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Understanding the Performance Guarantee of Physical
Topology Design for Optical Circuit Switched Data Centers

SHIZHEN ZHAO, PEIRUI CAO, and XINBING WANG, Shanghai Jiao Tong University, China

As a first step of designing Optical-circuit-switched Data Centers (ODC), physical topology design is critical

as it determines the scalability and the performance limit of the entire ODC. However, prior works on ODC

have not yet paid much attention to physical topology design, and the adopted physical topologies either scale

poorly, or lack performance guarantee.

We offer a mathematical foundation for the design and performance analysis of ODC physical topologies in

this paper. We introduce a new performance metric 𝛽 (G) to evaluate the gap between a physical topology

G and the ideal physical topology. We develop a coupling technique that bypasses a significant amount of

computational complexity of calculating 𝛽 (G). Using 𝛽 (G) and the coupling technique, we study four physical
topologies that are representative of those in literature, analyze their scalabilities and prove their performance

guarantees. Our analysis may provide new guidance for network operators to design better physical topologies

for their ODCs.
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1 INTRODUCTION
As data center traffic doubles every year [24], building Clos topologies [1, 11, 24] for data centers

using electrical switches is becoming more and more expensive and power prohibitive [2]. In order

to meet the growing demand at reduced energy cost, building ODCs is becoming a promising

alternative for future data centers. An optical circuit switch, e.g. Calient [3], could offer at least

hundreds of times higher switching capacity than an electrical switch, while its energy cost is

hundreds of times lower (less than 45 Watts for an optical circuit switch with 320 Tx/Rx pairs).

While the eventual goal of ODC design is the full-optical data center, due to technological

immaturity, existing designs of ODC have mostly adopted a hybrid design that involves both

electrical switching and optical switching. The design of an ODC typically covers the following

four aspects:

(1) Physical topology design: Determine how to interconnect hosts, electrical packet switches

(EPS) and optical circuit switches (OCS).

(2) OCS control: Determine the configurations of all the OCS nodes in an ODC.
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(3) EPS control: Set up the routing strategies for all the EPS nodes. Since OCS reconfiguration

may affect the connected EPS nodes, the queuing and buffer management policies of the EPS

nodes may also require careful redesign.

(4) Host control: Modify the host protocol stacks at different layers in accordance with the

OCS/EPS control strategies to attain better end-to-end performance.

Existing works on ODC, e.g., Helios [9], c-Through [25], Mordia [23], REACToR [18], OSA [6],

Solstice [19], MegaSwitch [7], FireFly [12], ProjectToR [10], RotorNet [21], Opera [20], etc., have

primarily focused on the OCS/EPS/Host control aspects, but their physical topology designs may not

support large-scale data centers (see Section 2 for more details). Only until recently, three scalable

physical topology designs are adopted by Flexfly [26], Sirius [2] and 3D-Hyper-FleX-LION [17].

However, the performance guarantee of these physical topologies remain unclear. To the best of

our knowledge, there is a lack of rigorous performance metrics that evaluate the “goodness” of

a physical topology design, and there is no systematic study on how to design a good physical

topology for ODC.

In this paper, we focus on the physical topology design for ODC, and offer a rigorous performance

evaluation for different physical topologies. One challenge of this work is to design a performance

metric for physical topologies. While much of the literature on ODC has adopted network through-

put, flow completion time, max link utilization, etc., to evaluate the end-to-end performance of an

ODC, these metrics may not accurately reflect the “goodness” of a physical topology. The reason is

that, both the physical topology design and the network control policies may affect these metrics,

and thus it is hard to evaluate the exact contribution of a physical topology. To eliminate the impact

of network control policies, we introduce 𝜇 (G, 𝑓 ), which is defined as the optimal throughput

across all possible network control policies for a given physical topology G and a given data center

demand pattern 𝑓 (see §3.2). Based on 𝜇 (G, 𝑓 ), we then define “𝛽-optimality” for a given physical

topology G, i.e., G is said to be 𝛽 (G)-optimal as long as 𝜇 (G, 𝑓 ) ≥ 𝛽 (G)𝜇 (G′, 𝑓 ) for any physical

topology G′
and any demand pattern 𝑓 (see §3.3). A physical topology G is said optimal if 𝛽 (G) = 1.

We first study how to design the optimal physical topologies with 𝛽 (G) = 1. A naive approach

requires calculating 𝜇 (G, 𝑓 ) for different 𝑓 ’s and optimizing 𝜇 (G, 𝑓 ) among different physical

topologies. Unfortunately, this approach is computationally prohibitive. First, the formulation of

𝜇 (G, 𝑓 ) is essentially an integer programming problem (see (5) in §3.2), which is NP-hard in general.

Second, there are an uncountable number of different traffic patterns, and it is impossible to calculate

𝜇 (G, 𝑓 ) one by one. To circumvent the above difficulty, we introduce a coupling technique (see

Lemma 1 in §3.3) to compare two physical topologies. The intuition is that, if one physical topology

can “imitate” all the control strategies of another physical topology, then the first physical topology

will perform no worse than the second one. Using this coupling technique, we prove that the ideal

physical topology and the uniform bipartite physical topology are both optimal. While these two

physical topologies have been adopted by many existing ODC designs [4, 6, 9, 18–21, 23, 25] to

build prototypes, they scale poorly to support large data centers.

We then study how to design scalable physical topologies for large ODCs. Along this direction,

we first prove a negative result that no physical topology is optimal when the number of EPS nodes

exceeds the number of ports of an OCS node. Hence, we have to seek for sub-optimal physical

topologies, and calculate 𝛽 (G) as a performance guarantee of these physical topologies. We could

still use the coupling technique to calculate 𝛽 (G) for these physical topologies. However, due

to the lack of direct connectivity between certain node pairs, it may not always be possible for

one physical topology to imitate the control decisions of another physical topology. To overcome

this challenge, we enhance the above coupling technique using overlay topologies. If one physical
topology allows constructing an overlay topology to “imitate” all the control strategies of another
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physical topology, then the first physical topology will perform no worse than the second one (see

Lemma 2 in §3.3). Using the enhanced coupling technique, we successfully calculated 𝛽 (G) for
three representative physical topologies.

The contributions of this work are summarized below:

(1) We introduce a new metric 𝛽 (G) to evaluate the goodness of a physical topology G.

(2) We develop a coupling technique to calculate 𝛽 (G). This technique circumvents the compu-

tational complexity of calculating 𝜇 (G, 𝑓 ) for any traffic pattern 𝑓 .

(3) We design an optimal physical topology (with rigorous proof) for small-scale data centers.

(4) We prove that no physical topology is optimal for large-scale data centers.

(5) Motivated by Flexfly [26], 3D-Hyper-FleX-LION [17] and Sirius [2], we design three physical

topologies that can scale to large ODCs, and prove their performance guarantees 𝛽 (G).

2 RELATEDWORK
Existing works on optical circuit switched data centers have primarily focused on the overall

network control. The adopted physical topology designs either scale poorly, or lack performance

guarantee.

c-Through [25], Mordia [23], REACToR [18], OSA [6], Solstice [19] simply use one OCS to connect

all the Top-of-Rack (ToR) switches. This physical topology design could only support tiny data

centers with Θ(100) number of servers. To improve scalability, MegaSwitch [7] uses fiber rings

for interconnection (a similar idea was also discussed in [23]). This physical topology architecture

could support Θ(1000) number of servers, but still does not work for large-scale data centers with

over 100k servers and thousands of ToRs.

Using free-space optics, FireFly [12] and ProjectToR [10] enable optical interconnection for thou-

sands of ToRs. However, the free-space optical switching technology faces tremendous deployment

complexity, as many environmental factors (e.g., vibration, dust, and humidity) may hinder the

performance of the free-space optical links.

Helios [9], RotorNet [21], Opera [20], TROD [4] create a uniform bipartite graph between all the

PoDs/ToRs and all the OCSs. This physical topology turns out to be optimal based on our analysis

in §4. While this design scales well for the PoD-level interconnect, it scales poorly for the ToR-level

interconnect. A large-scale data center may require hundreds of OCSs to connect over 100k servers.

Unfortunately, a ToR switch only has tens of uplinks and thus it is impossible to establish a link

between every pair of ToR and OCS. (In contrast, a PoD could have hundreds of uplinks.)

Recently, Flexfly [26], Sirius [2] and 3D-Hyper-FleX-LION [17] offered three physical topologies

that can potentially scale to large-scale data centers. However, no performance guarantee is provided

for any of the three physical topologies.

3 MATHEMATICAL MODEL
3.1 Basic Definitions
We study a network with 𝑁 electrical-packet-switching (EPS) nodes S = {𝑆1, 𝑆2, ..., 𝑆𝑁 } and 𝐾
optical-circuit-switching (OCS) nodes O = {𝑂1,𝑂2, ...,𝑂𝐾 }. Each EPS node has 𝐿 ports, each of

which has a transceiver. Each OCS node has 𝑅 ingress ports and 𝑅 egress ports. Each EPS port can

either connect to another EPS port, or connect to a pair of OCS ports. Note that when we connect

an EPS port to OCS ports, we need to separate the transmitter and the receiver of the EPS port,

have the transmitter connected to an OCS ingress port, and have the receiver connected to an OCS

egress port. Since an OCS port capacity is typically much higher (100× and more) than an EPS port

capacity, the capacity of each network link is dominated by the EPS port capacity 𝐵.
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Remark on OCS-OCS connections: The optical transceivers commonly used in data centers,

e.g., 100G QSFP28 CWDM4, typically have a link margin of 5dB and a maximum transmission

distance of 2km. Note that signals traversing an OCS node could experience 3dB optical loss. To

enable OCS-OCS connections, one may need to replace the 2km optical transceivers by 10km

optical transceivers, e.g, QSFP28 LR4. However, the QSFP28 LR4 transceiver has a much higher

consumption and laser cost than the QSFP28 CWDM4 transceiver. Due to the above cost reasons,

we do not allow OCS-OCS connections in this paper. Nevertheless, the methodologies introduced

in this paper can be easily generalized to incorporate OCS-OCS connections.

