x ă 100,
and the postcondition to be checked is Q fi 0 ď x ď 100.
We need to verify whether, after executing c fix=x+1 un-
der the condition P, the postcondition Q holds. The first
step is to compute the strongest postcondition; that is, the
best we can tell about the program state after executing c
given the initial condition P. In this case, the strongest
postcondition is Dx0,x “ x0 `1^0 ď x0 ă 100, where in-
tuitively x0 represents the value of x before the increment
operation. During symbolic execution, such computation
of strongest postconditions has its logic foundation in
Hoare logic rules [30, 40]. The time complexity of the
strongest postcondition computation is approximately
linear with assertion length. So in general, the time com-
plexity of symbolic execution is approximately linear

with the product of the program length and the average
assertion length.

Next, we use an SMT solver to determine whether
Dx0,x “ x0 ` 1 ^ 0 ď x0 ă 100 implies 0 ď x ď 100. Al-
though this example is simple, determining the validity
of assertion derivations can be complex in practice. In
fact, the decision problem is undecidable in general. For-
tunately, existing research on SMT solvers has shown
that modern solvers can produce correct results in many
practical cases. VEP’s built-in SMT solver is required
not only to verify whether the derivations hold but also
to provide (cvc5-style) proofs. Each proof consists of a
list of proof steps. Every proof step derives a new con-
clusion from known propositions (including assumptions
and conclusions proved earlier). Formally, a proof step
contains one proof rule name, the associated parameters
ti, the premises ϕi, the resulting conclusion ψ, and its
side condition C.

RULENAME :
ϕ1, . . . ,ϕn | t1, . . . , tm

ψ
if C

In the example of pDx0,x “ x0 `1^0 ď x0 ă 100q ñ 0 ď

x ď 100, the SMT solver will produce a ‘YES’ with a 138-
line proof. It means that the code has been successfully
verified by VEP-C, with both the corresponding proof
and strongest postcondition generated.

Computed strongest postconditions and SMT-
generated proofs are inserted back into the original
annotated program. The annotation-aware compiler
(VEP-compiler) then compiles the elaborated C program
into annotated eBPF bytecode. Unlike traditional
compilers, relevant assertions and proofs will also
undergo corresponding compilation passes.

Finally, VEP uses a bytecode-level proof checker
(VEP-eBPF) to perform a final verification. VEP-
eBPF similarly uses symbolic execution to compute
the strongest postcondition for each statement and then
checks the corresponding proofs to derive the assertions,
but without requiring SMT solvers: it only checks the
proofs based on basic logic rules, using a minimal proof
checker. If the verification passes, the user-written pro-
gram has successfully undergone VEP’s verification pro-
cess. In the end, the eBPF program will be loaded in the
kernel and its execution is guaranteed to be safe. This

3



security assurance is achieved solely by verifying that
the programs and the proofs checked by VEP-eBPF are
consistent with one another. Therefore, the entire TCB
of VEP is effectively reduced to the lightweight proof
checker, VEP-eBPF.

Developer C Verifier

Annotation Aware Compiler

Bytecode Proof Checker Linux Kernel

User space

Kernel space

Annotated C program

Verified C program

Annotated 
bytecode

Pass

Figure 1: The framework of VEP.

Figure 1 shows the whole workflow of VEP. Our two-
stage verification addressed the three requirements men-
tioned in Section 1.

• Small and efficient to be a part of the kernel.
For our two-stage verification process, this require-
ment is the easiest to fulfill. We leave VEP-C, which
involves numerous SMT solver calls in user space,
while keeping a simple proof checker VEP-eBPF in
kernel space. VEP-eBPF performs only straightfor-
ward logical deductions without involving complex
SMT operations, ensuring that the kernel space com-
ponent remains simple and efficient.

• Final TCB is as minimal as possible.
The safety of loading eBPF programs only relies on
the correct implementation of VEP-eBPF. This re-
duces the risk associated with complex verification
algorithms and enhances the overall reliability of
the verification process.

• Highly automated and easy to use.
Inevitably, our users need to learn how to write asser-
tions to prove the safety of a program. Our approach
incorporates lessons from tools such as VeriFast and
VST, offering an annotation syntax that closely re-
sembles C. This design choice reduces the learning
curve, making it easier for users to write and under-
stand assertions.

2.2 Discussion
In short, we believe an eBPF verifier should be power-
ful enough to reject unsafe programs and accept correct
complex programs, and still be simple enough to be built
in the kernel.

Why not use only the C verifier? In a single-phase C
verification approach, users need to place a high level of
trust in not only the C verifier but also the compiler. But
even widely-used compilers such as GCC and LLVM con-
tinue to receive numerous bug reports daily. For instance,
the LLVM bug tracker has numerous reports of bugs af-
fecting various components of the compiler [24,46], such
as the front end, the optimizer, and the code generator.
These bug reports illustrate the necessity for users to trust
the compiler while being aware of potential issues. In-
stead, we have a trustworthy bytecode verifier to ensure
the final validation before loading, which will also be our
only TCB.

Why not use only the bytecode verifier? Most impor-
tantly, if there is only one bytecode verifier, then it needs
a strong SMT solver, which contradicts the simplicity
goal of the whole verifier discussed above.

Second, the C verifier provides better computer-human
interaction. An optimizing compiler may dramatically
change the structure of a C program, making it impossible
to convert verification results at the bytecode level back to
the source level. If we only report failures at the bytecode
level, users must understand how the whole toolchain
works only to debug their code. Instead, the C verifier
can directly generate C-level feedback, which is more
understandable for developers.

A further reason is that writing an annotated byte-
code program directly is challenging. Bytecode is very
hard to comprehend, and thus it is even more difficult to
write suitable assertions for it. Therefore, VEP provides a
transformation from C assertions to bytecode assertions
through an annotation-aware compiler, which enables
users to write more readable assertions based on C code.

Unsafe C programs may be compiled to a safe byte-
code program. Can such programs pass VEP? As
the compiler is a black box for eBPF developers, we be-
lieve VEP should reject UB in C at the C verification level.
For example, figure 2 shows an unsafe eBPF program.
Due to the insufficient space (size of 20) in buffer to
store the information of comm, the Linux verifier rejects
the function. However, a C program (shown in figure 3)
has out-of-bound array access. After being compiled into
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1 int badhelpercall()
2 {
3 char buffer[1];
4 return bpf_get_current_comm(buffer, 20);
5 }

Figure 2: A program of bad helper call from PREVAIL
benchmark.

1 int badhelpercall()
2 {
3 char buffer[1];
4 char buffer2[20];
5 return bpf_get_current_comm(buffer, 20);
6 }

Figure 3: Another program of bad helper call from PRE-
VAIL benchmark.

bytecode, that access may be a valid albeit unintended
location, say, buffer2. The C standard does not require
bufffer2 to be placed right after buffer. Compilers could
choose to swap them for optimization. Advanced compil-
ers may even detect this UB and aggressively exploit this
fact by eliminating the whole C function. This program
is accepted by version 5.10 of the Linux Kernel but is
rejected by version 5.15. We believe that these programs
need to be rejected as early as possible. VEP-C will reject
all such programs at the C level.

