
OFC: An Original congestion-based Fine-grained
Priority Flow Control

Wenli Xiao1, Yuqing Yang1, Peirui Cao1, Zhuoran Liu1, Shizhen Zhao1∗, Xinbing Wang2
1 John Hopcroft Center, Shanghai Jiao Tong University, Shanghai 200240, China

2 Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
{xiaowenli, yyq2017, caopeirui, cocopromenade-9, shizhenzhao, xwang8}@sjtu.edu.cn

Abstract—With the proliferation of online data intensive
applications and virtualized services, the growing complexity
of traffic patterns in data centers increases the likelihood of
congestion, especially in incast scenarios and with a combination
of short and large flows. To ensure lossless transmission, RDMA
over Converged Ethernet networks rely on Priority-based Flow
Control (PFC) to prevent packet loss due to buffer overflow.
However, it is widely acknowledged that PFC gives rise to several
issues, such as Congestion Spreading, Head-of-Line Blocking,
and Deadlock, which are increasingly prominent in modern
highly congested data centers. In this paper, we analyze the
primary causes of congestion spreading and head-of-line blocking
issues associated with PFC and propose Original congestion-
based fine-grained priority Flow Control (OFC) as a solution.
The performance of OFC is assessed using the programmable
switch Tofino and simulations carried out with a packet-level
simulator across various scenarios, encompassing incast, realistic,
deadlock, and in-depth scenarios. The validation of the simulation
results through testbed evaluation confirmed that OFC effectively
reduces flow completion time, buffer occupancy, and deadlock
occurrence by up to 60.28%, 51.47%, and 48.7%, respectively.

Index Terms—priority flow control, congestion spreading,
head-of-line blocking, data stream, reliability

I. INTRODUCTION

Modern data centers have increasingly embraced RDMA
over Converged Ethernet version 2 (RoCEv2) to attain low
latency and lossless transmission capabilities [1]–[4], recog-
nizing that packet loss can lead to heightened latency [5].
RoCEv2 utilizes Priority-based Flow Control (PFC) [6] to
optimize performance, facilitating hop-by-hop flow control
to mitigate buffer oversaturation resulting from high up-
stream traffic. However, the growing prevalence of Online
Data Intensive (OLDI) applications and virtualized services
has led to increasingly complex traffic patterns within data
centers, elevating the probability of congestion, particularly
in scenarios involving incast, burst and a mix of short and
large flows [7]–[9]. Consequently, issues related to PFC,
including Congestion Spreading [10], Head-of-Line Blocking
(HLB) [11], and Deadlock [12], have become more prominent
in modern highly congested data centers.

The significant issues of PFC stem from its reliance on
a local congestion-based coarse-grained pause scheme. To
prevent buffer overflow, PFC triggers a pause in all upstream
port transmissions if the ingress queue length of the down-
stream port exceeds the pause threshold. However, this method
solely hinges on the ingress queue length to assess congestion,

disregarding the distinction between original congestion and
local congestions incurred from the congestion spread through
hop-by-hop. Consequently, as the congestion level escalates,
the problem of congestion spreading results in prolonged flow
completion times [13]. Furthermore, the uniform pause action
affecting all flows fails to differentiate between congested and
uncongested flows, which exacerbates the HLB issue [14].
In highly congested networks, the diminished throughput of
uncongested flows significantly impacts overall performance.

To address the concerns of congestion spreading and HLB
issues, we conduct a comprehensive analysis focusing on their
primary reasons. Our proposed approach centers on identifying
the original congestion, which serves as the underlying cause
of congestion spreading. It is imperative to inform all upstream
ports about the original congestion as the true cause of
congestion can become increasingly complex with the spread
of congestion. Furthermore, to implement specific actions for
congested and uncongested flows, a fine-grained pause scheme
is essential. However, a key challenge lies in ensuring the
isolation of different types of packets without inducing out-
of-order delivery. Therefore, we outline two key objectives:
(1) conveying information about the original congestion to all
upstream ports; (2) implementing a fine-grained pause scheme.

To achieve the first objective, we utilize the fact that the
ingress port of the original-congestion port is the first to
send a PAUSE frame to the upstream port. We can ascertain
whether a port is the original-congestion port by determining
if it has received a PAUSE frame before. If a port triggers a
PAUSE condition without having received a PAUSE frame, it
is identified as the original-congestion port responsible for the
congestion. Then, we include information about the congested
flow in the PAUSE frame, ensuring that all upstream ports
have access to the congested flow. To implement the second
objective, a Nested Hierarchical Scheme is devised, which
includes a normal queue and two backup queues. The normal
queue functions accommodates all incoming packets of this
priority. One of the backup queues is used to reserve paused
flows, while the other remains empty to isolate the paused
and resumed packets upon receiving the RESUME frame. The
RESUME frame function as the Order Mark, facilitating the
isolation of all types of packets and ensuring in-order delivery.

In summary, the issues related to PFC are mitigated by
achieving the aforementioned two objectives. We name this
approach as Original congestion-based priority Flow Control
(OFC). Our contributions are listed below:

1) We analyze the primary causes of congestion spreading
and head-of-line blocking issues, ultimately proposing
general solutions to address these concerns raised by
PFC. Our initial proposal involves the utilization of
PAUSE frames to notify all upstream ports about the
original congestion and a fine-grained pause scheme to
achieve isolation without out-of-order delivery.

2) We introduce the Original congestion-based fine-grained
priority Flow Control (OFC) as a feasible solution to
the issues associated with PFC. OFC is capable of
identifying the original congestion and implementing
specific actions for congested and uncongested flows
through a fine-grained pause scheme.

3) The performance of OFC is evaluated using the pro-
grammable switch Tofino and packet-level simulations
under various scenarios, including incast, realistic, dead-
lock, and in-depth. The testbed evaluation confirms and
validates the simulation results, all of which demonstrate
that OFC effectively reduces flow completion time,
buffer occupancy, and deadlock occurrence, with reduc-
tions of up to 60.28%, 51.47%, and 48.7%, respectively.

II. ANALYSIS & CHALLENGES OF THE IDEAL PFC

We will analyze the reasons behind the issues with standard
PFC and the challenges of their solutions. Standard PFC
uses ingress queue length to prevent packet loss from buffer
overflow, which can lead to congestion spreading. When the
queue length crosses the pause or resume threshold, PFC
pauses or resumes all flows, causing issues like HLB.