Traffic Matrix: Let 𝑓𝑖 𝑗 be the relative traffic demand between the EPS node 𝑆𝑖 and the EPS node

𝑆 𝑗 . Then, the network demand can be modeled using a traffic matrix 𝑓 = [𝑓𝑖 𝑗 , 𝑖 = 1, 2, ..., 𝑁 , 𝑗 =

1, 2, ..., 𝑁 ] .
Physical Topology: We use G = (V, E), where V = S ∪ O, to denote the physical topology

among all the EPS nodes and all the OCS nodes. As shown in Fig. 1(a), the edges of G consist of

two parts E = E1 ∪ E2, where E1 is the set of bidirectional links that interconnect two EPS nodes

and E2 is the set of unidirectional links that interconnect one EPS node and one OCS node. The

port count constraints of the EPS nodes and the OCS nodes are reflected by the degrees of the

nodes in G. Specifically, the in-degree and out-degree of each EPS node are no more than 𝐿 and the

in-degree and out-degree of each OCS node are no more than 𝑅. Note that there could be multiple

physical links connecting two adjacent nodes.

OCS Configuration: Each OCS node has 𝑅 ingress ports and 𝑅 egress ports. As shown in Fig. 1(b),

an OCS configuration is essentially a 1 − 1 mapping from the 𝑅 ingress ports to the 𝑅 egress

ports. In this paper, we denote by Π𝑘 , 𝑘 = 1, 2, ..., 𝐾 as the OCS configuration of 𝑂𝑘 , and let

Π = {Π1,Π2, ...,Π𝐾 }. An OCS configuration helps create multiple logical links between EPS node

pairs. For example, if an ingress port 𝑎 is mapped to an egress port 𝑏 in an OCS node, let 𝑆𝑖 be

the EPS node that connects to 𝑎 and 𝑆 𝑗 be the EPS node that connects to 𝑏, then a unidirectional

logical link is created between 𝑆𝑖 and 𝑆 𝑗 . Since OCS nodes do not perform packet decoding, a packet

traversing through a logical link will not be aware of the underlying OCS node.

Logical Topology: Given a physical topology G and an OCS configuration Π, a logical topology
G𝑙 = G𝑙 (G,Π) = (V𝑙 , E𝑙 ) is formed. In the logical topology G𝑙 (also see Fig. 1(c)), the node set

V𝑙 = S only contains the EPS nodes; the link set E𝑙 = E1 ∪ E3, where E1 is the set of physical

links among all the EPS nodes and E3 is the set of logical links formed by the OCS configuration Π.
We use a non-negative integer 𝑥𝑖 𝑗 (G𝑙 ) to denote the number of links from 𝑆𝑖 to 𝑆 𝑗 in G𝑙 . Note that
𝑥𝑖 𝑗 (G𝑙 ) could be larger than one.

3.2 Network Control for Optimal Throughput
Network performance are usually evaluated from different dimensions, including throughput,

latency, flow completion time [8], deployment complexity [27], expansion complexity [27, 28], etc.

We focus on throughput in this paper due to the following reasons. First, compared to latency and

flow completion time, throughput can be mathematically formulated and thus is easy to evaluate

even at the planning stage. Second, having a higher throughput could also help reduce latency, flow

completion time, expansion complexity (the number of expansion stages can be reduced [27]), etc.

Given a traffic pattern 𝑓 and a physical topology G = (V, E), network throughput can be affected
by various control policies, including route selection, load balancing, congestion control, etc. For

ODC, the OCS configurations can be also a determining factor for throughput. We consider an

“oracle” that could choose the best control policies for every pair of (G, 𝑓 ). Specifically, this oracle
performs topology engineering (ToE) and traffic engineering (TE) to attain the optimal network

throughput, denoted by 𝜇 (G, 𝑓 ). Admittedly, this oracle is hard to realize in practice. But on the

other hand, this oracle allows us to eliminate the impact of different control policies on 𝜇 (G, 𝑓 ),
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…

…

… … …

(a) Physical topology.

…

…

… … …

(b) OCS configuration.

…

…

… … …

(c) Logical topology.

Fig. 1. Physical topology and logical topology. When an OCS configuration acts on a physical topology, the
logical topology will be changed. In (a) physical topology, red arrowlines represent the set of bidirectional
links that interconnect two EPS nodes and green arrowlines represent the set of unidirectional links that
interconnect one EPS node and one OCS node. In (c) logical topology, blue arrowlines represent the set
of logical links formed by the OCS configuration. Note that each EPS port can either connect to one red
bidirectional arrowline, or connect to two green unidirectional arrowlines with opposite directions.

and thus 𝜇 (G, 𝑓 ) can be used to measure the goodness of the physical topology G under the traffic

pattern 𝑓 . Next, we will describe how this oracle calculates the optimal throughput 𝜇 (G, 𝑓 ).
Topology Engineering (ToE): ToE controls the logical topologies used to serve different traffic

patterns. For each traffic pattern 𝑓 , ToE could either generate one logical topology, or generate

multiple logical topologies and perform time sharing among these logical topologies. Let𝑀 ≥ 1 be

the number of logical topologies generated by ToE. Each logical topology, denoted by G (𝑚)
𝑙

,𝑚 =

1, 2, ..., 𝑀, corresponds to a set of 𝐾 OCS configurations Π (𝑚) = {Π (𝑚)
1
,Π (𝑚)

2
, ...,Π (𝑚)

𝐾
}, and lasts for

Δ(𝑚)
amount of time. Note that reconfiguring OCSs could incur a reconfiguration latency 𝛿 , which

ranges from hundreds of nanoseconds to tens of milliseconds, depending on the optical switching

technology being used. Hence, the average bandwidth allocated to (𝑆𝑢, 𝑆𝑣) can be computed as

𝐵𝑢𝑣 =

(
𝑀∑
𝑚=1

𝑥𝑢𝑣 (G (𝑚)
𝑙

)Δ(𝑚)𝐵

) / (
𝑀𝛿 +

𝑀∑
𝑚=1

Δ(𝑚)

)
. (1)
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In addition, traffic patterns may change in an ODC. To model this fact, we impose the following

constraint on Δ(𝑚)
:

𝑀𝛿 +
𝑀∑
𝑚=1

Δ(𝑚) ≤ Δ, (2)

where Δ is the duration of the traffic pattern 𝑓 .

Traffic Engineering (TE): Given a ToE solution, network operators can then perform traffic

engineering to maximize network throughput. Here we adopt the max-flow formulation. For every

flow from 𝑆𝑖 to 𝑆 𝑗 , let 𝑓𝑖 𝑗 (𝑢, 𝑣) be the amount of traffic allocated to (𝑆𝑢, 𝑆𝑣). The traffic allocation

𝑓𝑖 𝑗 (𝑢, 𝑣) must satisfy the following constraints:

(1) Flow conservation constraints: The total ingress traffic equals to the total egress traffic at

every EPS node, i.e.,
∑
𝑤1≠𝑣

𝑓𝑖 𝑗 (𝑤1, 𝑣) =
∑
𝑤2≠𝑣

𝑓𝑖 𝑗 (𝑣,𝑤2), ∀ 𝑣 ≠ 𝑖, 𝑗,
𝜇 𝑓𝑖 𝑗 +

∑
𝑤1≠𝑖

𝑓𝑖 𝑗 (𝑤1, 𝑖) =
∑
𝑤2≠𝑖

𝑓𝑖 𝑗 (𝑖,𝑤2),∑
𝑤1≠𝑗

𝑓𝑤1 𝑗 (𝑢, 𝑗) = 𝜇𝑓𝑖 𝑗 +
∑
𝑤2≠𝑗

𝑓𝑖 𝑗 ( 𝑗,𝑤2),
(3)

where 𝜇 is a scaling factor of the network traffic pattern 𝑓 .

(2) Network capacity constraints: For any EPS node pair (𝑆𝑢, 𝑆𝑣), the total amount of traffic

allocated to (𝑆𝑢, 𝑆𝑣) must be no larger than 𝐵𝑢𝑣 , i.e.,

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑓𝑖 𝑗 (𝑢, 𝑣) ≤ 𝐵𝑢𝑣 . (4)

Defining 𝜇 (G, 𝑓 ): Note that we introduced a scaling factor 𝜇 in (3). We could optimize 𝜇 by solving

the following optimization problem:

max 𝜇

s.t. G (𝑚)
𝑙

= G𝑙 (G,Π (𝑚) ),∀𝑚 = 1, 2, ..., 𝑀,

𝜇, 𝐵𝑢𝑣, 𝑓𝑖 𝑗 (𝑢, 𝑣),G (𝑚)
𝑙

,Δ(𝑚)
satisfy (1)(2)(3)(4).

(5)

Then, 𝜇 (G, 𝑓 ) is defined as the optimal objective value of the above optimization problem.

Remark on the complexity of calculating 𝜇 (G, 𝑓 ): Even though we have defined 𝜇 (G, 𝑓 ) rig-
orously, calculating 𝜇 (G, 𝑓 ) turns out to be an NP-Complete problem (see Appendix A for the

detailed proof). We could use Gurobi [22], the world’s fastest linear programming solver, to solve (5).

Unfortunately, (5) contains Θ(𝑁 2𝐾𝑀) number of integer variables and Θ(𝑁 4) fractional variables.
As we will show in Section 7.2, Gurobi may fail to solve (5) even when there are only 9 EPS nodes.

Remark on TE:We have adopted an “edge formulation” for TE in (3) and (4). This edge formulation

requires Θ(𝑁 4) routing variables, one for every link & flow pair. Another widely used formulation

for TE is the “path formulation” (see SWAN [13]). The path formulation pre-computes a set of paths

for each flow, and then defines a traffic-spitting ratio variable for every flow and every path. This

formulation generally requires fewer number of decision variables. However, its logical topology

must be determined first in order to compute paths. In contrast, calculating 𝜇 (G, 𝑓 ) requires a joint
optimization over topology and routing, and thus cannot adopt the “path formulation”.

3.3 Objective of Physical Topology Design
Definition 1. A physical topology G is said to be 𝛽-optimal if for every traffic pattern 𝑓 ,

𝜇 (G, 𝑓 ) ≥ 𝛽𝜇 (G′, 𝑓 )
holds for any possible physical topology G′. 𝛽 is called the performance ratio of G.
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Clearly, every physical topology G corresponds to a 𝛽 (G) ∈ [0, 1]. 𝛽 (G) can be viewed as a

performance guarantee of the physical topology G, and the larger the better. A physical topology

is said to be optimal if its corresponding 𝛽 = 1.

Unfortunately, directly calculating 𝛽 (G) based on (5) and Definition 1 is computationally in-

tractable for large scale ODCs. First, calculating 𝛽 (G, 𝑓 ) is NP-Complete. Second, there are un-

countable number of traffic patterns 𝑓 , and it is impossible to calculate 𝜇 (G, 𝑓 ) one by one. Due

to the above difficulties, we have to resort to a theoretical approach. The key to our theoretical

approach is a coupling technique detailed in the following two lemmas. This coupling technique

helps us circumvent the algorithmic complexity of calculating 𝛽 (G, 𝑓 ) for all possible 𝑓 ’s.