How much additional efforts are needed for writing
annotations? Typically, annotation-based verification
tools require users to provide at least function specifica-
tions and loop invariants. For complex assertion deriva-
tions, users might also need to supply additional asser-
tions to elaborate on the derivation steps. VEP offers
some automation support for generating specifications
and loop invariants, and we have found that, with this
basic support, users can often complete program verifi-
cation without any additional annotations. However, for
complex programs, manual input is still required, partic-
ularly for verifying functional correctness.

If one manually modifies the generated annotated
bytecode, is it possible to trick the VEP-eBPF checker
and break the safety guarantee? Simply put: no. It is
like you cannot modify the proof of 0 “ 0 to prove 0 “ 1.

In scenarios where a user modifies the annotated byte-
code and/or its corresponding proofs, VEP-eBPF still
meticulously verifies the alignment between them. If the

modifications result in a correct match, meaning that the
proof still validates the safety and correctness of the al-
tered bytecode, VEP-eBPF will permit the bytecode to
be loaded into the kernel. This ensures that even after
modifications, as long as the integrity of the proofs is
maintained, the program remains secure and is consid-
ered safe for kernel execution.

Conversely, if a user alters the annotated bytecode and
introduces incorrect or inconsistent proofs, VEP-eBPF
will detect these discrepancies during the verification
process. The proof checker is designed to ensure that
only bytecode with valid, accurate proofs can be ex-
ecuted within the kernel. When erroneous proofs are
encountered—those that fail to substantiate the safety or
correctness of the bytecode—VEP-eBPF will reject the
bytecode, preventing its being loaded into the kernel.

How can we make sure that the pre/postconditions
correctly describe the property that we cares? Re-
garding whether the modified code functions as the user
intends, additional proofs related to functional correct-
ness can be provided by the user to ensure this aspect.
VEP-eBPF’s primary focus is to guarantee that any code
it approves is safe to execute. However, the tool will not
automatically verify that the modified code behaves as
desired; it will only ensure that the code can be safely run
without introducing security vulnerabilities. Therefore, it
is up to the user to include further assertions and proofs
to confirm that the program’s functionality aligns with
their expectations.

2.3 Related Work

To the best of our knowledge, VEP is the first annotation-
guided eBPF verification toolchain. In theory, for any
correct eBPF program written by programmers, There
exists a way to add annotations such that VEP can verify
its correctness.

Most existing eBPF verifiers, including the Linux ver-
ifier [8], PREVAIL [28], etc., are automatic verifiers. Ad-
mittedly, automatic verifiers are easy to use. But in theory,
checking whether an eBPF program can be safely exe-
cuted and terminated is an undecidable problem. Indeed,
both the Linux verifier and PREVAIL encounter prob-
lems when handling loops with complex data structures
and may generate false positive results for certain eBPF
programs, which limits eBPF programs from achieving
full programmability.

We have identified ExoBPF [11] and Serval [37],
which necessitate users to add specifications at the byte-
code level. These tools conduct symbolic execution uti-
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lizing theorem provers and subsequently employ an SMT
solver to resolve constraints. Specifically, ExoBPF uti-
lizes Lean, while Serval leverages Rosette. Although
these tools are indeed powerful, they require users to
be familiar with eBPF bytecode and theorem provers to
effectively write bytecode specifications.

Previous tools for annotation-based verification have
provided notable evaluations; however, they are not fully
appropriate for being an eBPF verifier. Vale [17], utilizing
Dafny, performs the verification of assembly language
cryptographic code that has been annotated for enhanced
clarity. Dafny is based on the Z3 SMT solver, which is a
comprehensive and powerful solver. Ironclad Apps [29]
has modified this foundation, selecting only the essential
aspects of Z3’s solving features to suit operating sys-
tem verification. These extensive verification tools have
proved to be effective in the verification of assembly
code in certain situations. Yet, for eBPF developers, un-
derstanding and annotating at the assembly level requires
a significant investment in learning. It is our objective to
enable developers to annotate directly at the C level, thus
creating an end-to-end verification process from C to
bytecode. The pivotal element of this process will be an
efficient verifier, designed to be sufficiently streamlined
for integration directly into the kernel.

3 Detailed Design of VEP-C

VEP-C is an annotation-based verifier for annotated C
programs, implemented based on traditional symbolic ex-
ecution algorithm with an entailment solver to check the
validity of the verification conditions. It uses separation
logic assertions to represent program states and performs
symbolic execution. The entailment solver is based on a
separation logic elimination solver and an SMT solver.
During the verification process, it generates proofs for
assertion derivations. In this section, we will detail the
design of VEP-C, focusing on the assertion syntax, the
symbolic execution process, and the verified program.

3.1 Verification Process of VEP-C
Throughout this subsection, we use the annotated pro-
gram memset in Figure 4 as an example2. In this exam-
ple, we intentionally write “i = 0; for (; i < n;)
{ ...; i ++ }” (respectively in line 7, 10, and 21)
rather than the commonly used “for (i = 0; i < n;
++ i) { ... }” to illustrate the verification steps more

2To facilitate the reader’s understanding, we present a version of
the annotated program that leans more towards functional correctness.
Assertions in actual code are more straightforward.

1 void memset(char *p1, __u32 n, char v)
2 {˚@ With l1
3 Require chars(p1,n,l1)
4 Ensure D l2, chars(p1,n,l2)
5 ˚{

6 {
7 __u32 i = 0;
8 {˚@ i == 0 && chars(p1,n,l1) ˚{
9 {˚@ Inv: D l2, 0 ď i ď n && chars(p1,n,l2) ˚{

10 for (; i < n; ) {
11 {˚@ D l2, 0 ď i < n && chars(p1,n,l2) ˚{
12
13 p1[i] = v;
14
15 {˚@ D l3 l2, 0 ď i < n &&
16 l3[0:i] == l2[0:i] &&
17 l3[i] == v &&
18 l3[i+1:n] == l2[i+1:n] &&
19 chars(p1,n,l3) ˚{
20
21 i++;
22
23 {˚@ D l3 l2, 0 ď i - 1 < n &&
24 l3[0:i-1] == l2[0:i-1] &&
25 l3[i-1] == v &&
26 l3[i:n] == l2[i:n] &&
27 chars(p1,n,l3) ˚{
28 }
29 {˚@ D l2, i == n && chars(p1,n,l2) ˚{
30 return ;
31 }

Figure 4: Annotated memset.

conveniently. This is not a requirement or restriction in
realistic verification tools.