A. Local Congestion & Original Congestion

Standard PFC leads to congestion spreading by pausing
based on local congestion instead of addressing the root cause.
Preventing this requires addressing the original congestion.
Local Congestion: Ports with Congestion State. Local
congestion refers to a specific area or segment within a
network where network traffic encounters a bottleneck or
overload, resulting in reduced performance or delays. This type
of congestion can be identified using local information, such
as the egress queue length of the current port, without the need
for data from other ports in the network. However, it includes
both congestion spreading and the root cause, so relying solely
on local congestion for pause actions can lead to congestion
spread issues, similar to standard PFC.
Original Congestion: The Root of Congestion Spreading.
On the other hand, original congestion signifies the initial
occurrence of network congestion, often leading to subsequent
issues and performance degradation in interconnected areas of
the network. Initially, this original congestion arises as local
congestion within the network [15] and subsequently leads
to the formation of additional local congested ports as the
congestion spreads. This progression forms a congestion tree,
with the original congestion acting as the root and the sub-
sequent local congestions as the leaves. The hierarchy within
the congestion tree, from the root to the leaves, is determined
by the back-pressure mechanism of PFC. Identifying original

F0

...
long-lived flow

 uncongested

 congestedF1 F2...F7
burst flow

 0-30us

F0 sender

F1 sender

F0 receiver

F1-F7 receiver
F2-F7 senders

Pa
Pb

Pc
Pd

Sa Sb
Sc

Fig. 1. An incast topology with uncongested flow F0 and congested flow
F1 - F7. Note that F0 and F1 are long-lived flows, F2 - F7 are burst flows
lasting for 0 - 30us.

congestion allows a clear understanding of the root cause of
congestion and enables the reduction of congestion spread.

Given the challenge of differentiating between original con-
gestion (root) and congestion stemming from the upstream port
(leaves) based solely on local information at the current hop,
the exchange of information from downstream ports becomes
crucial in identifying the source of the congestion.

B. Coarse-grained & Fine-grained Pause Scheme

Flows in network can be categorized as congested flow,
causing congestion, and uncongested flow, unrelated to it.
Taking appropriate action for each type is critical to preventing
HLB, making fine-grained pause schemes essential.
Coarse-grained Pause Scheme: Equally treatment of Con-
gested and Uncongested Flows. In a coarse-grained pause
scheme, two operational states exist: all flows paused and all
paused flows resumed. Consequently, all packets are subjected
to the same action, irrespective of whether the flow is respon-
sible for the congestion. This leads to the emergence of the
HLB issue, akin to standard PFC.
Fine-grained Pause Scheme: Pausing Congested Flows
and Transmitting Uncongested Flows. In comparison to
the coarse-grained pause scheme, the fine-grained approach
involves taking specific actions based on different flow types.
It distinguishes by pausing congested flows and transmitting
normal flows, thereby alleviating the HLB issue.

The fine-grained pause scheme encompasses four states:
all flows paused, partial flows paused, partial paused flows
resumed, and all paused flows resumed. Both the all flows
paused and all paused flows resumed states apply the same
action, either pausing or resuming, to all packets. However, the
other two states involve multiple types of packets, including in-
coming, normal, paused, and resumed packets. Further details
are provided in § III-B. These states require careful handling
to prevent Head-of-Line Blocking and out-of-order delivery
issues, necessitating the isolation of different packet types.

A more straightforward method to achieve this isolation
would be to assign a dedicated queue for each flow. However,
the constrained number of FIFO queues per port in commodity
switches renders this impractical [16], [17]. Consequently,
this limitation poses a challenge in achieving full isolation
of different packet types when utilizing a shared buffer.

All flows Uncongested
flow

Congested
flow

1000
1250
1500
1750
2000

FC
T

(u
s)

PFC
OFC

(a) FCT Slowdown.

All ports Uncongested
port

Congested
port

0

50

100

150

200

Av
g

Qu
eu

e
Le

ng
th

 (K
B)

PFC
OFC

(b) Buffer Occupancy Reduction.

240 400 640
All Flow Number

0

200

400

600

800

De
ad

Lo
ck

 N
um

be
r PFC

OFC

(c) Deadlock Number Reduction.
Fig. 2. Enhanced Performance of original congestion-based fine-grained ideal PFC (OFC) compared to local congestion-based coarse-grained standard PFC.

C. Experimental Observation

1) Simulation setting: Fig. 1 shows an incast topology,
which is used to simulate the congestion scenario and intro-
duce the specific actions taken for different types of flows. For
better understanding, this topology is taken as a fundamental
component of typical data center network CLOS topologies
(Fat-Tree [18], Spine-leaf [19]) and encompasses the common
features of congestion occurrence and handle [18], [20]. There
are three switches connecting ten servers, and all links are 40
Gbit/s with propagation delay as 20 ns. Within this setup, the
traffic is generated following the common traffic distribution
in the data center as 20% long-lived and 80% burst flow [8].
The two long-lived flows, F0 and F1, share the link capacity
from Sa to Sb and Sb to Sc. These two long-lived flows
traverse the same switches (Sa, Sb, ingress port Pa of Sc) but
dequeue from different egress ports to reach their respective
destinations. Specifically, long-lived flow F0 dequeues from
egress port Pb, while F1 dequeues from egress port Pd.
Additionally, six burst flows, F2 - F7, with a duration of
0-30us, are intended for the same receiver as long-lived flow
F1, resulting in congestion at egress port Pd.

2) Specific actions for types of flows: The contention
between the burst flows F2 - F7 and the long-lived flow
F1 at egress port Pd of switch Sc identifies the original
congestion at port Pd. The flows F1 - F7 are recognized as the
congested flows. Upon sending the PAUSE frame to upstream
ports Sb from ingress port Pa of switch Sc, with time, the
congestion may propagate to upstream port Sa. In the context
of the local congestion-based coarse-grained standard PFC,
both long-lived flows F0 and F1 will be paused. Conversely,
in the original congestion-based fine-grained pause scheme,
the congested flow F1 will be paused, while the normal flow
F0 will continue to transmit without interruption.