Lemma 1. Given two physical topologies G and G′. If any logical topology G𝑙 formed on top of G
can be also formed on top of G′, then for any traffic pattern 𝑓 , 𝜇 (G′, 𝑓 ) ≥ 𝜇 (G, 𝑓 ).

Proof. Let (G∗(𝑚)
𝑙

, 𝑓 ∗𝑖 𝑗 (𝑢, 𝑣)) be the optimal topology+routing solution that attains the optimal

throughput 𝜇 (G, 𝑓 ). Since the logical topologies G∗(𝑚)
𝑙

are also realizable on G′
, (G∗(𝑚)

𝑙
, 𝑓 ∗𝑖 𝑗 (𝑢, 𝑣))

must also satisfy the constraints in (5) when calculating 𝜇 (G′, 𝑓 ). Therefore, 𝜇 (G′, 𝑓 ) ≥ 𝜇 (G, 𝑓 ). □

Lemma 1 can be also generalized to the concept of overlay topology, which is defined below:

Definition 2. Given a logical topology G𝑙 . A topology G𝑜𝑙 can be formed as an overlay topology
of G𝑙 if we can reserve a number of paths for every source and destination pairs 𝑆𝑖 , 𝑆 𝑗 , such that the
following two conditions are met:

(1) From the overlay topology G𝑜𝑙 aspect, for every pair of EPS nodes 𝑆𝑖 , 𝑆 𝑗 , the total reserved capacity
among all paths is equal to 𝑥𝑖 𝑗 (G𝑜𝑙 )𝐵.

(2) From the underlay topology G𝑙 aspect, for any EPS node pair (𝑆𝑖 , 𝑆 𝑗 ), the total capacity offered
for reservation does not exceed 𝑥𝑖 𝑗 (G𝑙 )𝐵.

Lemma 2. Given two physical topologies G and G′. If for any logical topology G𝑙 formed on top
of G, there is a logical topology G′

𝑙
formed on top of G′, such that G𝑙 can be formed as an overlay

topology of G′
𝑙
, then for any traffic pattern 𝑓 , 𝜇 (G′, 𝑓 ) ≥ 𝜇 (G, 𝑓 ).

Proof. See Appendix B. □

3.3.1 An Ideal Physical Topology. Fix the number of links 𝐿 and the link capacity 𝐵 of an EPS node.

Assume that each OCS node has the infinite number of ports. Then, we could connect all the EPS

nodes to a single OCS node and obtain an ideal physical topology Gideal

𝐿,𝐵
. It is easy to verify that

any logical topology formed on top of any physical topology is realizable on top of Gideal

𝐿,𝐵
. Then

according to Lemma 1, Gideal

𝐿,𝐵
is optimal, as stated below:

Theorem 3. For any fixed number of links 𝐿 and fixed link capacity 𝐵, Gideal
𝐿,𝐵

is optimal.

Based on the ideal physical topology Gideal

𝐿,𝐵
, we can then define the ideal throughput 𝜇ideal

𝐿,𝐵
(𝑓 ) for

an arbitrary traffic pattern 𝑓 as

𝜇ideal𝐿,𝐵 (𝑓 ) = 𝜇 (Gideal

𝐿,𝐵 , 𝑓 ).

Clearly, 𝜇ideal
𝐿,𝐵

(𝑓 ) scales linearly with respect to 𝐵. Further, as the number of links 𝐿 of an EPS node

increases, the ideal throughput 𝜇ideal
𝐿,𝐵

(𝑓 ) would never decrease.
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4 OPTIMAL PHYSICAL TOPOLOGY FOR SMALL DATA CENTERS WITH 𝑁 ≤ 𝑅

Building an ideal physical topology requires 𝑅 ≥ 𝑁𝐿. This only applies to tiny data centers with

at most tens of EPS nodes
1
. In this section, we study a less restrictive case where 𝑁 ≤ 𝑅, which

corresponds to hundreds of EPS nodes.

Before proposing our physical topology design, we first introduce the following lemma.

Lemma 4. Given an 𝑁 × 𝑁 non-negative integer matrix x = {𝑥𝑖, 𝑗 }, for any integer 𝐻 ≥ 1 and
mutually disjoint sets A1,A2, ...,A𝐶 satisfying ∪𝐶𝑐=1

A𝑐 = {1, 2, ..., 𝑁 } and A𝑐1
∩ A𝑐2

= ∅,∀𝑐1 ≠ 𝑐2,
there must exist 𝐻 non-negative integer matrices x(1) , ..., x(H) satisfying
(1) x = x(1) + · · · + x(H) ;

(2) 0 ≤ ∑𝑁
𝑗=1
𝑥
(ℎ)
𝑖, 𝑗

≤
⌈∑𝑁

𝑗=1
𝑥𝑖,𝑗

𝐻

⌉
, for any 𝑖 = 1, ..., 𝑁 and any ℎ = 1, 2, ..., 𝐻 ;

(3) 0 ≤ ∑
𝑖∈A𝑐

∑𝑁
𝑗=1
𝑥
(ℎ)
𝑖, 𝑗

≤
⌈∑

𝑖∈A𝑐

∑𝑁
𝑗=1
𝑥𝑖,𝑗

𝐻

⌉
, for any 𝑐 = 1, ...,𝐶 and any ℎ = 1, 2, ..., 𝐻 ;

(4) 0 ≤ ∑𝑁
𝑖=1
𝑥
(ℎ)
𝑖, 𝑗

≤
⌈∑𝑁

𝑖=1
𝑥𝑖,𝑗

𝐻

⌉
, for any 𝑗 = 1, ..., 𝑁 and any ℎ = 1, 2, ..., 𝐻 ;

(5) 0 ≤ ∑𝑁
𝑖=1

∑
𝑗 ∈A𝑐

𝑥
(ℎ)
𝑖, 𝑗

≤
⌈∑𝑁

𝑖=1

∑
𝑗∈A𝑐

𝑥𝑖,𝑗

𝐻

⌉
, for any 𝑐 = 1, ...,𝐶 and any ℎ = 1, 2, ..., 𝐻 .

Lemma 4 can be proved by transforming it into a sequence of max-flow problems. It is actually

a direct consequence of Theorem 3 in [28] by setting A = B = {A1, ...,A𝐶 , {1}, ..., {𝑁 }}. See
Appendix A in [28] for the detailed proof.

4.1 Physical Topology Design
Motivated by Lemma 4, we set the number of OCS nodes as 𝐾 = 𝐿 and evenly distribute the 𝐿 links

of each EPS node across all the OCS nodes. In other words, the physical topology G becomes a

uniform bipartite graph, with exactly one bidirectional physical link between every pair of EPS

node and OCS node. (More specifically, the transmitter of the EPS port is connected to an OCS

ingress port, and the receiver of the EPS port is connected to an OCS egress port.) Note that 𝑁 ≤ 𝑅

ensures that the number of ports of each OCS node is not exhausted. We denote such a physical

topology by Guniform, as shown in Fig. 2. We can prove that Guniform is optimal.

…

…

…

… … …

… … … …

…

Fig. 2. Guniform topology.

Theorem 5. If 𝑁 ≤ 𝑅, then Guniform is optimal.

Proof. We only need to prove that any logical topology G𝑙 is realizable on top of the physical

topology Guniform.

1
A practical OCS node has hundreds of ports and a practical ToR switches has tens of ports.
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Since each EPS node has 𝐿 ports, we must have{ ∑𝑁
𝑖=1
𝑥𝑖 𝑗 (G𝑙 ) ≤ 𝐿, ∀ 𝑗 = 1, ..., 𝑁 ,∑𝑁

𝑗=1
𝑥𝑖 𝑗 (G𝑙 ) ≤ 𝐿, ∀ 𝑖 = 1, ..., 𝑁 .

(6)

Then, according to Lemma 4, we can decompose {𝑥𝑖 𝑗 (G𝑙 )} into 𝐻 = 𝐾 = 𝐿 integer matrices

{𝑥 (ℎ)
𝑖 𝑗

(G𝑙 )}, ℎ = 1, 2, ..., 𝐻 satisfying the conditions in Lemma 4. Based on (6) and the conditions (2)

and (4) of Lemma 4, it is easy to check that any {𝑥 (ℎ)
𝑖 𝑗

(G𝑙 )}, ℎ = 1, 2, ..., 𝐻 , must satisfy{ ∑𝑁
𝑖=1
𝑥
(ℎ)
𝑖 𝑗

(G𝑙 ) ≤ 1, ∀ 𝑗 = 1, ..., 𝑁 ,∑𝑁
𝑗=1
𝑥
(ℎ)
𝑖 𝑗

(G𝑙 ) ≤ 1, ∀ 𝑖 = 1, ..., 𝑁 .

Since 𝑥
(ℎ)
𝑖 𝑗

(G𝑙 )’s are non-negative integers, 𝑥 (ℎ)
𝑖 𝑗

(G𝑙 ) is actually a permutation matrix. Note that

each EPS node has one bidirectional physical link connected to the ℎ-th OCS node, it is easy to

verify that the permutation matrix 𝑥
(ℎ)
𝑖 𝑗

(G𝑙 ) is realizable on the ℎ-th OCS node.

□

5 NEGATIVE RESULT ON PHYSICAL TOPOLOGY DESIGN
Having designed an optimal physical topology for the case 𝑁 ≤ 𝑅, we thus wonder if it is possible

to design an optimal physical topology for large-scale data centers with 𝑁 > 𝑅. Unfortunately, the

following theorem demonstrates the impossibility of such a design.

Theorem 6. If 𝑁 > 𝑅, then no physical topology is 𝛽-optimal for 𝛽 > 𝑁+𝑅−1

2𝑁−2
. In other words, for

any physical topology G, there exists a traffic pattern 𝑓 and a physical topology G′, such that

𝜇 (G, 𝑓 ) ≤ 𝑁 + 𝑅 − 1

2𝑁 − 2

𝜇 (G′, 𝑓 ).