Line 2-5: In the beginning, the user needs to provide
a function specification, which indicates the condition
that the arguments together with the initial program state
need to satisfy when entering the function and the con-
dition that needs to be satisfied when exiting the func-
tion. A function specification consists of a With clause,
a Require clause, and an Ensure clause. The Require
clause indicates the function precondition; the Ensure
clause indicates the function postcondition; and the With
clause indicates the list of logical variables mentioned in
precondition which will be used in the whole program as-
sertions. In this example, the precondition is chars(p1,
n,l1) (line 3), which indicates that p1 is an array of
length n, with its data l1 being a list of characters. The
postcondition provided in line 4 specifies that the array
stored at p1 will be modified to a new character list l2.

Line 7-8: To verify the program in Figure 4, VEP-C
initiates symbolic execution based on the preconditions
of the function. For instance, after processing the vari-
able declaration and initialization at line 7, the strongest
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postcondition in line 8 is computed. In this example, as-
sertions generated through symbolic execution are high-
lighted in red, distinguishing themselves from the asser-
tions provided by the user, which are displayed in blue.

Line 9-29: Before entering the loop, the user needs
to provide a loop invariant, which indicates the property
that the program state needs to satisfy at the beginning
and end of each loop iteration. VEP-C will check whether
the assertion before entering the function (lines 8) im-
plies the loop invariant (line 9). If the above check passes,
VEP-C will continue to symbolically execute the loop
condition testing from the loop invariant. Thus, in its
strongest postcondition (line 11), an additional proposi-
tion i ă n is added, comparing to the Inv. Moreover,
symbolic execution will generate the strongest postcon-
dition of the assignment statement (lines 15-19), and the
strongest postcondition of the incremental step (lines 23-
27). VEP-C will check whether the assertion entails the
loop invariantInv. The check is successful, thereby prov-
ing the correctness of the loop invariant. Subsequently,
we can derive the strongest postcondition at the end of
the loop, which is the strongest postcondition of Inv
when the loop condition evaluates to false (line 29).

Line 30: Finally, we perform symbolic execution on
the return statement. Unlike other statements, the return
statement requires the calculation of the return value (al-
though there is no return value in this example), followed
by the deallocation of all declared local variables and
corresponding updates of the assertions. In this case, the
variable i is deallocated, and the assertion is updated ac-
cordingly into D l2, chars(p1,n,l2). The final step
is to check whether the updated assertion implies the
postcondition of the function. The proof here is straight-
forward, thus completing the verification of this example.

3.2 Assertion Language of VEP-C

In the example of Figure 4, we used first-order logic to de-
scribe program states. For some C programs, such asser-
tions are sufficient to capture time costs and the changes
made to memory. However, most programs manipulate
more than one data structure (array, linked list, tree, etc).
These data structures are stored in disjoint memory loca-
tions and such disjointness is critical in verification. For
example, the C standard says that strncpy copies strings
from source to destination, while the source and desti-
nation memory space are disjoint [32, Section 7.24.2.4].
Therefore, some naive specification like the one in Fig-
ure 5 does not correctly describes strncpy’s behavior.

This specification appears to be very concise, but it
overlooks a critical issue: whether the two arrays, p1 and

1 void strncpy (char *p1, char *p2, __u32 n)
2 /*@ With l1 l2
3 Require chars(p1,n,l1) && chars(p2,n,l2)
4 Ensure chars(p1,n,l2) && chars(p2,n,l2)
5 */;

Figure 5: A naive strncpy specification.

p2, overlap. If there is an overlap, the behavior of the
program could differ significantly, leading to potential
unintended side effects that are not accounted for by this
simple specification. Therefore, merely using first-order
logic is insufficient to meet our needs.

State-of-the-art research has provided us with new in-
sights, particularly through the introduction of separation
logic into assertions. Tools such as VST, VeriFast, and
Hip/Sleek [38] have demonstrated that using separation
logic is an effective method for clearly describing prop-
erties and facilitating symbolic execution, especially in
proofs related to memory properties.

Separation logic [41] uses a new connective separating
conjunction to ensure that different names duplicate no
identical addresses. The separating conjunction P˚Q rep-
resents the existence of two disjoint portions of the state,
one that satisfies P and one that satisfies Q. Specifically,

m |ù P˚Q ô Dm1,m2.m “ m1 Zm2 ^m1 |ù P^m2 |ù Q.

Here Z means the disjoint union3 and m |ù P means m
satisfies P. A distinction between ˚ and boolean con-
junction && is that P ˚ P ‰ P where P&&P “ P. In
particular, if storepp,vq means that the value v is stored
at address p, storepp,vq ˚ storepq,uq implies p ‰ q, and
thus storepp,vq ˚ storepp,vq is always false: there is no
way to divide a heap that a cell p goes to both partitions.

VEP-C uses separation-logic assertions in the canoni-
cal form of a symbolic heap. A symbolic heap is in the
form DÝÑx .pP1 ^ ¨¨ ¨ ^ Pn ^ Q1 ˚ ¨ ¨ ¨ ˚ Qmq, where the pure
part P describes memory-irrelevant properties between
terms (e.g. e1, e2), and the spatial part Q is a separating
conjunction of spatial predicates. For example, e1==e2
and e1>e2 can appear as memory-irrelevant conjuncts;
the empty heap predicate emp and the points-to predicate
store(e1,e2) can appear as spatial conjuncts. Addi-
tionally, users can define their own predicates according
to their specific needs. For example, a user can define a
string array predicate such as chars(a,e1,e2).

With the help of separation logic, we can write the
specification shown in Figure 6, which describes the sce-

3AZB“ AYB if AXB“H, Otherwise, AZB is undefined. For
example, t1,2,3,5u “ t1,3uZt2,5u, but t1,3uZt1,2u is undefined.
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nario stipulated by the C standard where p1 and p2 do
not overlap in memory.

1 void strncpy (char *p1, char *p2, __u32 n)
2 /*@ With l1 l2
3 Require chars(p1,n,l1) * chars(p2,n,l2)
4 Ensure D l3,
5 chars(p1,n,l3) * chars(p2,n,l2)
6 */;

Figure 6: A correct strncpy specification.

Traditionally, these terms (e1, e2, etc) above in pure
parts and spatial parts should be memory-irrelevant ex-
pressions. For example, if x is a C variable of a struct
type, then &(x.tail) is a memory-irrelevant expression,
because computing its value does not include a load from
memory. Many verification tools use this setting inter-
nally because this assertion language prevents a lot of
ambiguity. For example, it may be unclear whether the
predicate store(*x, 0) only claims the memory per-
mission at address *x, or it claims the memory permis-
sion at addresses *x and x – if we take the address of
storing variable x into consideration, it becomes even
more complicated. VEP-C extends traditional symbolic
heap and allows users to use memory-related expressions,
which makes assertions more concise. VEP-C automat-
ically transforms the expression to the traditional sym-
bolic heap. In this way, users avoid a large portion of
boilerplate4. For example, VEP-C allows users to write
*y==xÑtail, which is equivalent to:

D v yp,
store((field_addr(x,tail),v) *
store(y, yp) * store(yp, v)

3.3 Output of VEP-C
After the symbolic execution and entailment solver pro-
cesses, VEP-C completes the verification of the input
program. Based on the verification process, VEP-C gen-
erates a verified C program, which is then passed to the
VEP-compiler to be compiled into bytecode. Figure 7
illustrates the verified C program corresponding to the
program in Figure 4. Due to space constraints, we have
omitted the specific assertions and proof content.