3) Results: Fig. 2(a), Fig. 2(b) and Fig. 2(c) illustrate that
the original-congestion-based fine-grained pause scheme can
effectively lower the Flow Completion time (FCT), occu-
pied buffer and deadlock occurrence, compared to the local
congestion-based coarse-grained standard PFC (see details in
§ IV). This underscores the critical need for the ideal PFC.

D. Summarize about the ideal PFC

In summary, the ideal PFC’s key function is to implement a
fine-grained pause scheme to manage congestion and mitigate
HLB and congestion spreading issues. The challenges include:

1) The need to differentiate between local congestion and
original congestion to prevent congestion spreading.

2) Notifying upstream congestion ports about the informa-
tion pertaining to original congestion.

3) Addressing the challenge of isolating different types of
packets, given the limitation on the number of FIFO
queues per port in commodity switches.

III. DESIGN OF OFC
To achieve the ideal PFC, we propose OFC (Original

congestion-based priority Flow Control) and implement it from
two aspects: (1) Identifying original congestion and dissem-
inating to upstream ports; (2) providing a fine-grained pause
scheme. Next, we will explain their solutions respectively.

Before that, we outline the tables required to record data at
each port for each priority. Each flow is identified by a 5-tuple:
source and destination IP addresses, source and destination
ports, and IP protocol. Flow distinction is based on the source
and destination port numbers. OFC uses the following tables
to monitor packet counts and manage congestion:

• flow in port tab : Stores flow information for each
priority in the port. The key includes the queue priority
pri and the source-destination pair flowinfo = src, dst,
while the value holds the packet number.

• congested flow tab : Records information about con-
gested flows flowinfo = src, dst in each priority queue,
acquired from previously received PAUSE frames.

• pause frame tab : Stores PAUSE frames transmitted to
the upstream port of each priority, using the upstream
port pup and the priority pri as the key, and the
information of the congested flow flowinfo as the value.

A. Original Congestion Identification and Notification

Identification of Original Congestion. Following the analysis
of local congestion (leaves of a congestion tree) and original
congestion (root of congestion tree) in § II-A, a key distinction
between them pertains to the congestion order. As a result,
a practical approach to identifying the original congestion
involves determining whether it has previously received a
pause frame from a downstream port. Specifically, when a port
initiates a pause condition, if it has not previously received
a PAUSE frame, it is identified as the original congestion
port, signifying the first port within this congestion tree to
trigger the pause condition. Conversely, if the port has stored

Algorithm 1: Send PAUSE/RESUME frame

// downstream port
1 while a packet enqueues ingress queue do
2 obtain the packet’s upstream port pup, egress queue

length qout, priority pri.
3 if qin ≥ Xc

OFF then
4 if Xc

OFF ≤ qin < XOFF && qout ≥ Xc
OFF then

5 if congested flow tab == null then
// original congestion port

6 flowinfo = flow in port tab[pri].keys() ;
7 else // local congestion port
8 flowinfo = congested flow tab[pri] ;
9 end

10 else if qin ≥ XOFF then
11 flowinfo = flow in port tab[pri].keys().
12 end
13 Put flowinfo into PAUSE frame.
14 Send PAUSE frame to upstream port pup.

pause frame tab[pup][pri] = flowinfo.
15 end
16 else if qin ≤ XON then
17 Put flowinfo =pause frame tab[pup][pri] into

RESUME frame.
18 Remove pause frame tab[pup][pri].
19 Send RESUME frame to upstream port pup.
20 end
21 end

information from a previous PAUSE frame, it indicates that its
congestion is a result of its downstream congested port, thus
classifying it as a local congestion port.

Efforts are focused on obtaining information about the
original congestion and congested flow in Algorithm 1. For
an ingress port pin, it transmits packets to a set of egress
ports Qout = {p1out, p2out, · · · , pIout}, where the length of each
egress queue piout ∈ Qout is denoted as qiout. Consequently,
the ingress queue length is calculated as qin =

∑I
1 q

i
out.

The OFC is activated to halt the congested flow when the
length of the in-coming queue surpasses the congested pause
threshold Xc

OFF and is smaller than XOFF , where Xc
OFF ≤

qin ≤ XOFF .The criterion qout ≥ Xc
OFF is used to identify

potential congestion at any of the egress ports. For a congested
port without stored information in the congested flow tab, it
is identified as the original congestion port, with the flows
within it causing the original congestion. Conversely, if it
has stored information in the congested flow tab, it is termed
the local congestion port, and the stored congested flows
from previously received PAUSE frames are considered as the
congested flows that should be paused.

To avert buffer overflow during urgent congestion, OFC
pauses all flows when the ingress queue length surpasses pause
threshold XOFF . It subsequently resumes the flows paused
by this port which is stored by the pause frame tab, once the
ingress queue length falls below resume threshold XON .
Notification and Handling of Original Congestion. When
the pause condition is triggered, a PAUSE frame, carrying

Algorithm 2: Receive PAUSE/RESUME frame

// upstream port
1 while a packet pkt enqueues egress queue do
2 extract the packet’s priority pri, source src, and

destination dst.
3 if pkt is a PAUSE frame then
4 store flowinfo into congested flow tab[pri].
5 drop pkt.
6 end
7 else if pkt is a RESUME frame then
8 remove flowinfo from congested flow tab[pri].
9 enqueue the copied pkt into the paused queue.

10 end
11 else
12 flow in port tab[pri][src, dst] += 1.
13 end
14 end

information about the paused flows, is transmitted to the
upstream port. Following Algorithm 2, upon reception of
the PAUSE frame, the upstream port is mandated to store
the paused flow information in the congested flow tab and
proceed to pause the congested flows. A local congestion port
may be impacted by multiple congestion trees simultaneously.
If two congestion trees affect a local congestion port, the local
congestion port will include the congested flow information of
both these congestion trees in the congested flow tab.

Upon receiving a RESUME frame, the upstream port
removes resumed flows from the congested flow tab. The
RESUME frame is then duplicated and placed in the paused
queue to resume these flows. Further details will be provided in
the next section. Additionally, when a data packet enqueues the
egress queue, its information, including source and destination,
are stored in the flow in port tab.