Proof. Let Z = (𝑘1, 𝑘2, ..., 𝑘𝑁 ) be a permutation of the 𝑁 EPS nodes. In total, we obtain 𝑁 !

different permutations. For each permutation Z = (𝑘1, 𝑘2, ..., 𝑘𝑁 ), we count the maximum number

of unidirectional logical links that can be formed for 𝑆𝑘1
→ 𝑆𝑘2

, 𝑆𝑘2
→ 𝑆𝑘3

, ..., 𝑆𝑘𝑁 → 𝑆𝑘1
under a

physical topology G, and denote this number by 𝑁 (G,Z).
Step 1:We would like to prove that for any physical topology G, there must exist a permutation

Z∗
, such that

𝑁 (G,Z∗) ≤ 𝑁𝐿𝑅

𝑁 − 1

.

Let 𝑁𝑖→𝑗 be the maximum number of links that can be created from the EPS node 𝑆𝑖 to the EPS

node 𝑆 𝑗 . We compute∑
Z
𝑁 (G,Z) =

∑
Z

∑
𝑖, 𝑗 :𝑖≠𝑗

1{ 𝑗 is after 𝑖 in Z}𝑁𝑖→𝑗 =
∑
𝑖, 𝑗 :𝑖≠𝑗

𝑁𝑖→𝑗

∑
Z

1{ 𝑗 is after 𝑖 in Z} .

Here, “ 𝑗 is after 𝑖 in Z = (𝑘1, 𝑘2, ..., 𝑘𝑁 )” means that either there exists 𝑟 = 1, 2, ..., 𝑁 − 1, such that

𝑘𝑟 = 𝑖, 𝑘𝑟+1 = 𝑗 , or 𝑘𝑁 = 𝑖, 𝑘1 = 𝑗 . In order to compute the number of permutations in which 𝑗 is

after 𝑖 , i.e.,
∑

Z 1{ 𝑗 is after 𝑖 in Z} ,

(1) we first find a permutation with 𝑁 − 2 elements excluding 𝑖 and 𝑗 , and the total number of

such permutations is (𝑁 − 2)!;
(2) we then insert 𝑖 and 𝑗 to the right places of the above permutation, and the number of different

inserting positions is 𝑁 . (For example, when 𝑁 = 4, 𝑖 𝑗 ∗ ∗, ∗𝑖 𝑗∗, ∗ ∗ 𝑖 𝑗 and 𝑗 ∗ ∗𝑖 are the 4

generated permutations.)
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Hence, ∑
Z

1{ 𝑗 is after 𝑖 in Z} = 𝑁 × (𝑁 − 2)!.

We then focus on

∑
𝑖, 𝑗 :𝑖≠𝑗 𝑁𝑖→𝑗 . We first fix 𝑖 and compute

∑
𝑗 :𝑗≠𝑖 𝑁𝑖→𝑗 . Assume that the EPS node 𝑆𝑖

has at least one transmitter connected to the OCS node 𝑂𝑘 . Let 𝑅𝑘 be the number of links between

the egress ports of the OCS node 𝑂𝑘 and the receivers of all the EPS nodes excluding 𝑆𝑖 . Then it is

easy to check that the contribution of the OCS node 𝑂𝑘 to
∑
𝑗 :𝑗≠𝑖 𝑁𝑖→𝑗 is at most 𝑅𝑘 ≤ 𝑅. Since the

EPS node 𝑆𝑖 can connect to at most 𝐿 different OCS nodes, we must have∑
𝑗 :𝑗≠𝑖

𝑁𝑖→𝑗 ≤ 𝐿𝑅, for any fixed 𝑖 .

Therefore, ∑
𝑖, 𝑗 :𝑖≠𝑗

𝑁𝑖→𝑗 =

𝑁∑
𝑖=1

∑
𝑗 :𝑗≠𝑖

𝑁𝑖→𝑗 ≤ 𝑁𝐿𝑅. (7)

Note that there are 𝑁 ! different permutations in total. According to the Pigeonhole Principle,

there must exist a permutation Z∗
such that

𝑁 (G,Z∗) ≤
∑

Z 𝑁 (G,Z)
𝑁 !

≤ 𝑁 × (𝑁 − 2)! × 𝑁𝐿𝑅
𝑁 !

≤ 𝑁𝐿𝑅

𝑁 − 1

.

Step 2:We construct a permutation traffic pattern 𝑓 ∗ based on 𝑍 ∗ = (𝑘∗
1
, 𝑘∗

2
, ..., 𝑘∗

𝑁
), i.e.,

𝑓 ∗𝑖 𝑗 =


1, if 𝑖 = 𝑘∗𝑟 , 𝑗 = 𝑘

∗
𝑟+1
, where 𝑟 = 1, 2, ..., 𝑁 − 1;

1, if 𝑖 = 𝑘∗
𝑁
, 𝑗 = 𝑘∗

1
;

0, otherwise.

Clearly, if we create a physical topologyG(𝑍 ∗) such that the 𝑙-th (𝑙 = 1, 2, ..., 𝐿) egress port of the EPS

node 𝑆𝑘∗
𝑖
(or 𝑆𝑘∗

𝑁
) and the 𝑙-th ingress port of the EPS node 𝑆𝑘∗

𝑖+1

(or 𝑆𝑘∗
1

) connect to the sameOCS, then

the resulting physical topology G(𝑍 ∗) would be the optimal physical topology for 𝑓 ∗. Specifically,
on top of the physical topology G(𝑍 ∗), we can create 𝐿 identical cycles 𝑘∗

1
→ 𝑘∗

2
→ ... → 𝑘∗

𝑁
→ 𝑘∗

1

as the logical topology. It is easy to check that this logical topology offers the highest throughput

for the traffic matrix 𝑓 ∗ over the physical topology G(𝑍 ∗), and 𝜇 (G(𝑍 ∗), 𝑓 ∗) = 𝐵𝐿.
We then compute the throughput 𝜇 (G, 𝑓 ∗) for 𝑓 ∗ over G. Consider the optimal ToE+TE strategy

that attains the throughput value 𝜇 (G, 𝑓 ∗). Then, within a time period of Δ,

𝜇 (G, 𝑓 ∗)Δ
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑓 ∗𝑖 𝑗 = 𝜇 (G, 𝑓 ∗)Δ𝑁 (8)

amount of traffic is delivered from sources to destinations. The delivered traffic can be grouped

into two classes:

(1) Class-1: traffic that is delivered via only one hop;

(2) Class-2: traffic that is delivered via at least two hops.

Class-1 traffic must occupy one of following types of logical links 𝑆𝑘∗
1

→ 𝑆𝑘∗
2

, ..., 𝑆𝑘∗
𝑁−1

→
𝑆𝑘∗

𝑁
, 𝑆𝑘∗

𝑁
→ 𝑆𝑘∗

1

. Since the total number of such links is at most 𝑁 (G,Z∗), we must have

Class-1 traffic ≤ 𝑁 (G,Z∗)Δ𝐵. (9)

Every byte of the Class-2 traffic occupies at least two bytes of the network capacity. Note that

every logical topology has at most 𝐿𝑁 unidirectional links. Hence,

2 × Class-2 traffic ≤ (𝐿𝑁 − 𝑁 (G,Z∗))Δ𝐵. (10)
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Based on (8)(9)(10), we then obtain

𝜇 (G, 𝑓 ∗) ≤ 1

𝑁

(
𝐵𝑁 (G,Z∗) + 𝐵

2

(𝐿𝑁 − 𝑁 (G,Z∗))
)
=
𝐵𝐿

2

+ 𝐵

2𝑁
𝑁 (G,Z∗)

≤ 𝐵𝐿

2

+ 𝐵𝐿
2

𝑅

𝑁 − 1

=
𝑁 + 𝑅 − 1

2𝑁 − 2

𝜇 (G(𝑍 ∗), 𝑓 ∗).

This completes the proof. □

Discussion: Note that 𝑁+𝑅−1

2𝑁−2
< 1 when 𝑁 > 𝑅 + 1. Then according to Theorem 6, no physical

topology is optimal. Readers may wonder if it is possible to construct an optimal physical topology

for the case where 𝑁 = 𝑅 + 1. The answer is no. When 𝑁 = 𝑅 + 1,
𝑁+𝑅−1

2𝑁−2
= 1. This indicates that, if

there exists an optimal physical topology, the “=” must hold for the inequality (7). This “=” requires

that the 2𝑅 ports in each OCS (𝑅 ingress ports and 𝑅 egress ports) must connect to 2𝑅 different EPS

nodes. This is impossible because there are only 𝑁 = 𝑅 + 1 EPS nodes.

6 SCALABLE PHYSICAL TOPOLOGY DESIGNS WITH PERFORMANCE GUARANTEE
In this section, we propose three scalable physical topology designs and analyze their performance

guarantees. The main results in this section are summarized in Table 1. Note that the maximum

scale of different physical topologies depends on the OCS node port count 𝑅 and the EPS node port

count 𝐿. A commercially-available OCS node, e.g., the 3D-MEMS based OCS [3] and the Arrayed

Wavelength Grating Routers [2], could have hundreds of ports. An off-the-shelf ToR EPS node, e.g.,

the CloudEngine 8800 [14], could have 32 ∼ 64 ports. Hence, the physical topologes studied in this

section could support large-scale ODCs with thousands or even tens of thousands of EPS nodes.

Table 1. The scalability and the performance ratios of different physical topologies.

Physical Topology Maximum Number of EPS Nodes Performance Ratio 𝛽

Guniform 𝑅 1

Geps-group 𝑅⌈𝐿/3⌉ min𝑓

{
𝜇ideal⌈𝐿/3⌉,𝐵 (𝑓 )/𝜇

ideal

𝐿,𝐵
(𝑓 )

}
Geps-mesh 𝑅2

min𝑓

{
𝜇ideal⌊𝐿/3⌋,𝐵 (𝑓 )/𝜇

ideal

𝐿,𝐵
(𝑓 )

}
Gocs-mesh ⌊𝑅/2⌋ ⌊𝐿/2⌋ min𝑓

{
𝜇ideal⌊𝐿/2⌋,𝐵 (𝑓 )/𝜇

ideal

𝐿,𝐵
(𝑓 )

}
6.1 EPS-Group based Physical Topology
Physical topology of Geps-group: Let 𝑃 = ⌈𝐿/3⌉. We create 𝐶 EPS node groups, each of which

contains 𝑃 EPS nodes and is denoted by A𝑐 . Within each EPS node group, there are two links

between every pair of EPS nodes. Each EPS node has 2(𝑃 − 1) intra-group links, and the total

number of links in each EPS node group is 𝑃 (𝑃 − 1). Each EPS node also has 𝑃 links connected

to the OCS nodes to establish inter-group connections. It is easy to verify that the degree of each

EPS node is 3𝑃 − 2 ≤ 𝐿. We use 𝐾 = 𝑃2
OCS nodes and divide these OCS nodes into 𝑃 equal-sized

groups. We number the EPS nodes in a group from 1 to 𝑃 . The 𝑝-th EPS node in a group has one

link connected to every OCS node in the 𝑝-th OCS node group, where 𝑝 = 1, 2, ..., 𝑃 . Since the

number of ports of an OCS node is 𝑅, the number of EPS node groups of Geps-group must satisfy

𝐶 ≤ 𝑅. Thus, the total number of EPS nodes in Geps-group satisfies 𝑁 = 𝐶𝑃 ≤ 𝑅⌈𝐿/3⌉ .