In this example, Proof_1, Proof_3, Proof_4,
Proof_5, and Proof_7 pertain to the verification of
various safety checks during symbolic execution. These
include range checks for array writes, as well as checks

4The detailed syntax and transformation algorithm can be found in
Appendix A and B.

1 void memset(char *p1, __u32 n, char v)
2 {˚@ With l1
3 Require chars(p1,n,l1)
4 Ensure chars(p1,n,repeat(v,n))
5 ˚{

6 {
7 __u32 i = 0;
8 {˚@ Assertion_1 with Proof_1˚{
9 {˚@ Inv with Proof_2 and Proof_6˚{

10 for (; i < n; ) {
11 {˚@ Assertion_2 with Proof_3˚{
12 p1[i] = v;
13 {˚@ Assertion_3 with Proof_4˚{
14 i++;
15 {˚@ Assertion_4 with Proof_5˚{
16 }
17 {˚@ Assertion_5 with Proof_7˚{
18 return ; {˚@ Proof_8˚{
19 }

Figure 7: Verified memset.

to ensure that there are no undefined behaviors during
assignments. Proof_2 and Proof_6 are associated
with the verification of the validity of loop invariants.
Proof_8 ensures that the function postcondition is
satisfied upon completion of the function.

4 Detailed Design of VEP-compiler

An annotated C program undergoes several compilation
passes before being converted into an annotated eBPF
bytecode. While most of these passes are standard, modi-
fications to assertions and proofs are necessary through-
out the process. It’s worth noting that the VEP-compiler
contains only a few optimization passes at present, pri-
marily for simplicity, which may not generate the most
efficient bytecode. How to incorporate additional compi-
lation optimizations while ensuring accurate transforma-
tion of assertions and proofs is a future work.

Figure 8 shows the whole compilation process. Every
pass has a single simple and clear purpose, as in the
nanopass framework [43]. We discuss the transformation
during relevant passes in the rest of this section.

4.1 IR Generation

In our intermediate representation, we replace structure-
member access by dereferencing the address of the struc-
ture plus the offset of the member. We do the same for
assertions, as illustrated by the following example.

8
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Figure 8: The nanopass-style compilation process

//@ D v, store((field_addr(x,tail),v)
ó

//@ D v, store(x + 8,v)

4.2 Calling Conventions

The BPF calling convention is defined as follows.
1. R0 stores the return value.
2. R1 to R5 are used to pass arguments.
3. R6 to R9 are callee saved. Others are caller-saved.

All the helper functions obey the suggested calling con-
vention. We adopt the same convention in compiling
in-program functions, so the compiler modifies function
specifications to reflect the calling convention as follows.

1. Return value __return is replaced by R0.
2. Function parameters are replaced by R1 to R5.
3. State that R6 to R9 are preserved.

The generated code saves used callee-saved registers on
the stack at the beginning of a procedure and restores
them before returning. To convince the symbolic executor
that callee-saved registers are indeed unchanged, we also
modify each assertion in the procedure. They state that
certain portions of the stack contain the original values
of callee-saved registers.

Figure 9 shows the specification in Figure 5 produced
by this pass. Besides the substitution defined previously,
the compiler introduces auxiliary logic variables _Ri-s
to relate the register values at function entry and those at
the return point.

4.3 Register Allocation

We adopt a standard “iterated register coalescing” algo-
rithm [27]. Most of the time, simply substituting variables

strncpy:
/*@ With l1 l2 _R1 _R2 _R3 _R6 _R7 _R8 _R9

Require
_R1 == R1 &&
_R2 == R2 &&
_R3 == R3 &&
_R6 == R6 &&
_R7 == R7 &&
_R8 == R8 &&
_R9 == R9 &&
chars(R1, R3, l1) * chars(R2, R3, l2)

Ensure
_R6 == R6 &&
_R7 == R7 &&
_R8 == R8 &&
_R9 == R9 &&
chars(_R1,_R3,l2) * chars(_R2,_R3,l2)

*/

Figure 9: Transformation of the function specification
for strncpy. p1, p2, n and __return are replaced by R1,
R2, R3, and R0, respectively.

in assertions with their corresponding registers (or their
location on the stack, if it is spilled) is enough. The only
exception is when the variable is not live (the value of
the variable is not used later) at that point. In that case,
the register does not necessarily hold the value of the
variable: maybe another variable is using it. To make the
assertion valid while retaining information, the variable
should be substituted by an existentially quantified logic
variable. Figure 10 shows a complete example. The third
line in the source code takes the address of x, so x is
spilled to the stack. p and q are assigned to the same
register R1 because they are unused.

In annotated code, register allocation can sometimes
yield interesting results. Here is one such example.

int x = 0; R0 = 0
//@ x == 1 ñ //@ D _x, _x == 1
return; ret

In the previous example, the C code clearly fails VEP-
C verification, but the compiler generates valid eBPF
bytecode for it. This is due to liveness analysis determin-
ing that the value of x is not live at that point. We believe
rejecting such code at the VEP-C level is reasonable and
does not compromise programmability. Even if one only
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int x, y, *p, *q;
x = 0; y = 1;
p = &x; q = 0;
//@ y == x + 1 && p != q
return y;

ó

*(R10 - 4) = 0
R0 = 1
R1 = R10
R1 -= 4
R1 = 0 // p and q are not used
/*@ R1 == *(R10-4) + 1 &&

D _p _q, _p != _q */
ret

Figure 10: An assertion after register allocation.

uses VEP-compiler and VEP-eBPF, he/she can still trust
the safety of the C code, because (1) the precondition
is unchanged, and (2) propositions related to resources
(time, memory) are unaffected.

4.4 Frame Layout

In annotated C programs, a variable is available after we
declare it. But in bytecode, there are no such declarations.
So the frame—which contains spilled scalar variables,
structures, and so on—should be specified in the pre-
condition so that the symbolic executor knows which
addresses are valid. Knowing how much stack space a
procedure consumes is also necessary to verify that the
whole program does not exceed the stack space limit.

Figure 11 shows a complete example. In the exam-
ple, we assume the compiler places l at R10-16. Con-
sequently, R10-16 stores an integer, and R10-8 stores a
pointer to a struct list. The underscores indicate
that their actual values are not needed.