B. Fine-grained Pause Scheme

Upon notification of congestion, each upstream port identi-
fies and categorizes flows as either congested or uncongested.
To implement a fine-grained pause mechanism, based on the
analysis in § II-B, the challenges are as follows:

i) Isolation of Different Packet Types: It is crucial to isolate
different types of packets under the partial flows paused
and partial paused flows resumed states to prevent issues
such as HLB or out-of-order delivery.

ii) Constraint of Limited FIFO Queues: Due to the limited
availability of FIFO queues, effectively segregating each
type of packet into distinct queues presents a challenge.

We firstly outline our analysis and then offer our solutions.
The minimum number of required queues. When a switch
receives a control frame, it classifies the packets within itself as
normal packets, paused packets, and resumed packets. And all
newly arrived packets are categorized as in-coming packets.
Therefore, the switch must adhere to two constraints with
regards to isolation: firstly, ensuring isolation among different
types of packets within the switch, and secondly, guaranteeing

isolation between in-coming packets and existing packets of
the same type. In this context, packets from normal flows,
paused flows, and resumed flows are categorized as normal
packets, paused packets, and resumed packets, respectively.
Given that normal packets can be promptly transmitted, our
primary focus is on the other three types of packets.

In the four states of the fine-grained pause scheme, the
all flow paused and all paused flow resumed states do not
necessitate isolation. However, the remaining states involving
multiple types of packets require isolation. Under the partial
flows paused state, two types of packets are involved: in-
coming packets and paused packets. Meanwhile, the partial
paused flows resumed state involves three types of packets: in-
coming packets, paused packets, and resumed packets. As the
mixing of resumed packets with paused packets can result in
HLB issue, and the mixing of in-coming paused with existing
packets may lead to out-of-order delivery, each pair of packet
types should not share a queue. Within these two states, there
are at most three types of packets. Therefore, the minimum
number of queues needed to achieve isolation is 3.
The function of two backup queues. Given the limited
number of queues, we use use a minimum of three queues for
isolation: the original priority queue for incoming packets and
two backup queues for isolation. We’ll show how the backup
queues achieve isolation during the partial flows paused and
partial paused flows resumed states. The key is consistently
directing paused packets to the empty backup queue.

In the partial flows paused state, achieving isolation be-
tween in-coming packets and paused packets involves storing
the paused packets in an empty backup queue, as the in-
coming packets are already stored in the normal queue. When
a packet is dequeued from the normal queue, if it is a
normal packet, it can be promptly transmitted to the next hop.
However, if it is a paused packet, it should be enqueued in
the backup queue. Thus, isolation for the partial flows paused
state can be effectively achieved with just one backup queue.

Emphasizing the need for two backup queues is crucial, as a
single backup queue fails to achieve isolation under the partial
paused flows resumed state. Paused and resumed packets share
the same queue after receiving a RESUME frame, requiring
two separate backup queues for effective isolation.

In the partial paused flows resumed state, three types of
packets are involved: in-coming packets, paused packets, and
resumed packets. Given that in-coming packets are already
isolated by the normal queue, the primary challenge is to
isolate the paused and resumed packets, as they are mixed
in a backup queue called the paused queue. The key approach
involves directing the paused packets to the additional empty
backup queue. Specifically, when a packet is dequeued from
the paused queue, if it is a resumed packet, it can be promptly
transmitted to the next hop. However, if it is a paused packet,
it should be enqueued in another empty backup queue. This is
where the additional backup queue plays a crucial role. Con-
sequently, by utilizing two backup queues, effective isolation
of the partial paused flows resumed state can be achieved.
Nested Hierarchy Scheme. After thorough analysis, we de-
vised a Nested Hierarchical scheme, as outlined in Algo-
rithm 3, to enable a fine-grained pause scheme. This scheme

Algorithm 3: Pause and Resume

// upstream port
1 while a packet pkt dequeues egress queue do
2 get the packet’s downstream port pdown, priority

pri, source src, and destination dst.
// recall from Algorithm 2 line 9

3 if pkt is a RESUME frame then
4 egress queue.qId = Rotate(egress queue.qId).
5 paused queue.qId = Rotate(paused queue.qId).
6 end
7 else if pkt is not in congested flow tab[pri] then
8 send pkt to pdown.
9 flow in port tab[pri][src, dst] -= 1.

10 if flow in port tab[pri][src, dst] == 0 then
11 remove flow in port tab[pri][src, dst] ;
12 end
13 else
14 pkt enqueue paused queue.
15 end
16 end
17 function Rotate(qId):
18 qId = (qId + 1) % 2.
19 return qId
20 end function

incorporates a normal queue and two backup queues. The nor-
mal queue serves as the original priority queue for incoming
packets. One backup queue is designated for paused flows
(paused queue), while the other remains empty, ready to handle
remaining paused packets in a partial paused flows resumed
state. These queues are initialized as egress queue (qId = 0),
paused queue (qId = 1) and another backup queue (qId = 2).

The Nested Hierarchical scheme must ensure packet isola-
tion to prevent HLB and guarantee that incoming packets are
transmitted after existing ones to avoid out-of-order delivery.
This is achieved in all four transitional states. Initially, all
flows are considered normal, and the egress queue functions
as the normal queue. When a PAUSE frame is received, the
system transitions to the partial flows paused state, where
the egress queue continues to transmit normal packets while
directing paused packets to the paused queue, effectively
isolating paused and incoming packets. If all flows are paused,
the system enters the all flows paused state, where all flows
are stored in the paused queue and cannot be transmitted.

When some paused flows are resumed after receiving a
RESUME frame, the system moves to the partial paused flows
resumed state. In this state, to maintain isolation between
paused and resumed packets, the egress queue is rotated to
the paused queue(egress queue.qId : 0 → 1), allowing resumed
packets to be transmitted normally, while the paused queue is
rotated to an empty backup queue (paused queue.qId : 1 → 2)
to store the remaining paused packets. Once the RESUME
frame is dequeued, the queues are rotated back to their original
states (egress queue.qId : 1 → 0, paused queue.qId : 2 → 1),
enabling the transmission of incoming packets in the normal
queue and ensuring in-order delivery. The rotation process is

outlined in Algorithm 3 from line 17 to 20. And the RESUME
frame serves as both the rotation signal and the in-order
delivery signal, often referred to as the Order Mark. Once
all paused flows are resumed, the system transitions to the all
paused flows resumed state, where all flows continue normal
transmission. Thus, the Nested Hierarchical scheme effectively
implements the desired functions.