Theorem 7. For any traffic pattern 𝑓 , the optimal throughput under Geps-group satisfies

𝜇 (Geps-group, 𝑓 ) ≥ 𝜇ideal⌈𝐿/3⌉,𝐵 (𝑓 ).
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Fig. 3. Toy example of EPS-Group topology (𝑅 = 2, 𝑁 = 6).

Proof. Let Gideal

⌈𝐿/3⌉,𝐵 be the ideal physical topology. According to Lemma 2, we need to show that

any logical topology G𝑙 formed over Gideal

⌈𝐿/3⌉,𝐵 can be realized as a overlay topology over Geps-group.

Since each EPS node in Gideal

⌈𝐿/3⌉,𝐵 has 𝑃 = ⌈𝐿/3⌉ number of uplinks, the following constraints must

be satisfied { ∑𝑁
𝑖=1
𝑥𝑖 𝑗 (G𝑙 ) ≤ ⌈𝐿/3⌉ = 𝑃, ∀ 𝑗 = 1, ..., 𝑁 ,∑𝑁

𝑗=1
𝑥𝑖 𝑗 (G𝑙 ) ≤ ⌈𝐿/3⌉ = 𝑃, ∀ 𝑖 = 1, ..., 𝑁 .

(11)

Note that it may not always be possible to establish a logical link between two EPS nodes in

Geps-group, especially when the two EPS nodes are in different EPS node groups and these two

nodes have different intra-group indices. Hence, we are interested in constructing G𝑙 as an overlay

topology on top of Geps-group. For every pair of EPS nodes 𝑆𝑖 and 𝑆 𝑗 in Geps-group, we would like to

create 𝑥𝑖 𝑗 (G𝑙 ) number of virtual logical links in between. Here, a virtual logical links is essentially
a path between two EPS nodes, with each path segment occupying exactly one logical link.

For every EPS node pair (𝑆𝑖 , 𝑆 𝑗 ), we classify this pair’s virtual logical links into 𝑃 = ⌈𝐿/3⌉ types:
• If 𝑆𝑖 and 𝑆 𝑗 are in the same EPS node group, the type-𝑝 virtual logical links are two-hop

paths with intermediate node being the 𝑝-th EPS node in this EPS node group. It is possible

that the 𝑝-th EPS node is exactly 𝑆𝑖 or 𝑆 𝑗 . In this case, this “two-hop path” degenerates to a

single-hop path.

• If 𝑆𝑖 and 𝑆 𝑗 belong to different EPS node groups, the type-𝑝 virtual logical links are three-hop

paths with intermediate nodes being the 𝑝-th EPS node in the EPS node group of 𝑆𝑖 and the

𝑝-th EPS node in the EPS node group of 𝑆 𝑗 . It is possible that the 𝑝-th EPS node in the EPS

node group of 𝑆𝑖 is exactly 𝑆𝑖 , or the 𝑝-th EPS node in the EPS node group of 𝑆 𝑗 is exactly 𝑆 𝑗 .

In this case, this “three-hop path” degenerates to a two/one-hop path.

We use 𝑥
𝑝

𝑖 𝑗
, 𝑝 = 1, 2, ..., 𝑃 to denote the total number of type-𝑝 paths between 𝑆𝑖 and 𝑆 𝑗 . According

to Lemma 4, there exists an integer solution of [𝑥𝑝
𝑖 𝑗
] satisfying the following constraints:

(1) 𝑥𝑖 𝑗 =
∑𝑃
𝑝=1

𝑥
𝑝

𝑖 𝑗
,∀𝑖, 𝑗 = 1, ..., 𝑁 ;

(2) 0 ≤ ∑𝑁
𝑗=1
𝑥
𝑝

𝑖 𝑗
≤ 1,∀𝑖 = 1, ..., 𝑁 , 𝑝 = 1, ..., 𝑃 ;

(3) 0 ≤ ∑
𝑖∈A𝑐

∑𝑁
𝑗=1
𝑥
𝑝

𝑖 𝑗
≤ 𝑃,∀𝑐 = 1, ...,𝐶, 𝑝 = 1, ..., 𝑃 ;

(4) 0 ≤ ∑𝑁
𝑖=1
𝑥
𝑝

𝑖 𝑗
≤ 1,∀𝑗 = 1, ..., 𝑁 , 𝑝 = 1, ..., 𝑃 ;

(5) 0 ≤ ∑𝑁
𝑖=1

∑
𝑗 ∈A𝑐

𝑥
𝑝

𝑖 𝑗
≤ 𝑃,∀𝑐 = 1, ...,𝐶, 𝑝 = 1, ..., 𝑃 .

Note that 𝑥
𝑝

𝑖 𝑗
determines the underlying logical topology of the overlay topology G𝑙 . We need to

show that this logical topology is compatible with the physical topology Geps-group.

Intra-group Logical Topology: If 𝑆𝑖 and 𝑆 𝑗 are in the same EPS node group, then the number of

links in between is

∑𝑁
𝑢=1

𝑥
( 𝑗 mod 𝑃 )
𝑖𝑢

+ ∑𝑁
𝑣=1

𝑥
(𝑖 mod 𝑃 )
𝑣 𝑗

. Based on the constraints 2) and 4), it is easy to
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check that the above number is no greater than 2, which is compatible with intra-group physical

topology design of Geps-group.

Inter-group Logical Topology: Fix 𝑝 = 1, 2, ..., 𝑃 . Let 𝑆 (𝑐1−1)𝑃+𝑝 and 𝑆 (𝑐2−1)𝑃+𝑝 be the 𝑝-th EPS

node in the EPS node groups A𝑐1
and A𝑐2

, respectively. Then the total number of links from

𝑆 (𝑐1−1)𝑃+𝑝 to 𝑆 (𝑐2−1)𝑃+𝑝 is 𝑦
𝑝
𝑐1𝑐2

=
∑
𝑖∈A𝑐

1

∑
𝑗 ∈A𝑐

2

𝑥
𝑝

𝑖 𝑗
. Based on the constraints 3) and 5), it is easy

to verify that

∑𝐶
𝑐1=1

𝑦𝑤𝑐1𝑐2

≤ 𝑃,
∑𝐶
𝑐2=1

𝑦𝑤𝑐1𝑐2

≤ 𝑃 . Then, using the same arguments in the proof of

Theorem 5, we can prove that the logical topology 𝑦
𝑝
𝑐1𝑐2

, 𝑐1, 𝑐2 = 1, 2, ...,𝐶 is realizable on top of

Geps-group. This completes the proof. □

Remark: Theorem 7 implies that 𝛽 (Geps-group) = min𝑓 {𝜇ideal⌈𝐿/3⌉,𝐵 (𝑓 )/𝜇
ideal

𝐿,𝐵
(𝑓 )}. Geps-group is similar

to the physical topology used by Flexfly [26]. In order to prove the performance guarantee in

Theorem 7, we have restricted Geps-group to use uniform mesh for its intra-group topology, which

limits the scale of Geps-group. One could use flattened butterfly [16] for intra-group interconnect

to increase the size of each EPS group of Geps-group, as suggested by Flexfly [26]. However, the

performance guarantee would become much poorer.

6.2 EPS-Mesh based Physical Topology Design
Physical topology of Geps-mesh: Let 𝑃 = ⌊𝐿/3⌋. We arrange all the ESP nodes into a 𝐶 ×𝑊 mesh.

The𝑊 EPS nodes in the 𝑐-th row forms an EPS node group, denoted by A𝑐 , 𝑐 = 1, 2, ...,𝐶 . We index

all the EPS nodes row by row, from 1 to 𝐶𝑊 . There are 2𝑃 OCS nodes dedicated for each EPS node

group A𝑐 . For every EPS node in A𝑐 , there is one bidirectional link between this EPS node and

each of the 2𝑃 OCS nodes. There are also 𝑃 OCS nodes dedicated for the EPS nodes in each column.

For the𝑤-th column, there is one bidirectional link between every EPS node in this column and

every OCS node dedicated for this column. Since the number of ports of an OCS node is 𝑅, the

number of EPS nodes in each row or each column must be no more than 𝑅. Thus, the total number

of EPS nodes must satisfy 𝑁 = 𝐶𝑊 ≤ 𝑅2.

Fig. 4. Toy example of EPS-Mesh topology (𝑅 = 3, 𝑁 = 9).

Theorem 8. For any traffic pattern 𝑓 , the optimal throughput under Geps-mesh satisfies

𝜇 (Geps-mesh, 𝑓 ) ≥ 𝜇ideal⌊𝐿/3⌋,𝐵 (𝑓 ).

Proof. Let Gideal

⌊𝐿/3⌋,𝐵 be the ideal physical topology. According to Lemma 2, we need to show that

any logical topology G𝑙 formed over Gideal

⌊𝐿/3⌋,𝐵 can be realized as a overlay topology over Geps-mesh.
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Since each EPS node in Gideal

⌊𝐿/3⌋,𝐵 has 𝑃 = ⌊𝐿/3⌋ number of uplinks, the following constraints

must be satisfied { ∑𝑁
𝑖=1
𝑥𝑖 𝑗 (G𝑙 ) ≤ ⌊𝐿/3⌋ = 𝑃, ∀ 𝑗 = 1, ..., 𝑁 ,∑𝑁

𝑗=1
𝑥𝑖 𝑗 (G𝑙 ) ≤ ⌊𝐿/3⌋ = 𝑃, ∀ 𝑖 = 1, ..., 𝑁 .

(12)

Similar to Geps-group, it may not always be possible to establish a logical link between two EPS

nodes in Geps-mesh as well, especially when the two EPS nodes are in different rows and different

columns. Hence, we will construct G𝑙 as an overlay topology on top of Glarge. For every pair of

EPS nodes 𝑆𝑖 and 𝑆 𝑗 in Geps-mesh, we would like to create 𝑥𝑖 𝑗 (G𝑙 ) number of virtual logical links in

between, and classify these virtual logical links into𝑊 types:

• If 𝑆𝑖 and 𝑆 𝑗 are in the same row, the type-𝑤 virtual logical links are two-hop paths with

intermediate node being the𝑤-th EPS node in this row.