5 Detailed Design of VEP-eBPF and Proof
Check

VEP-eBPF processes the annotated bytecode produced
by the VEP-compiler and performs symbolic execution.
During this execution, when it encounters assertion entail-
ment or safety checks typically requiring an entailment
solver, VEP-eBPF distinguishes itself from VEP-C by
not invoking an SMT solver. Instead, it verifies whether

struct list {
int x;
struct list *next;

};
int f()
/*@ Require emp

Ensure __return == 0 */
{
struct list l;
l.head = 0;
return l.head;

}

ó

f:
/*@ Require

*(R10-16) == _ *
*(R10-8) == _

Ensure R0 == 0 */
...

Figure 11: A precondition decorated with frame infor-
mation. Assume l is located at R10-16, then the com-
piler guarantees that R10-16 stores an integer and R10-8
stores a pointer to a struct list. The underscores
indicate that they are uninitialized.

the proofs, generated by the SMT solver and transformed
by the VEP-compiler, correctly establish the required
entailments. If all entailments can be validated through
their corresponding proofs, it indicates that the bytecode
is safe, allowing the program to be loaded into the kernel.

VEP-eBPF’s proof language is designed to include
both spatial parts derivation proofs and pure proposi-
tional parts derivation proofs. The spatial parts proofs
are primarily syntactic transformations of the entailment
using established separation logic properties. These prop-
erties have been formalized and proved within the Coq
proof assistant, ensuring their correctness. On the other
hand, the pure parts proofs are based on a proof language
inspired by cvc5, a well-known SMT solver. In this pro-
cess, no SMT solving is required. The spatial syntax
transformation and pure proof checking are handled by
highly efficient algorithms.

As a result, VEP-eBPF is an efficient, low-memory
proof checker ideally suited for kernel-space deployment.
The lightweight nature of these algorithms contributes
to the overall performance, making VEP-eBPF a robust
tool for verifying the safety of eBPF bytecode without
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the overhead of traditional SMT-based methods.

6 Evaluation

In this section, we evaluate the time cost and memory
usage of VEP and compare its performance with the
Linux verifier and PREVAIL. Our benchmark primarily
includes four categories of programs: the Linux samples,
the Prevail samples, C standard library string functions,
and a selection of unsafe programs. Table 2 and Table 3
present the results of the Linux verifier, PREVAIL, and
VEP on our benchmark. The selected programs encom-
pass common data structure types frequently utilized in
eBPF applications. Detailed results for each program can
be found in Appendix C, in Table 4 and Table 5.

We used Linux Kernel version 5.15 and the PREVAIL
version updated on August 25, 2024. All data can be
accessed via our GitHub repository5.

6.1 Performance
From the perspective of time and memory usage, the
Linux verifier exhibits significantly greater stability,
showcasing excellent average performance in both met-
rics across the majority of programs. In contrast, the
performance of both PREVAIL and VEP-C is approxi-
mately comparable, with both displaying instability in
certain instances. While VEP-eBPF’s time overhead has
yet to match that of the Linux verifier, it has demon-
strated a notable performance improvement of 3 to 5
times compared to VEP-C and PREVAIL. Furthermore,
VEP-eBPF’s memory usage typically falls within the
range of 2,000 to 3,000 KB for most programs, which is
approximately one-fourth of the memory consumption
observed in VEP-C. These enhancements in both time
and memory efficiency clearly underscore the advantages
of our framework.

6.2 Compatibility
From the perspective of verification results, both the
Linux verifier and PREVAIL can reject the unsafe pro-
grams correctly. However, they exhibit relatively high
false positive rates, i.e., many safe programs are rejected.
This can be attributed in part to their limitations on han-
dling loops (e.g., programs in Stringlib) and, in part, to
bugs in the verifiers themselves or instability in the SMT
solver (e.g., programs in Linux-samples and PREVAIL-
samples yielding different results across different ver-
sions of the Linux verifier and PREVAIL). VEP, on the

5https://anonymous.4open.science/r/NSDI25-VEP-535-81EC/

other hand, adopts a highly conservative approach by re-
quiring the SMT solver to generate proofs and employs
a lightweight proof checker to fundamentally eliminate
false negatives. As long as the user provides correct an-
notations, VEP also ensures there are no false positives.

6.3 Manually Written Assertions

Tables 2 and 3 present a comparison of the total lines
of code alongside the number of assertion lines added.
This demonstrates that our tool can effectively validate
programs without requiring an extensive number of as-
sertions. Moreover, we have successfully generated spec-
ifications for several functions through simple methods.
As our tool continues to evolve, we anticipate the ability
to generate even more assertions automatically, thereby
further reducing the burden on users.

6.4 Case Study : Key_Connection

In the last row of Table 2 and 3, we also included an ad-
ditional example of a non-eBPF program. This example
features a function from a Layer 7 (L7) filter, which is
designed to determine the appropriate server to connect
to based on a string key. Detailed code and the anno-
tations for this example can be found in Appendix D.
For this program, VEP generates 350 lines of annotated
bytecode and 5,800 lines of proof. This example demon-
strates that our tool is genuinely aimed at achieving full
programmability.

Having full programmability could greatly expand the
applicability and potential of eBPF. For example, tra-
ditional sidecars may cause security and performance
issues for service mesh users, and thus Cilium [20] pro-
posed to implement sidecar functionalities in eBPF. How-
ever, due to the inability to support flexible L7 processing
in eBPF, Cilium encounters difficulty in meeting cus-
tomers’ demands and thus has to decouple the complex
L7 functions from the sidecar to an additional proxy [23].
With VEP, such a proxy can be removed, which may
simplify the design of the eBPF-based sidecar.

7 Future Work

In advancing eBPF program verification, several critical
areas offer promising research opportunities. This sec-
tion outlines key directions for future work designed to
enhance and expand the capabilities of our verification
framework, aiming to make it more robust and applicable
to real-world scenarios.
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Programs Total Code Linux verifier PREVAIL
PR MaxT AvgT MaxM PR MaxT AvgT MaxM

Lines (ms) (ms) (KB) (ms) (ms) (KB)
Linux samples 618 9/10 1.13 0.94 4196 10/10 48.37 12.48 7918

PREVAIL samples 252 6/10 1.08 0.71 4200 8/10 74.67 13.88 5279
StringLib 321 3/10 2.69 1.83 5168 1/10 39.89 39.89 7267

Unsafe Programs 195 10/10 - - - 10/10 - - -
Key_Connection 63 0/1 - - - 0/1 - - -

Table 2: Evaluation results for Linux verifier and PREVAIL.

Programs Total Asrt VEP-C compiler VEP-eBPF
PR MaxT AvgT MaxM AvgT MaxT AvgT MaxM

Lines (ms) (ms) (KB) (ms) (ms) (ms) (KB)
Linux samples 76 10/10 158.12 39.46 32569 1.73 21.69 8.42 8034

PREVAIL samples 49 10/10 40.23 9.38 12422 0.47 4.40 2.76 3047
StringLib 112 10/10 36.60 13.47 12612 0.66 3.54 2.63 2970

Unsafe Programs 32 10/10 - - - - - - -
Key_Connection 17 1/1 16.24 16.24 8534 0.56 2.48 2.48 2440

Table 3: Evaluation results for VEP.