C. Threshold Setting

In the OFC framework, there are three thresholds: the pause
threshold XOFF , the resume threshold XON , and a newly
introduced congested pause threshold Xc

OFF . Typically, the
congested pause threshold is expected to be lower than the
pause threshold and higher than the resume threshold, meaning
that XON < Xc

OFF < XOFF . Therefore, we establish
Xc

OFF = αXOFF , where XON

XOFF
< α < 1. We also assess

the parameter sensitivity as outlined in § IV-C2.

IV. EVALUATION

A. Settings

1) Parameters: Each link has 40Gbit/s bandwidth with 20
ns propagation delay. We set pause threshold as X l

OFF = 68KB
and XOFF = 75KB, resume threshold as XON = 45KB. The
packet size is limited by a MTU of 1500 bytes.

2) Topology and Traffic: Next, we will introduce the eval-
uated network topology and traffic patterns for testbed cross-
validation and simulation, encompassing three key scenarios.
Testbed topology and traffic. To validate the proof-of-
concept, we implement OFC on the Intel Tofino switch [21]
using P416 and Intel SDE 9.6.0(§ IV-B1), featuring 32 ports
with 40Gbit/s link capacity. The setup uses port connections
to emulate three programmable switches within one, matching
the topology in Fig. 1, which includes four servers and three
switches. The traffic generator uses two Mellanox CX5 NICs,
with traffic distribution as described in § II-C1.
Simulation topology and traffic. To comprehensively assess
real-world network performance, we evaluate the following
three distinct scenarios. All simulations are examined using
the packet-level transmission simulator, NetBench [22].

[Incast scenario] To estimate incast traffic with ratios from
4 : 1 to 10 : 1, we use a dumbbell topology with 2 rack
switches, each connected to 32 servers. Thousands of flows
are generated, mixing long-lived and burst flows [8]. We focus
on the performance of all flows, especially uncongested flow.

[Realistic scenario] We simulate the realistic traffic of data
center under a three-layer Fat-Tree [18] network (k = 8), with
total 80 switches which is composed of 32 Core switches, 32
Aggregation switches, 16 Edge switches, and 256 servers, with
an over subscription ratio of 2 : 1. The real-world data center
traffic traces are identified as EDU1 and EDU2 [9]. The traces
consist of thousands of flows, both short and large. About 60%
of flows in EDU1 are under 10 KB, while 80% of flows in
EDU2 are under 20 KB. We observe the performance of short
flows (< 10KB) and large flows (≥ 10KB). Additionally, the
OFC’s parameter sensitivity is also evaluated.

[Deadlock scenario] To assess deadlock frequency, we use
a leaf-spine topology with two spine switches, four leaf

In
gr

es
s store

congested
flow

store flow
information

de
pa

rs
er

pa
rs

er

de
pa

rs
er

classify
packetsmanage

packetspa
rs

er

Eg
re

ss

classify
packets

order mark
construtor

control frame
constructor

traffic
manager

Data Control Frame

Fig. 3. The OFC pipeline in the programmable switch with ASIC structure.

switches, and two failed links, a setup prone to Cyclic Buffer
Dependency (CBD) [12]. We create four flows {f1, f2, f3, f4}
that form a CBD. With a total of M = 240, 400, 640, the
specific number of each flow is (m1,m2,m3,m4) with con-
straints m1 +m2 +m3 +m4 = M and m1,m2,m3,m4 ≥ 0.
we randomly distribute each flow’s count over 1000 iterations

3) Performance Metric: • Flow Completion Time (FCT):
The FCT measures the time needed to transmit a group of
flows, with a shorter duration being more favorable. • Average
Queue Length: Reducing the average queue length is impor-
tant to minimize buffer occupancy and alleviate congestion. •
Deadlock Number: Minimizing the occurrence of deadlocks
is crucial, as they can cause significant disruptions.

4) Baseline: We compare OFC’s performance with state-
of-the-art solutions, excluding those with out-of-order delivery,
which are unsuitable for order-sensitive networks like RDMA.
(i) PFC [6]: Standard PFC uses pause and resume thresholds
to prevent buffer overflow by maintaining buffer occupancy
below a set level. (ii) caPFC [23]: Adds a fixed egress
threshold to the standard PFC to identify congested ports
and pause flows. (iii) P-PFC [24]: Utilizes a dynamic egress
threshold (average buffer occupancy of all egress ports) to
determine paused ports. (iv) GFC [25]: Gradually decreases
transmission rates to zero by incorporating multiple lower
ingress thresholds based on standard PFC. (v) G-PFC [26]:
Selectively pauses low-priority flows using a lower ingress
threshold, building on the standard PFC scheme.

B. Testbed Micro-benchmark

We first show the performance evaluation under testbed.
1) Implementation: Fig. 3 illustrates the pipeline of OFC

in the programmable switch Intel Tofino1 [21]. Given that
the fundamental ASICs’ pipeline of the programmable switch
consists of the ingress parser, several Match-Action Units,
ingress deparser, traffic manager, and a similarly structured
egress, OFC incorporates additional Match-Action Units for
classifying packets, storing congested flow, constructing order
mark, storing flow in port, constructing control frame and
managing packets to achieve its primary functions. The clas-
sification of normal/resumed packets and paused packets is
dependent on whether the source and destination pair of the
packet corresponds to the congested flow table, while the dis-
tinction between data packets and control frames relies on the
packet header. As the capability to pause or resume a specific
queue is exclusively supported in the Intel Tofino2 [27], we
approximate the fine-grained pause by comparing the queue

All flows Uncongested
flow

Congested
flow

750

1000

1250

1500

FC
T

(u
s)

PFC
CaPFC

P-PFC
GFC

G-PFC
OFC

(a) FCT of incast ratio 4 : 1.

All flows Uncongested
flow

Congested
flow

1000

1500

2000

FC
T

(u
s)

PFC
CaPFC

P-PFC
GFC

G-PFC
OFC

(b) FCT of incast ratio 6 : 1.