• If 𝑆𝑖 and 𝑆 𝑗 belong to different rows, the type-𝑤 virtual logical links are three-hop paths with

intermediate nodes being the𝑤-th EPS node in the same row as 𝑆𝑖 and the𝑤-th EPS node in

the same row as 𝑆 𝑗 .

We use𝑥𝑤
𝑖 𝑗
,𝑤 = 1, 2, ...,𝑊 to denote the total number of type-𝑤 paths between 𝑆𝑖 and 𝑆 𝑗 . According to

Lemma 4, there exists an integer solution of 𝑥𝑤
𝑖 𝑗
,𝑤 = 1, 2, ...,𝑊 satisfying the following constraints:

(1) 𝑥𝑖 𝑗 (G𝑙 ) =
∑𝑊
𝑤=1

𝑥𝑤
𝑖 𝑗
,∀𝑖, 𝑗 = 1, ..., 𝑁 ;

(2) 0 ≤ ∑
𝑖∈A𝑐

∑𝑁
𝑗=1
𝑥𝑤
𝑖 𝑗

≤ 𝑃,∀𝑐 = 1, ...,𝐶,𝑤 = 1, ...,𝑊 ;

(3) 0 ≤ ∑𝑁
𝑖=1

∑
𝑗 ∈A𝑐

𝑥𝑤
𝑖 𝑗

≤ 𝑃,∀𝑐 = 1, ...,𝐶,𝑤 = 1, ...,𝑊 .

Note that 𝑥𝑤
𝑖 𝑗
determines the underlying logical topology of the overlay topology G𝑙 . We need to

show that this logical topology is compatible with the physical topology Geps-group.

Inter-group Logical Topology: Fix 𝑤 = 1, 2, ...,𝑊 . Let 𝑆 (𝑐1−1)𝑊 +𝑤 and 𝑆 (𝑐2−1)𝑊 +𝑤 be the 𝑤-th

EPS node in the EPS node groups A𝑐1
and A𝑐2

, respectively. Then the total number of links from

𝑆 (𝑐1−1)𝑊 +𝑤 to 𝑆 (𝑐2−1)𝑊 +𝑤 is 𝑦𝑤𝑐1𝑐2

=
∑
𝑖∈A𝑐

1

∑
𝑗 ∈A𝑐

2

𝑥𝑤
𝑖 𝑗
. Based on the constraints 2) and 3), it is easy

to verify that

∑𝐶
𝑐1=1

𝑦𝑤𝑐1𝑐2

≤ 𝑃,
∑𝐶
𝑐2=1

𝑦𝑤𝑐1𝑐2

≤ 𝑃 . Then, using the same arguments in the proof of

Theorem 5, we can prove that the logical topology 𝑦𝑤𝑐1𝑐2

, 𝑐1, 𝑐2 = 1, 2, ...,𝐶 is realizable on the 𝑃 OCS

nodes dedicated for the𝑤-th row.

Intra-group Logical Topology: Fix 𝑐 = 1, 2, ...,𝐶 . Let 𝑆 (𝑐−1)𝑊 +𝑤1
and 𝑆 (𝑐−1)𝑊 +𝑤2

be the 𝑤1-th

and the 𝑤2-th EPS nodes in A𝑐 . Then the total number of links from 𝑆 (𝑐−1)𝑊 +𝑤1
to 𝑆 (𝑐−1)𝑊 +𝑤2

is

𝑧𝑐𝑤1,𝑤2

=
∑𝑁
𝑢=1

𝑥
𝑤2

(𝑐−1)𝑊 +𝑤1,𝑢
+∑𝑁

𝑣=1
𝑥
𝑤1

𝑣,(𝑐−1)𝑊 +𝑤2

. According to Eqn. (13) and the constraints 2) and 3),

we can verify that

∑𝑊
𝑤1=1

𝑧𝑐𝑤1𝑤2

≤ 2𝑃,
∑𝑊
𝑤2=1

𝑧𝑐𝑤1𝑤2

≤ 2𝑃 . Take the first one for example:

𝑊∑
𝑤1=1

𝑧𝑐𝑤1𝑤2

=

𝑊∑
𝑤1=1

𝑁∑
𝑢=1

𝑥
𝑤2

(𝑐−1)𝑊 +𝑤1,𝑢
+

𝑊∑
𝑤1=1

𝑁∑
𝑣=1

𝑥
𝑤1

𝑣,(𝑐−1)𝑊 +𝑤2

=
∑
𝑖∈A𝑐

𝑁∑
𝑢=1

𝑥
𝑤2

𝑖𝑢
+

𝑁∑
𝑣=1

𝑥𝑣,(𝑐−1)𝑊 +𝑤2
(G𝑙 ) ≤ 2𝑃 .

Again, using the same arguments in the proof of Theorem 5, we can prove that the logical topology

𝑧𝑐𝑤1𝑤2

,𝑤1,𝑤2 = 1, 2, ...,𝑊 is realizable on the 2𝑃 OCS nodes dedicated for the EPS node group A𝑐 .

This completes the proof. □

Remark:Theorem 8 implies that 𝛽 (Geps-mesh) = min𝑓 {𝜇ideal⌊𝐿/3⌋,𝐵 (𝑓 )/𝜇
ideal

𝐿,𝐵
(𝑓 )}. The design ofGeps-mesh

shares a similar idea as the physical topology used by 3D-Hyper-FleX-LION [17]. Although 3D-

Hyper-FleX-LION uses a 3D-mesh instead, it is easy to generalize Geps-mesh from 2D-mesh to

3D-mesh to further improve its scalability. Notably, one critical design of Geps-mesh is that the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 3, Article 42. Publication date: December 2021.



Understanding the Performance Guarantee of Physical Topology Design for Optical Circuit Switched Data Centers42:15

EPS ports used for intra-group interconnect is “two” times the EPS ports used for inter-group

interconnect. This design allows us to attain the best performance guarantee.

6.3 OCS-Mesh based Physical Topology Design
Physical Topology of Gocs-mesh: We arrange𝐶2

OCS nodes into an𝐶 ×𝐶 mesh, where𝐶 = ⌊𝐿/2⌋.
The EPS nodes are arranged into 𝐶 groups, each of which contains𝑊 EPS nodes and is denoted by

A𝑐 , 𝑐 = 1, 2, ...,𝐶 . For the EPS node group A𝑐 , we connect two directed links from the transmitters

of each EPS node in A𝑐 to the ingress ports of each OCS node in the 𝑐-th row; we also connect

two directed links from the egress ports of each OCS node in the 𝑐-th column to the receivers

of each EPS node in A𝑐 . Since each OCS node has 𝑅 ingress/egress ports, the number of EPS

nodes in each group must satisfy𝑊 ≤ ⌊𝑅/2⌋. Hence, the total number of EPS nodes must satisfy

𝑁 = 𝐶𝑊 ≤ ⌊𝐿/2⌋ ⌊𝑅/2⌋ .

… …… …

Fig. 5. Toy example of OCS-Mesh topology (𝑅 = 6, 𝑁 = 9). Some RX side links are omitted for clear visualization.
Each EPS node in A2 is connected to two egress ports of OCS(1,2), OCS(2,2) and OCS(3,2). Each EPS node in
A3 is connected to two egress ports of OCS(1,3), OCS(2,3) and OCS(3,3).

Theorem 9. For any traffic pattern 𝑓 , the optimal throughput under Gocs-mesh satisfies

𝜇 (Gocs-mesh, 𝑓 ) ≥ 𝜇ideal⌊𝐿/2⌋,𝐵 (𝑓 ).

Proof. Let Gideal

⌊𝐿/2⌋,𝐵 be the ideal physical topology. According to Lemma 2, we need to show that

any logical topology G𝑙 formed over Gideal

⌊𝐿/2⌋,𝐵 can be realized as a overlay topology over Gocs-mesh.

Since each EPS node in Gideal

⌊𝐿/2⌋,𝐵 has 𝐶 = ⌊𝐿/2⌋ number of uplinks, the following constraints

must be satisfied { ∑𝑁
𝑖=1
𝑥𝑖 𝑗 (G𝑙 ) ≤ ⌊𝐿/2⌋ = 𝐶, ∀ 𝑗 = 1, ..., 𝑁 ,∑𝑁

𝑗=1
𝑥𝑖 𝑗 (G𝑙 ) ≤ ⌊𝐿/2⌋ = 𝐶, ∀ 𝑖 = 1, ..., 𝑁 .

(13)

Again, we construct G𝑙 as an overlay topology on top of Gocs-mesh. For every pair of EPS nodes

𝑆𝑖 and 𝑆 𝑗 in Gocs-mesh, we would like to create 𝑥𝑖 𝑗 (G𝑙 ) number of virtual logical links. Each virtual

logical link is essentially a two-hop path 𝑆𝑖 → 𝑆𝑘 → 𝑆 𝑗 , 𝑘 = 1, 2, ..., 𝑁 , and we use 𝑥𝑘𝑖 𝑗 to denote the

number of such virtual logical links.

Next, we would like to divide 𝑥𝑖 𝑗 (G𝑙 ) =
∑𝑁
𝑘=1

𝑥𝑘𝑖 𝑗 , such that the 𝑥𝑘𝑖 𝑗 ’s are compatible with the

physical topology Gocs-mesh. Unlike Geps-group and Geps-mesh, we need to apply Lemma 4 multiple

times to obtain a valid decomposition of 𝑥𝑖 𝑗 (G𝑙 ).
Step 1: Decompose 𝑥𝑖 𝑗 (G𝑙 ) =

∑𝐶
𝑐=1

𝑥
(𝑐)
𝑖 𝑗

such that the following constraints are met:

• 0 ≤ ∑𝑁
𝑗=1
𝑥
(𝑐)
𝑖 𝑗

≤ 1,∀𝑖 = 1, ..., 𝑁 , 𝑐 = 1, ...,𝐶 ;

• 0 ≤ ∑𝑁
𝑖=1
𝑥
(𝑐)
𝑖 𝑗

≤ 1,∀𝑗 = 1, ..., 𝑁 , 𝑐 = 1, ...,𝐶 .