Towards Functional Correctness As our demands for
programs increase, memory safety alone no longer meets
our development requirements. We aim to go further by
supporting the verification of the functional correctness
of eBPF programs. From this perspective, VEP needs to
enable users to directly write proofs within C annotations
or provide an interface to incorporate external proofs.

Towards Less Annotations Given that VEP currently
requires users to provide necessary C annotations, in-
cluding function preconditions, postconditions, and loop
invariants, we aim to introduce additional tools to auto-
mate the generation of these annotations and reduce the
user’s burden. Traditional verification tools [22, 34] have
already made progress in this area, and recent advance-
ments have been achieved by integrating large language
models [42, 44]. In the future, VEP will be able to adopt
similar approaches to automate the generation of some
annotations, thereby minimizing the user’s workload.

Towards Compilation Optimization Advanced op-
timization passes may dramatically change the control
flow and data flow of a program, and assertion anno-
tations should be modified accordingly. In our current
compiler, one such compilation pass is register allocation,
in which multiple variables may be represented by one
register (as long as their lifetime does not overlap) — we

translate all these variables to the register in assertions.
In the future, optimization passes may be added to elimi-
nate some redundant instructions or redundant variables.
Then, corresponding algorithms need to be designed to
compile assertion annotations.

8 Conclusion

Since its proposal, eBPF is widely used in various do-
mains while its verification often comes with a trade-off
between safety and programmability. In this paper, we
propose a two-stage automatic formal framework that
addresses this issue between verification and programma-
bility. It empowers eBPF developers to write annotations
regarding the memory to guide automatic verification.
As far as we are concerned, this is the first approach
that could verify the safety and resource constraints of
eBPF programs without compromising programmability.
Specifically, a safe eBPF program can always pass VEP’s
check, provided that it includes sufficient annotations.

Based on this, we implement a prototype toolchain
VEP. Our evaluation further demonstrates that VEP can
verify the safety of complex programs with moderate
overhead, which highlights the potential of the two-stage
framework as a practical solution for kernel security. We
believe this will enable eBPF to support more flexible
and powerful programs across a wider range of domains.
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A Syntax of VEP-C Assertions

In this section, we discuss the syntax of VEP-C asser-
tions, which are divided into two main categories: user
assertions and internal assertions. User assertions enable
developers to annotate C code with specific directives,
whereas internal assertions support the tool’s symbolic
execution and reasoning processes.

A.1 Syntax of User Assertions

The primary design principle of user assertions is to align
as closely as possible with the habits of C programmers,
while also ensuring sufficient expressiveness for formal
reasoning at the logical level. We begin by defining the
expressions used in user assertions, followed by an expla-
nation of how to construct a complete assertion. Lastly,
we will discuss the structure of function specifications
within this framework.

The expressions are inductively defined in Figure 12.
The only thing unfamiliar is custom functions. They are
functions in the logic world. For example, we provide
a built-in function revplq that reverses a list (a list of
values, not a data structure in C).

A user assertion can consist of several branches, each
of which is divided into a section that describes pure
facts and another that describes memory aspects. The
syntax tree is defined in Figure 13. The semantics of
user assertions is a little different from textbook sepa-
ration logics, because of its HCI nature. To convince
yourself that our transformation explained later makes
sense, imagine we normalize every memory-related ex-
pression to a form *l. We assume two ls are different
simply by their syntax. Then, each proposition—whether
pure or spatial—describes such memory locations in addi-
tion to their spatial part, if any. When they are connected
through conjunction && or separating conjunction *, we
union these locations; when connected through ||, we
keep them local to each case.

Just like custom functions, users can introduce cus-
tom predicates. For example, our built-in predicate
Ebpf_mappmq denotes that an eBPF map is stored at a
location m.

A function specification consists of three parts: log-
ical variable list (With clause), precondition (Require
clause), and postcondition (Ensure clause).

With clause. An implicit "@" around the specification.
They are sometimes essential to relate the program state
at the function exit point to the one at the function entry.
They can even appear in annotations inside the function
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Expression e ::= z P Z64 integer literal
| vp | vl C variable, logic variable
| &e | *e address, dereference
| de | e1‘ e2 unary and binary operation
| e1[e2] array indexing
| e.m | e->m member access
| sizeofptq type size
| f pe1, . . . ,enq custom function

Unary operator d ::= ! | ˜ | - | + | ...
Binary operator ‘ ::= + | - | * | / | ...

Figure 12: Syntax of expressions.

Pure proposition P ::= e1‘ e2 comparison
| P1 && P2 conjunction
| P1 || P2 disjunction
| P1 -> P2 implication
| !P negation
| exists x,P existential quantification
| forall x,P universal quantification
| ppe1, . . . ,enq custom predicate

Spatial proposition, assertion S ::= P
| P && S conjunction
| S1 * S2 separating conjunction
| S1 || S2 disjunction
| exists x,S existential quantification
| ppe1, . . . ,enq custom predicate

Comparison operator ‘ ::= > | >= | < | <= | = | !=

Figure 13: Syntax of user assertions.

so that developers have convenient access to the initial
state. In general, their values should be "determinable"
from the precondition.

Require clause. The precondition describes properties
that the program state at function entry should satisfy.

Ensure clause. The postcondition describes properties
that the program states when the function exits should
satisfy. We use the keyword __return to refer to the
return value, if any.

The syntax of function specifications is formally de-
fined in Figure 14:

A.2 Syntax of Internal Assertions
We use a canonical form of assertions, internal assertions,
actual symbolic execution, constraint solving, and every-
thing. They have a simpler structure and clearer seman-
tics (paradoxically, user-friendly assertions have complex
semantics). Each internal assertion consists of several
branches; each of which includes four parts: Exist, Lo-
cal, Prop, and Sep. Exist is a list of existential variables,
either explicitly written by developers or automatically
generated during transformation (explained later). Local

describes the relations between program variables and
the logic world. For example, in C, &v “ e means that
the address of the program variable v is expression e; in
eBPF bytecode, r “ e means the register r stores value e.
Prop stores pure facts. Sep stores memory-related facts.
The syntax of internal assertions is defined in Figure 15.

We will use an example to clearly illustrate the dis-
tinction between user assertions and internal assertions.
Consider the following annotation in a C program:

exists v, y = &x && x == 2 * v &&
forall n, v != n * n

An equivalent internal assertion looks like this:

Ex : v vx vy
Local : &x = px, &y = py
Prop : vy == px && vx == 2 * v &&

forall n, n != n * n
Sep : store(px, int, vx)

* store(py, int, vy)

In this example, the user assertion describes an integer
variable x, whose value is an even number that is not a
perfect square; y is a pointer to x. The internal assertion
introduces two new existential variables vx and vy to
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Function specification F ::= p@v1, . . . ,vn.Spre,Spostq

Figure 14: Syntax of function specification.