All flows Uncongested
flow

Congested
flow

1000

1500

2000

FC
T

(u
s)

PFC
CaPFC

P-PFC
GFC

G-PFC
OFC

(c) FCT of incast ratio 8 : 1.

All flows Uncongested
flow

Congested
flow

1000

1500

2000

2500

FC
T

(u
s)

PFC
CaPFC

P-PFC
GFC

G-PFC
OFC

(d) FCT of incast ratio 10 : 1.
Fig. 4. FCT under the dumbbell topology with incast ratios varying ranging from 4 : 1 to 10 : 1.

TABLE I
MAXIMUM FCT

Kind
All flows Uncongested flow Congested flow

PFC OFC PFC OFC PFC OFC

Testbed 2.69 ms 2.36 ms 2.69 ms 2.28 ms 2.69 ms 2.36 ms

Simulation 1.96 ms 1.69 ms 1.96 ms 1.45 ms 1.96 ms 1.69 ms

TABLE II
AVERAGE STORAGE TABLE SIZE

Kind flow in port tab congested flow tab pause frame tab

Testbed 432 byte 152 byte 288 byte

Simulation 425.66 byte 142.46 byte 276.47 byte

length calculated by flow in port tab to the pause threshold or
resume threshold. Subsequently, the paused queue is managed
by circulating the paused packets to halt their transmission.

2) Performance under programmable switch: We present
the testbed results of the maximum Flow Completion Time
(FCT) and the average storage table size to further validate
the simulation results. TABLE I illustrates consistent FCT
levels and comparable trends in PFC and OFC, in line with
the simulation results for the same topology and traffic as
demonstrated in Fig. 2(a). Furthermore, to support the storage
of three tables in each switch port for determining paused
flows, we utilize Cuckoo Hash [28] to compress the necessary
buffer, achieving approximately 70% compression. The tables
in the programmable switch are implemented using multiple
registers, with each register capable of storing 64 bits. The
specific average table size, occupying the buffer in both the
testbed and simulation, is detailed in TABLE II, indicating that
the storage tables do not extensively utilize the buffer space.

C. Simulations

1) Performance under incast scenario: FCT. Fig. 4 illus-
trates the FCT of OFC in comparison to baselines under incast
scenario with varying incast ratios from 4 : 1 to 10 : 1.
The box plot shows the minimum value, 25th percentile tail-
latency, 75th percentile tail-latency, and the maximum value.
It is evident that the baselines exhibit uniform FCT levels for
both uncongested and congested flows, indicating consistent
behavior irrespective of flow type. Conversely, OFC demon-
strates a notably lower FCT for uncongested flows, signifying
its ability to facilitate the transmission of uncongested flows

while pausing the transmission of congested flows. Moreover,
the transmission of uncongested flows also results in a reduced
FCT for congested flows, thereby lowering the FCT for all
network flows. Furthermore, the reduction of FCT grows more
larger with the increase of congestion degree. From incast
ration 4 : 1 to 10 : 1, OFC lowers FCT of all network flows
including uncongested flow and congested flow than baselines,
by up to 19.28% to 22.6%, 23.08% to 43.06%, 20.59% to
54.55%, 15.59% to 60.28%, respectively.
Average Queue Length. The occupied buffer under the incast
scenario with incast ratios ranging from 4 : 1 to 10 : 1 is
depicted in Fig. 5. This figure shows the specific average queue
lengths of ports through which all flows, uncongested flows,
and congested flows traverse, labeled as all ports, uncongested
port, and congested port, respectively. Observing the data, it
is evident that the average queue length of congested ports is
higher than uncongested ports, and since all flows include burst
flows, the average queue length of all ports is lower than the
uncongested port. Furthermore, as the incast ratio increases,
there is a concurrent increase in the average queue length
across all types of ports, indicating the correlation between
the average queue length and the degree of congestion.

Moreover, analyzing the average queue length of each type
of port across all incast ratios reveals that OFC effectively
reduces the average queue length compared to the baseline,
with a more substantial reduction observed as congestion
potential intensifies. In detail, under incast ratios ranging from
4 : 1 to 10 : 1, OFC can decrease the average queue length
of all ports including uncongested ports and congested ports
compared to baselines by up to 21.74% to 49.33%, 21.81%
to 50%, 22.22% to 51.47%, 20.64% to 49.74%, respectively.

2) Performance under realistic scenario: FCT. Fig. 6 de-
picts the FCT of all flows, including short flows and large
flows, under real-world traffic patterns EDU1 and EDU2. The
relationship between flow size and FCT is observed, with the
FCT of short flows being smaller than that of large flows,
highlighting that the FCT of large flows significantly influ-
ences the overall FCT of all network flows. Furthermore, as
EDU2 comprises a higher proportion of large flows compared
to EDU1, its FCT is correspondingly larger. It is notable that
under both traffic patterns, OFC reduces the FCT of large
flows, consequently leading to a reduction in the FCT of all
flows by around 5% compared to baselines.
Average Queue Length.The average queue length of all ports,
core layer, and aggregation layer within the fat-tree network
under real-world traffic patterns EDU1 and EDU2 is presented

All ports Uncongested
port

Congested
port

0

50

100

150

Av
g

Qu
eu

e
Le

ng
th

 (K
B)

PFC
CaPFC

P-PFC
GFC

G-PFC
OFC

(a) Average queue length
of incast ratio 4 : 1.

All ports Uncongested
port

Congested
port

0

50

100

150

200

Av
g

Qu
eu

e
Le

ng
th

 (K
B)

PFC
CaPFC

P-PFC
GFC

G-PFC
OFC

(b) Average queue length
of incast ratio 6 : 1.

All ports Uncongested
port

Congested
port

0
50

100
150
200

Av
g

Qu
eu

e
Le

ng
th

 (K
B)

PFC
CaPFC

P-PFC
GFC

G-PFC
OFC

(c) Average queue length
of incast ratio 8 : 1.

All ports Uncongested
port

Congested
port

0

100

200

Av
g

Qu
eu

e
Le

ng
th

 (K
B)

PFC
CaPFC

P-PFC
GFC

G-PFC
OFC

(d) Average queue length
of incast ratio 10 : 1.