Step 2: For every 𝑐0 = 1, 2, ...,𝐶 , decompose 𝑥
(𝑐0)
𝑖 𝑗

=
∑𝑊
𝑤=1

𝑥
(𝑐0−1)𝑊 +𝑤
𝑖 𝑗

such that for any𝑤 = 1, ...,𝑊 ,

the following constraints are met:
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• 0 ≤ ∑
𝑖∈A𝑐

∑𝑁
𝑗=1
𝑥
(𝑐0−1)𝑊 +𝑤
𝑖 𝑗

≤ 1,∀𝑐 = 1, ...,𝐶 ;

• 0 ≤ ∑𝑁
𝑖=1

∑
𝑗 ∈A𝑐

𝑥
(𝑐0−1)𝑊 +𝑤
𝑖 𝑗

≤ 1,∀𝑐 = 1, ...,𝐶 .

Here A𝑐 = {(𝑐 − 1)𝑊 + 1, (𝑐 − 1)𝑊 + 2, ..., 𝑐𝑊 }.
Based on Step 1&2, we obtain an integer decomposition 𝑥𝑖 𝑗 (G𝑙 ) =

∑𝐶
𝑐=1

𝑥
(𝑐)
𝑖 𝑗

=
∑𝑁
𝑘=1

𝑥𝑘𝑖 𝑗 satisfying

(1) 0 ≤ ∑𝑁
𝑗=1

∑
𝑘∈A𝑐

𝑥𝑘𝑖 𝑗 ≤ 1,∀𝑖 = 1, ..., 𝑁 , 𝑐 = 1, ...,𝐶;

(2) 0 ≤ ∑𝑁
𝑖=1

∑
𝑘∈A𝑐

𝑥𝑘𝑖 𝑗 ≤ 1,∀𝑗 = 1, ..., 𝑁 , 𝑐 = 1, ...,𝐶 ;

(3) 0 ≤ ∑
𝑖∈A𝑐

∑𝑁
𝑗=1
𝑥𝑘𝑖 𝑗 ≤ 1,∀𝑐 = 1, ...,𝐶, 𝑘 = 1, ..., 𝑁 ;

(4) 0 ≤ ∑𝑁
𝑖=1

∑
𝑗 ∈A𝑐

𝑥𝑘𝑖 𝑗 ≤ 1,∀𝑐 = 1, ...,𝐶, 𝑘 = 1, ..., 𝑁 .

With 𝑥𝑘𝑖 𝑗 , the total number of logical links needed from 𝑆𝑖 to 𝑆 𝑗 can be computed as 𝑦𝑖 𝑗 =∑𝑁
𝑘=1

𝑥𝑖
𝑘 𝑗

+ ∑𝑁
𝑘=1

𝑥
𝑗

𝑖𝑘
. Next, we will show that 𝑦𝑖 𝑗 is compatible with Gocs-mesh.

Recall that the OCS nodes in Gocs-mesh are arranged as a 2D mesh. Consider the OCS node in the

𝑐1-th row and 𝑐2-th column. This OCS node connects the transmitters of the EPS node in group

A𝑐1
to the receivers of the EPS node in group A𝑐2

. Then, if the following constraints are satisfied∑
𝑗 ∈A𝑐

2

𝑦𝑖 𝑗 ≤ 2,
∑
𝑖∈A𝑐

1

𝑦𝑖 𝑗 ≤ 2, (14)

the logical topology 𝑦𝑖 𝑗 , 𝑖 ∈ A𝑐1
, 𝑗 ∈ A𝑐2

will be realizable on this OCS. (14) can be verified below:∑
𝑗 ∈A𝑐

2

𝑦𝑖 𝑗 =
∑
𝑗 ∈A𝑐

2

𝑁∑
𝑘=1

𝑥𝑖
𝑘 𝑗

+
∑
𝑗 ∈A𝑐

2

𝑁∑
𝑘=1

𝑥
𝑗

𝑖𝑘
≤ 2;

∑
𝑖∈A𝑐

1

𝑦𝑖 𝑗 =
∑
𝑖∈A𝑐

1

𝑁∑
𝑘=1

𝑥𝑖
𝑘 𝑗

+
∑
𝑖∈A𝑐

1

𝑁∑
𝑘=1

𝑥
𝑗

𝑖𝑘
≤ 2.

This completes the proof. □

Remark:Theorem 9 implies that 𝛽 (Gocs-mesh) = min𝑓 {𝜇ideal⌊𝐿/2⌋,𝐵 (𝑓 )/𝜇
ideal

𝐿,𝐵
(𝑓 )}. The design ofGocs-mesh

shares a similar idea as the physical topology used by Sirius [2]. One critical difference between

Gocs-mesh and Sirius’ physical topology is that we connect “two” links instead of one between each

connected pair of EPS node and OCS node. This subtle design allows us to derive the performance

guarantee in Theorem 9.

7 PERFORMANCE RATIO ANALYSIS
We have performed theoretical analysis for four physical topologies Guniform, Geps-group, Geps-mesh

and Gocs-mesh, and related their throughput metrics with that of the ideal physical topology. Guniform

is optimal but scales poorly. Geps-group, Geps-mesh and Gocs-mesh have better scalability but are sub-

optimal. Accoring to Theorem 7, Theorem 8 and Theorem 9, It is easy to obtain
𝛽 (Geps-group) = min𝑓 {𝛽 (Geps-group, 𝑓 )}, where 𝛽 (Geps-group, 𝑓 ) = 𝜇ideal⌈𝐿/3⌉,𝐵 (𝑓 )/𝜇

ideal

𝐿,𝐵
(𝑓 ),

𝛽 (Geps-mesh) = min𝑓 {𝛽 (Geps-mesh, 𝑓 )}, where 𝛽 (Geps-mesh, 𝑓 ) = 𝜇ideal⌊𝐿/3⌋,𝐵 (𝑓 )/𝜇
ideal

𝐿,𝐵
(𝑓 ),

𝛽 (Gocs-mesh) = min𝑓 {𝛽 (Gocs-mesh, 𝑓 )}, where 𝛽 (Gocs-mesh, 𝑓 ) = 𝜇ideal⌊𝐿/2⌋,𝐵 (𝑓 )/𝜇
ideal

𝐿,𝐵
(𝑓 ).

(15)

In this section, wewill calculate the approximated values of 𝛽 (Geps-group), 𝛽 (Geps-mesh) and 𝛽 (Gocs-mesh).
We focus on two cases below:

(1) ToE can generate multiple logical topologies to serve each traffic matrix. This setting was

adopted by [2, 19–21].

(2) ToE generates only one logical topology (i.e.,𝑀 = 1) for each traffic matrix. This setting was

adopted by [4, 9, 12].

For the first case, we obtain some theoretical results in Section 7.1. The second case is hard to

analyze, and we could only obtain some approximated numerical results in Section 7.2.
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7.1 Calculating 𝛽 (Geps-group), 𝛽 (Geps-mesh) and 𝛽 (Gocs-mesh) in Case 1
Definition 3. A traffic pattern 𝑓 is 𝑞-decomposable if there exists 𝑞 permutation traffic matrices

𝑍1, 𝑍2, ..., 𝑍𝑞 and 𝜙1 + 𝜙2 + · · · + 𝜙𝑞 = 1, 0 ≤ 𝜙𝑖 ≤ 1, such that 𝑓 ≤ ∑𝑞

𝑖=1
𝜙𝑖𝑍𝑖 .

Definition 4. A traffic pattern 𝑓 is a normalized traffic pattern if the following condition is met

max

{
𝑁

max

𝑖=1

{
𝑁∑
𝑗=1

𝑓𝑖 𝑗

}
,
𝑁

max

𝑗=1

{
𝑁∑
𝑖=1

𝑓𝑖 𝑗

}}
= 1.

Lemma 10. For any normalized traffic pattern 𝑓 , we must have 𝜇ideal
𝐿,𝐵

(𝑓 ) ≤ 𝐵𝐿.

Proof. Without loss of generality, we assume that the egress traffic from 𝑆1 sums to 1, e.g.,∑𝑁
𝑗=1

𝑓1𝑗 = 1. Consider the network control policy that achieves the throughput value 𝜇ideal
𝐿,𝐵

(𝑓 ).
Then, 𝜇ideal

𝐿,𝐵
(𝑓 )∑𝑁

𝑗=1
𝑓1𝑗 = 𝜇

ideal

𝐿,𝐵
(𝑓 ) amount of traffic can be delivered from the EPS node 𝑆1 to other

EPS nodes in a unit time period. On the other hand, the total egress bandwidth of 𝑆1 is upper

bounded by 𝐵𝐿, because 𝑆1 has 𝐿 ports. Thus, 𝜇ideal
𝐿,𝐵

(𝑓 ) ≤ 𝐵𝐿. □

Lemma 11. Given a 𝑞-decomposable traffic pattern 𝑓 that lasts Δ amount of time, if the ToE policy
allows generating𝑀 OCS configurations, then 𝜇ideal

𝐿,𝐵
(𝑓 ) ≥ 𝐵𝐿(1 − 𝑞

𝑀𝐿
) (1 − 𝛿𝑀

Δ ).

Proof. We split Δ into 𝑀 time slots, such that Δ(1) = Δ(2) = · · · = Δ(𝑀) = Δ/𝑀 − 𝛿. In each

time slot, 𝐿 permutations can be formed because each EPS node has 𝐿 bidirectional links connected

the OCS. In total, we can form𝑀𝐿 permutations.

Let 𝑓 ≤ ∑𝑞

𝑖=1
𝜙𝑖𝑍𝑖 be the 𝑞-decomposition of 𝑓 . For every permutation 𝑍𝑖 , 𝑖 = 1, 2, ..., 𝑞, we

configure OCSs such that 𝑍𝑖 is formed ⌈(𝑀𝐿 − 𝑞)𝜙𝑖⌉ times. It is easy to verify that

𝑞∑
𝑖=1

⌈(𝑀𝐿 − 𝑞)𝜙𝑖⌉ ≤
𝑞∑
𝑖=1

((𝑀𝐿 − 𝑞)𝜙𝑖 + 1) = 𝑀𝐿.

Hence, the above ToE strategy is feasible. Under this strategy, the bandwidth allocated to the ODC

satisfies

1

Δ

𝑞∑
𝑖=1

⌈(𝑀𝐿 − 𝑞)𝜙𝑖⌉𝐵(Δ/𝑀 − 𝛿)𝑍𝑖 ≥
(𝑀𝐿 − 𝑞)𝐵(Δ/𝑀 − 𝛿)

Δ

𝑞∑
𝑖=1

𝜙𝑖𝑍𝑖 ≥
(𝑀𝐿 − 𝑞)𝐵(Δ/𝑀 − 𝛿)

Δ
𝑓 .