Assertion A ::= H singleton
| A_H disjunction

Heap H ::= Dx1, . . . ,xn.L^P‹S
Local L ::= ‚ empty

| &v“ e,L address
Pure proposition P ::= e1‘ e2 comparison

| ␣P | P1^P2 | P1_P2 | P1 Ñ P2 connective
| Dx.P | @x.P quantification
| ppe1, . . . ,enq custom predicate

Spatial proposition S ::= ‚ empty heap
| S1 ‹S2 separating conjunction
| e1 ÞÑ e2 type t store
| e1 ÞÑ ´ type t uninitialized store
| ppe1, . . . ,enq custom predicate

Expression e ::= z P Z integer constant
| x logic variable
| de | e1‘ e2 arithmetic
| &e1 Ñ m member offset
| f pe1, . . . ,enq custom function

Figure 15: (Abstract) Syntax of C internal assertions.

Normal form N ::= ÝÑH
Heap G,H ::= DÝÑx .P&&ÝÑB
Body B ::= ppe1, . . . ,q

Figure 16: Syntax of DNF.

represent the current values of the program variables x
and y, respectively. It is more structured and facilitates
symbolic execution more conveniently.

B Transformation To Internal Assertion

In this section, we show how user assertions are trans-
formed into internal assertions.

B.1 Step 1: Normalization

This phase puts an assertion in a sort of disjunctive nor-
mal form (DNF). Such a normal form is defined in Fig-
ure 16. The normalization procedure is described in Fig-
ure 17.

B.2 Step 2: Convert Expressions

In this phase, we convert expressions in user assertions to
expressions in internal assertions, at the same time gener-
ating auxiliary Local and Sep. The procedure is defined
in Figure 18. The judgement V pe,L,S,xq “ pe1,L1,S1,x1q

means that under context L,S,x, the value of e is e1 and
the context is updated to L1,S1,x1. A is similar, computing
addresses (if valid) instead of values. The conversion is
naturally extended to pure propositions T pPq and spatial
propositions T pBq, replacing each expression e in them
with V peq, which we omit here.

B.3 Step 3: Sanity Check
Our pure propositions P can contain spatial expressions,
so they are not really pure. Consequently, some user
assertions cannot be transformed into internal ones. For
example, the following user assertion is invalid.

forall i, 0 <= i && i < 4 => a[i] == 0

A simple scope checking on internal assertions is
enough to exclude such invalid cases. That is, every logic
variable appearing in S should be bound by existential
variables introduced in exists x,S.

C Full Evaulations

Full test results of previous work and VEP are shown in
Table 4 and Table 5, respectively.

D Case Study : Key_connection

Figure 19 presents the complete Key_connection
program, though only the assertions used to verify
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normpPq “ P normpppe1, . . . ,enqq “ ppe1, . . . ,enq
normpSq “ DÝÑx1 .P1&&

ÝÑB1, . . . ,DÝÑxn .Pn&&
ÝÑBn

normpDx,Sq “ DÝÝÑx,x1.P1&&
ÝÑB1, . . . ,DÝÝÑx,xn.Pn&&

ÝÑBn

normpSq “ DÝÑx1 .P1&&
ÝÑB1, . . . ,DÝÑxn .Pn&&

ÝÑBn

normpP && Sq “ DÝÑx1 .pP&&P1q&&
ÝÑB1, . . . ,DÝÑxn .pP&&Pnq&&

ÝÑBn

normpS1q “
ÝÑH1 normpS2q “

ÝÑH2

normpS1 || S2q “
ÝÝÝÑH1H2

normpS1q “ H1, . . . ,Hn normpS2q “ G1, . . . ,Gm

normpS1 * S2q “ mergepH1,G1q, . . . ,mergepH1,Gmq, . . . ,mergepHn,Gmq

mergepDÝÑx1 .P1&&
ÝÑB1,DÝÑx2 .P2&&

ÝÑB2q “ DÝÝÑx1x2.pP1&&P2q&&
ÝÝÑB1B2

Figure 17: Normalization procedure.

V pz,Cq “ pz,Cq V pvl ,Cq “ pvl ,Cq V psizeofptq,Cq “ psizeofptq,Cq V p&e,Cq “ Ape,Cq

V pe,Cq “ pe1,C1q

V pde,Cq “ pde1,C1q

V pe1,Cq “ pe1
1,C

1q V pe2,C1q “ pe1
2,C

2q

V pe1 ‘ e2,Cq “ pe1
1 ‘ e1

2,C
2q

V pe1,Cq “ pe1
1,C1q ¨ ¨ ¨ V pen,Cn´1q “ pe1

n,Cnq

V p f pe1, . . . ,enq,Cq “ p f pe1
1, . . . ,e

1
nq,Cnq

Ape,Cq “ pa,L,S,xq a P dompSq

V pe,Cq “ pSpaq,L,S,xq

Ape,Cq “ pa,L,S,xq a R dompSq v fresh
V pe,Cq “ pv,L,Sta ÞÑ vu,x Y tvuq

Ap*e,Cq “ V pe,Cq Ape1[e2],Cq “ V pe1+e2,Cq

Ape,Cq “ pe1,C1q

Ape.m,Cq “ pe1 `offsetpmq,C1q

V pe,Cq “ pe1,C1q

Ape->m,Cq “ pe1 `offsetpmq,C1q

vp P dompLq

Apvp,L,S,xq “ pLpvpq,L,S,xq

vp R dompLq a fresh

Apvp,L,S,xq “ pa,Ltvp ÞÑ au,S,x Y tauq

T pP,tu,tu,tuq “ pP1,Cq T p
ÝÑB ,Cq “ p

ÝÑ
B1 ,L,S,yq

T pDÝÑx .P&&ÝÑB q “ Dx1, . . . ,xn,y1, . . . ,ym.L ^ P1 ˚i B1
i ˚aPdompSq a ÞÑ Spaq

T p
ÝÑH q “

łÝÝÝÑT pHq

Figure 18: Expression conversion.
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memory safety are shown here. In this program,
conntÑconn_list is a linked list of servers to con-
nect to. To describe the memory structure related to this
linked list, we introduce two predicates: ConnListrep
and ConnListseg. These predicates are defined as fol-
lows:

ConnListrep(x) := x == 0 && emp ||
D n l num mark_v length,

0 ď n && n < 128 && l[n] == 0 &&
x Ñ num_packet == num &&
x Ñ mark == mark_v &&
x Ñ lengthsofar == length &&
store_char_array(&(xÑkey), 128, l) *
ConnListrep(x Ñ next)

ConnListseg(x,y) := x == y && emp ||
D n l num mark_v length,

0 ď n && n < 128 && l[n] == 0 &&
x Ñ num_packet == num &&
x Ñ mark == mark_v &&
x Ñ lengthsofar == length &&
store_char_array(&(xÑkey), 128, l) *
ConnListseg(x Ñ next, y)

In this definition, store_char_array corresponds to
chars in Figure 4, representing a character array. This is
purely a recursive definition describing the server list.