Fig. 5. Average queue length under the dumbbell topology with incast ratios ranging from 4 : 1 to 10 : 1.

All flows Short
flow

Large
flow

500

750

1000

1250

FC
T

(u
s)

PFC
CaPFC

P-PFC
GFC

G-PFC
OFC

(a) FCT of real-world traffic
EDU1.

All flows Short
flow

Large
flow

500

1000

1500

FC
T

(u
s)

PFC
CaPFC

P-PFC
GFC

G-PFC
OFC

(b) FCT of real-world traffic
EDU2.

Fig. 6. FCT under the fat-tree topology with real-world traffics.

All ports Core Aggregation0

25

50

75

100

Av
g

Qu
eu

e
Le

ng
th

 (K
B)

PFC
CaPFC

P-PFC
GFC

G-PFC
OFC

(a) Average queue length
of real-world traffic EDU1.

All ports Core Aggregation0

25

50

75

100

Av
g

Qu
eu

e
Le

ng
th

 (K
B)

PFC
CaPFC

P-PFC
GFC

G-PFC
OFC

(b) Average queue length
of real-world traffic EDU2.

Fig. 7. Average queue length in the fat-tree topology with real-world traffics.

in Fig. 7. It is notable that due to the higher workload in EDU2
compared to EDU1, the average queue length of each type of
port is elevated in EDU2. Moreover, OFC reduces the buffer
occupancy of all types of ports under both real-world traffic
scenarios. Specifically, the average queue length of OFC is
decreased than baselines by up to 4.31% to 11.83%, 5.8% to
11.24% under EDU1 and EDU2, respectively.
Parameter Sensitivity. We accessed the sensitivity of OFC to
parameter changes by varying the pause threshold settings un-
der the fat-tree network with real-world traffic pattern EDU1.
By fixing XOFF = 75KB and varying α from {0.8, 0.85, 0.9}
to modify the lower pause threshold Xc

OFF = αXOFF , we
can find that despite the changes in α, OFC exhibited re-
silience. Specifically, the average queue length does not exceed
a 3% variation (Fig.8(a)), and its slowdown compared to PFC
was approximately 5.8% to 8% (Fig.8(b)). Furthermore, we
varied the pause threshold XOFF = β · 75KB by fixing
α = 0.9 and changing β from {3, 6, 10}. This analysis reveals
that OFC maintains stability with varying pause thresholds
XOFF , as the change in the average queue length of all ports

0.8 0.85 0.9
α

85.0

87.5

90.0

92.5

95.0

Av
g

Qu
eu

e
Le

ng
th

 (K
B)

OFC

(a) Avg queue length with
varying Xc

OFF , fixed β.

0.8 0.85 0.9
α

4

6

8

10

Av
g

QL
en

gt
h

Sl
ow

do
wn

 (%
)

OFC

(b) Avg queue length
Slowdown than PFC with
varying Xc

OFF , fixed β.

3 6 10
β

82

83

84

85

86

Av
g

Qu
eu

e
Le

ng
th

 (K
B)

OFC

(c) Avg queue length with
varying XOFF , fixed α.

3 6 10
β

4.6
4.8
5.0
5.2
5.4
5.6

Av
g

QL
en

gt
h

Sl
ow

do
wn

 (%
)

OFC

(d) Avg queue length
Slowdown than PFC with
varying XOFF , fixed α.

Fig. 8. Average queue length and slowdown than standard PFC while varying
parameters under the fat-tree topology with real-world traffic EDU1.

does not exceed 2.5% (Fig. 8(c)) and its slowdown than PFC
remains at approximately 5.1% (Fig. 8(d)).

3) Performance under deadlock scenario: Deadlock Num-
ber. Fig. 9 illustrates the incidence of deadlocks in the dead-
lock scenario for both the baselines and OFC. Evidently, across
1000 repeated simulations with three different workloads, OFC
consistently and significantly reduces the number of dead-
locks by 7.15% - 45.24%, 4.14% - 40.43%, 4.99% - 41.53%,
8.64% - 48.70% and 7.95% - 47.33% compared to PFC,
CaPFC, P-PFC, GFC, and G-PFC. The increased occurrence of
deadlocks in baselines is mainly due to their coarse-grained
pause policy, where deadlock occurs when every switch in
a CBD pauses all transmissions simultaneously. In contrast,
OFC reduces deadlock risk with a fine-grained pause policy,
selectively pausing only congested flows.

240 400 640
All Flow Number

0
200
400
600
800

De
ad

Lo
ck

 N
um

be
r

PFC
CaPFC

P-PFC
GFC

G-PFC
OFC

Fig. 9. Deadlock occurrence under deadlock scenario.

V. RELATED WORK

A. PFC

Coarse-grained pause scheme. CaPFC [23] and P-PFC [24]
modify the pause trigger condition from ingress queue length
to include both ingress and egress queue lengths, differing
in their fixed or adaptive egress queue length thresholds.
GFC [25] introduces new ingress queue length thresholds
below XOFF to gradually reduce the pause rate. G-PFC [26]
also uses an ingress queue length threshold below XOFF to
trigger the pause of low-priority flows before PFC. However,
all lack a fine-grained scheme, leading to the HLB issue.
Out-of-order delivery. PFC-S [29] judges the congested flow
based on egress queue length, and reroutes the uncongested
flow at upstream port by sending MOVE frame. FG-PFC [30]
identifies the congested flow as the most count flow when
trigger ingress queue length threshold, and pauses these flows
without isolation of in-coming packets belonging to congested
flow. Thus, both of them may arise out-of-order delivery.

B. Congestion Control rely on PFC to ensure lossless

End-to-end congestion control methods, such as QCN [31],
DCQCN [14], TIMELY [32], SWIFT [33], HPCC [34], and
Poseidon [35], focus on reducing the sending rate to alleviate
congestion. While these techniques use various approaches to
detect and manage congestion, they are generally indifferent
to the victim flow. In contrast, other approaches [36]–[41],
aim to achieve more accurate congestion control for congested
flows. It is important to note that, regardless of their specific
methodologies, all of these techniques must be integrated with
PFC to prevent packet loss from buffer overflow.

VI. CONCLUSION

Regarding PFC issues, existing solutions are either coarse-
grained or vulnerable to out-of-order delivery. Through testbed
and simulation experiments, our proposed OFC effectively re-
duces FCT, buffer occupancy, and the occurrence of deadlocks.

VII. ACKNOWLEDGEMENT

We sincerely thank the chairs and the anonymous reviewers
for their constructive feedback. This work was supported by
the NSF China (No. 61960206002, No. 62272292 and No.
61902246). Shizhen Zhao is the corresponding author.

REFERENCES

[1] Y. Gao, Q. Li et al., “When cloud storage meets rdma,” in NSDI, 2021.
[2] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,

“Rdma over commodity ethernet at scale,” in SIGCOMM, 2016.
[3] W. Bai et al., “Empowering azure storage with rdma,” in NSDI, 2023.
[4] P. Cao et al., “Network load balancing with parallel flowlets for AI

training clusters,” in NAIC, 2024.
[5] C. H. Song, X. Z. Khooi, R. Joshi et al., “Network load balancing with

in-network reordering support for rdma,” in SIGCOMM, 2023.
[6] IEEE. (2011) Priority-based flow control. [Online]. Available: https:

//1.ieee802.org/dcb/802-1qbb
[7] M. Alizadeh et al., “Data center tcp (dctcp),” in SIGCOMM, 2010.
[8] M. Noormohammadpour et al., “Datacenter traffic control: Understand-

ing techniques and tradeoffs,” IEEE Commun Surv Tutor, 2018.
[9] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics

of data centers in the wild,” in IMC, 2010.
[10] J. Xue, M. U. Chaudhry et al., “Dart: Divide and specialize for fast

response to congestion in rdma-based datacenter networks,” TON, 2020.
[11] M. Scharf and S. Kiesel, “Nxg03-5: Head-of-line blocking in tcp and

sctp: Analysis and measurements,” in IEEE Globecom, 2006.
[12] S. Hu, Y. Zhu, P. Cheng et al., “Deadlocks in datacenter networks: Why

do they form, and how to avoid them,” in HotNets, 2016.
[13] G. Kim, C. Kim, J. Jeong, M. Parker, and J. Kim, “Contention-based

congestion management in large-scale networks,” in MICRO, 2016.
[14] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn et al., “Congestion

control for large-scale rdma deployments,” SIGCOMM, 2015.
[15] M. Tang, X. Lin, and M. Palesi, “Local congestion avoidance in network-

on-chip,” TPDS, 2016.
[16] HPE. (2017) Hpe aruba 8400. [Online]. Available: https://www.hpe.

com/us/en/networking/switches.html
[17] S. Hu, Y. Zhu, P. Cheng et al., “Tagger: Practical pfc deadlock prevention

in data center networks,” TON, 2019.
[18] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data

center network architecture,” in SIGCOMM, 2008.
[19] M. Alizadeh, T. Edsall, S. Dharmapurikar et al., “Conga: distributed

congestion-aware load balancing for datacenters,” in SIGCOMM, 2014.
[20] C. Clos, “A study of non-blocking switching networks,” BSTJ, 1953.
[21] Intel. (2018) Tofino. [Online]. Available: https://goo.gl/cdEK1E
[22] S. Kassing, A. Valadarsky, and A. Singla. (2016) Netbench. [Online].

Available: https://github.com/ndal-eth/netbench.
[23] S. N. Avci, Z. Li, and F. Liu, “Congestion aware priority flow control

in data center networks,” in IFIP Networking, 2016.
[24] C. Tian, B. Li et al., “P-pfc: Reducing tail latency with predictive pfc

in lossless data center networks,” TPDS, 2020.
[25] K. Qian, W. Cheng, T. Zhang, and F. Ren, “Gentle flow control: avoiding

deadlock in lossless networks,” in SIGCOMM, 2019.
[26] Z. Cui and S. Y. Rim, “G-pfc: A packet-priority aware pfc scheme for

the datacenter,” in APNOMS, 2020.
[27] Intel. (2023) Tofino2. [Online]. Available: https://ieeexplore.ieee.org/

document/9220636
[28] D. Zhou, B. Fan, H. Lim et al., “Scalable, high performance ethernet

forwarding with cuckooswitch,” in CoNEXT, 2013.
[29] W. Gaoξ, J. Huang, Q. Wang, S. Zhou, and Z. Li, “Pfc-s: Reducing tail

latency with pfc sensitive in lossless data center networks,” SSRN, 2023.
[30] S. Li, C. Wang, Y. Zhang, C. Ma, L. Li, X. Cui, and J. Liu, “Fg-pfc: A

fine-grained pfc mechanism for lossless rdma,” JPCS, 2023.
[31] IEEE. (2010) Congestion notification. [Online]. Available: 802.11Qau.
[32] R. Mittal, L. Vinh The, N. Dukkipati et al., “Timely: Rtt-based conges-

tion control for the datacenter,” in SIGCOMM, 2015.
[33] G. Kumar, N. Dukkipati et al., “Swift: Delay is simple and effective for

congestion control in the datacenter,” in SIGCOMM, 2020.
[34] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, and L. o. Tang, “Hpcc:

High precision congestion control,” in SIGCOMM, 2019.
[35] W. Wang, M. Moshref, Y. Li et al., “Poseidon: Efficient, robust, and

practical datacenter cc via deployable int,” in NSDI, 2023.
[36] W. Cheng, K. Qian, W. Jiang, T. Zhang, and F. Ren, “Re-architecting

congestion management in lossless ethernet,” in NSDI, 2020.
[37] Y. Zhang, Y. Liu, Q. Meng, and F. Ren, “Congestion detection in lossless

networks,” in SIGCOMM, 2021.
[38] P. Dong, X. Lu, T. Huang et al., “Predictive queue-based rate control

for low latency in lossless data center networks,” TNSM, 2024.
[39] P. Goyal et al., “Backpressure flow control,” in NSDI, 2022.
[40] IEEE. (2018) Qcz. [Online]. Available: https://1.ieee802.org/tsn/
[41] W. Li, C. Zeng, J. Hu, and K. Chen, “Towards fine-grained and practical

flow control for datacenter networks,” in ICNP, 2023.