1 #include "bpf.h"
2
3 struct connection{
4 char key[128];
5 unsigned int num_packet;
6 unsigned int mark;
7 unsigned int lengthsofar;
8 struct connection * next;
9 };

10
11 struct identifier{
12 int mark;
13 char name[32];
14 char pattern[512];
15 };
16
17 struct conntrack{
18 int queuenum;
19 int iden_num;
20 struct identifier *iden_array;
21 struct connection *conn_list;
22 };
23
24 struct connection * get_connection
25 (struct conntrack * connt, char * key)
26 {˚@ With n0 m0 l0 Connlist
27 Require 0 ď n0 && l0[n0] == 0 && n0 < m0 &&
28 connt Ñ conn_list == Connlist &&
29 store_char_array(key, m0, l0) *
30 ConnListrep(Connlist)
31 Ensure D v, __return == v && TT
32 ˚{

33 {
34 struct connection * p ;
35 if(connt == NULL || key == NULL)
36 return NULL;
37 p = conntÑconn_list;
38 {˚@ Inv
39 0 ď n0 && l0[n0] == 0 && n0 < m0 &&
40 connt Ñ conn_list == Connlist &&
41 store_char_array(key, m0, l0) *
42 ConnListrep(p) * ConnListseg(Connlist, p)
43 ˚{

44 while(p != NULL){
45 if(strcmp(pÑkey , key) == 0)
46 break;
47 p = pÑnext;
48 }
49 if(p == NULL)
50 return NULL;
51 else
52 return p;
53 }

Figure 19: Annotated Key_connection
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Programs Code Lines Linux verifier PREVAIL
Time(ms) Memory(KB) Time(ms) Memory(KB)

Linux Samples

sockex1_kern 29 1.03 4194 2.05 4978
syscall_tp_kern(enter) 38 1.03 4194 3.17 4931

cpustat_kern(frequency) 93 1.13 4190 11.30 6377
cpustat_kern(idle) 116 1.11 4196 23.52 7918

xdp_adjust_tail_kern 47 0.64 4196 6.69 5539
syscall_tp_kern(exit) 35 0.99 4190 3.02 4927

lathist_kern(on) 77 1.09 4144 10.18 6025
trace_event_kern 65 fail - 48.37 6730

tcp_iw_kern 68 0.65 4152 9.82 5664
tcp_rwnd_kern 50 0.77 4155 6.69 5404

PREVAIL Samples

twomaps 34 fail - 2.43 5056
twotypes 33 fail - 3.80 5278

map_in_map 36 fail - 5.17 5054
stackok 13 1.02 4114 74.67 5279

loop 21 fail - fail -
packet_start_ok 14 1.08 4200 1.19 4942

twostackvars 47 0.53 4140 20.9 5267
packet_access 28 0.58 4153 2.74 5216

bpf2bpf 13 0.51 4154 0.16 4157
dependent_read 13 0.55 4154 fail -

Stringlib

strcpy 34 fail - fail -
strncpy 34 1.65 4212 fail -
strcat 44 fail - fail -

strncat 43 fail - fail -
strlen 19 fail - fail -

strncmp 31 2.69 4316 fail -
strcmp 32 fail - fail -
memset 28 1.14 5168 39.89 7267
strchr 28 fail - fail -

memchr 28 fail - fail -

Unsafe Program

badhelpercall 6 reject - reject -
badmapptr 24 reject - reject -

badrelo 20 reject - reject -
ctxoffset 21 reject - reject -

nullmapref 23 reject - reject -
badhelpercall2 22 reject - reject -

packet_overflow 14 reject - reject -
wronghelper 20 reject - reject -

mapunderflow 23 reject - reject -
packet_reallocate 22 reject - reject -

Key_connection 63 fail - fail -

Table 4: Time cost and memory usage of samples by Linux verifier and PREVAIL
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Programs Asrt Lines VEP-C VEP-compiler VEP-eBPF
Time(ms) Memory(KB) Time(ms) Time(ms) Memory(KB)

Linux Samples

sockex1_kern 3 4.06 5882 0.35 2.53 2284
syscall_tp_kern(enter) 7 5.33 6391 0.37 2.57 2396

cpustat_kern(frequency) 11 50.33 15887 2.62 7.89 4292
cpustat_kern(idle) 11 158.12 32569 6.09 21.32 7167

xdp_adjust_tail_kern 10 4.27 5852 0.32 2.41 2236
syscall_tp_kern(exit) 7 5.28 6396 0.35 2.47 2379

lathist_kern(on) 9 23.47 18502 2.47 21.69 8034
trace_event_kern 6 67.33 18841 1.15 5.79 3353

tcp_iw_kern 6 12.57 12150 1.75 9.11 4182
tcp_rwnd_kern 6 63.88 19154 1.84 8.44 4342

PREVAIL Samples

twomaps 2 6.07 7119 0.46 2.77 2521
twotypes 4 15.49 8288 0.73 4.40 2665

map_in_map 3 2.97 5995 0.39 2.31 2348
stackok 4 4.32 5223 0.19 1.96 2028

loop 8 10.02 7682 0.55 2.84 2453
packet_start_ok 3 2.64 5174 0.21 2.03 2126

twostackvars 12 40.23 12422 1.43 3.96 3047
packet_access 3 8.85 7075 0.50 3.42 2659

bpf2bpf 7 0.70 4436 0.11 1.76 1932
dependent_read 3 2.56 4920 0.19 2.14 2106

Stringlib

strcpy 9 12.09 8172 0.66 2.67 2510
strncpy 11 8.69 7888 0.59 2.61 2557
strcat 17 31.17 11778 1.39 3.41 2907
strncat 17 36.60 12612 1.16 3.54 2970
strlen 9 5.02 5946 0.29 2.23 2236

strncmp 11 8.45 7994 0.54 2.58 2470
strcmp 9 14.27 8528 0.76 2.25 2574
memset 11 3.78 6271 0.35 2.18 2281
strchr 9 6.94 6962 0.40 1.66 2463

memchr 9 7.64 6683 0.42 3.19 2517

Unsafe Program

badhelpercall 4 reject - - - -
badmapptr 3 reject - - - -

badrelo 3 reject - - - -
ctxoffset 3 reject - - - -

nullmapref 3 reject - - - -
badhelpercall2 4 reject - - - -

packet_overflow 3 reject - - - -
wronghelper 3 reject - - - -

mapunderflow 3 reject - - - -
packet_reallocate 3 reject - - - -

Key_connection 17 16.24 8534 0.56 2.48 2440

Table 5: Time cost and memory usage of samples by VEP
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