Therefore, under the above ToE strategy and the one-hop routing, we can achieve a throughput

value
(𝑀𝐿−𝑞)𝐵 (Δ/𝑀−𝛿)

Δ . Based on the definition of 𝜇 (G, 𝑓 ), we must have

𝜇ideal𝐿,𝐵 (𝑓 ) ≥ (𝑀𝐿 − 𝑞)𝐵(Δ/𝑀 − 𝛿)
Δ

= 𝐵𝐿(1 − 𝑞

𝑀𝐿
) (1 − 𝛿𝑀

Δ
).

□

Note that Lemma 11 holds for any 𝑀 . According to the definitions of 𝛽 (Geps-group), 𝛽 (Geps-mesh)
and 𝛽 (Gocs-mesh) in (15), it is sufficient to consider normalized traffic patterns, because 𝜇ideal

𝐿,𝐵
(𝑓 )

increases linearly if we scales 𝑓 linearly. Further, based on the Birkhoff and von Neumann theo-

rem [5], any normalized traffic pattern 𝑓 is 𝑞-decomposable with 𝑞 ≤ 𝑁 2 − 2𝑁 + 2. Combining all

the above analysis with Lemma 10, we then obtain

Corollary 11.1. Let 𝛾 (𝑀, 𝑙) =
(
1 − 𝑁 2−2𝑁+2

𝑀𝑙

) (
1 − 𝛿𝑀

Δ

)
, we have

⌈𝐿/3⌉
𝐿

max

𝑀
{𝛾 (𝑀, ⌈𝐿/3⌉)} ≤ 𝛽 (Geps-group) ≤

⌈𝐿/3⌉
𝐿

(
max

𝑀
{𝛾 (𝑀, 𝐿)}

)−1

,
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⌊𝐿/3⌋
𝐿

max

𝑀
{𝛾 (𝑀, ⌊𝐿/3⌋)} ≤ 𝛽 (Geps-mesh) ≤

⌊𝐿/3⌋
𝐿

(
max

𝑀
{𝛾 (𝑀, 𝐿)}

)−1

,

⌊𝐿/2⌋
𝐿

max

𝑀
{𝛾 (𝑀, ⌊𝐿/2⌋)} ≤ 𝛽 (Gocs-mesh) ≤

⌊𝐿/2⌋
𝐿

(
max

𝑀
{𝛾 (𝑀, 𝐿)}

)−1

.

When the OCS reconfiguration delay 𝛿 = 0, 𝛾 (𝑀, 𝑙) can be arbitrarily close to 1 as we increase

the number of OCS configurations𝑀 . In this case, we have

Corollary 11.2. If 𝛿 = 0, then 𝛽 (Geps-group) = ⌈𝐿/3⌉
𝐿

, 𝛽 (Geps-mesh) = ⌊𝐿/3⌋
𝐿

, 𝛽 (Gocs-mesh) = ⌊𝐿/2⌋
𝐿

.

7.2 Calculating 𝛽 (Geps-group), 𝛽 (Geps-mesh) and 𝛽 (Gocs-mesh) in Case 2 Where𝑀 = 1

𝑀 = 1 means that only one logical topology is generated for each traffic pattern 𝑓 (see the definition

of ToE in Section 3.1).When𝑀 = 1, the lower bound of 𝜇ideal
𝐿,𝐵

(𝑓 ) given by Lemma 11 can be extremely

loose, and thus may not be useful for calculating 𝛽 (Geps-group), 𝛽 (Geps-mesh) and 𝛽 (Gocs-mesh). In
this case, we perform numerical analysis instead. Note that exhaustively enumerating all the

different traffic matrices is not feasible. We simply generate random traffic matrices to perform the

calculation. We use two approaches to generate random traffic matrices:

Approach 1: Randomly generate 𝑄 permutation traffic matrices 𝑓 (1) , 𝑓 (2) , ..., 𝑓 (𝑄)
and 𝑄 pa-

rameters 0 ≤ 𝛾1, 𝛾2, ..., 𝛾𝑄 ≤ 1 satisfying

∑𝑄

𝑞=1
𝛾𝑞 = 1. Let 𝑓 =

∑𝑄

𝑞=1
𝛾𝑞 𝑓

(𝑞)
. It is easy to verify

that the traffic matrix 𝑓 generated with this approach is a normalized traffic pattern.

Approach 2: Generate a random non-negative number for each entry 𝑓𝑖 𝑗 , 𝑖 ≠ 𝑗 , and then

normalize 𝑓 such that max{max
𝑁
𝑗=1

{∑𝑁
𝑖=1

𝑓𝑖 𝑗 },max
𝑁
𝑖=1

{∑𝑁
𝑗=1

𝑓𝑖 𝑗 }} = 1.

For every 𝑁 and every 𝐿, we generate a number of normalized random traffic patterns using

the above two approaches, and calculate throughput values 𝜇ideal⌈𝐿/3⌉,𝐵 (𝑓 ), 𝜇
ideal

⌊𝐿/3⌋,𝐵 (𝑓 ), 𝜇
ideal

⌊𝐿/2⌋,𝐵 (𝑓 ),
𝜇ideal
𝐿,𝐵

(𝑓 ) for every traffic pattern 𝑓 . We use three approaches to calculate the throughput values:

Joint Optimization: Directly solve the optimization problem (5) using Gurobi [22].

Decoupled Optimization: First, compute a logical topology
¯G (1)
𝑙

that best approximates the

traffic pattern 𝑓 by solving the following optimization problem:

max

𝑁∑
𝑖=1

𝑁∑
𝑗=1

(
𝐿𝑓𝑖 𝑗 − ⌊𝐿𝑓𝑖 𝑗 ⌋

)
𝑥𝑖 𝑗 ( ¯G (1)

𝑙
)

s.t.⌊𝐿𝑓𝑖 𝑗 ⌋ ≤ 𝑥𝑖 𝑗 ( ¯G (1)
𝑙

) ≤ ⌈𝐿𝑓𝑖 𝑗 ⌉, for all 𝑖, 𝑗 = 1, 2, ..., 𝑁 ,

𝑁∑
𝑘=1

𝑥𝑖𝑘 ( ¯G (1)
𝑙

) ≤ 𝐿,

𝑁∑
𝑘=1

𝑥𝑘 𝑗 ( ¯G (1)
𝑙

) ≤ 𝐿, for all 𝑖, 𝑗 = 1, 2, ..., 𝑁 .

(16)

Then, solve the optimization problem (5) with the logical topology G (1)
𝑙

being fixed as
¯G (1)
𝑙

.

Fast Approximation: First, compute a logical topology
¯G (1)
𝑙

by solving (16). Second, find all

the shortest paths for every EPS node pair in
¯G (1)
𝑙

. Third, calculate the throughput value

based on Equal-Cost Multi-Path (ECMP) routing.

The Joint Optimization approach solves topology and routing jointly, and gives the exact through-

put values. However, this approach has the highest computational complexity. The Decoupled

Optimization approach reduces algorithmic complexity by solving topology and routing separately.

The Fast Approximation approach further reduces computational complexity by using a fixed

ECMP routing. Notably, the second and the third approaches can only compute approximated

throughput and performance ratio values.
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7.2.1 Approximating 𝛽 (Geps-group), 𝛽 (Geps-mesh) and 𝛽 (Gocs-mesh). We generate a list of (𝑁, 𝐿) pairs:
(7, 10), (8, 10), (9, 10), (15, 10), (20, 10), (30, 16), (40, 16), (128, 32), (256, 32), (512, 64) and (1024, 64).
For each (𝑁, 𝐿) pair, we generate a set of 60 normalized traffic patterns, and denote this set by F𝑁,𝐿 .
For every traffic pattern 𝑓 ∈ F𝑁,𝐿 , we use the above three approaches to compute the per-traffic-

pattern performance ratio 𝛽 (G, 𝑓 ), G ∈ {Geps-group,Geps-mesh,Gocs-mesh} as defined in (15).
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(b) EPS-Mesh
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(c) OCS-Mesh
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Fig. 6. Calculating 𝛽 (G, 𝑓 ) using Joint Optimization, Decoupled Optimization and Fast Approximation.

Since the Joint Optimization approach can compute the exact per-traffic-pattern performance

ratio values, we consider 𝛽joint (G) = min𝑓 ∈F𝑁,𝐿
𝛽joint (G, 𝑓 ) as the best approximation to 𝛽 (G) for

every G ∈ {Geps-group,Geps-mesh,Gocs-mesh}. However, calculating 𝛽joint (G, 𝑓 ) is computationally

expensive. The Joint Optimization approach can only compute 𝛽joint (G) for the (𝑁, 𝐿) pairs (7, 10),
(8, 10) and (9, 10). When 𝑁 > 9, the Joint Optimization approach may not be able to compute a

solution even after running a few hours. Hence, in the following, we study how to approximate

𝛽joint (G) using the other two approaches.

We first use the Decoupled Optimization approach to approximate 𝛽joint (G). For every 𝑓 ∈ F𝑁,𝐿 ,
we compute 𝛽decoupled (G, 𝑓 ) using the Decoupled Optimization approach. As shown in Fig. 6,

the values of 𝛽decoupled (G, 𝑓 ) exhibit much higher variance than that of 𝛽joint (G, 𝑓 ). If we use

min𝑓 ∈F𝑁,𝐿
𝛽decoupled (G, 𝑓 ) to approximate 𝛽decoupled (G), the gap between the estimated value and

the true value would be too large. Hence, we adopt the following heuristic. Let 𝛼decoupled (G, 𝑝)
be the 𝑝-th percentile value among all the values of 𝛽decoupled (G, 𝑓 ). We aim to find 𝑝 such that

𝛼decoupled (G, 𝑝) ≈ 𝛽joint (G). From Fig. 6, we can see that 𝑝 (Geps-group) ≈ 25th, 𝑝 (Geps-mesh) ≈ 35th

and 𝑝 (Gocs-mesh) ≈ 25th when (𝑁, 𝐿) = (7, 10), (8, 10) or (9, 10). Then, we use 𝛼decoupled (G, 𝑝 (G)) to
approximate 𝛽joint (G) for larger data centers. However, even this Decoupled Optimization approach
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Table 2. The values of 𝑝 ′(G) for different (𝑁, 𝐿)’s. When 𝑁 ≤ 9, we pick 𝑝 ′(G) such that 𝛼fast (G, 𝑝 ′(G)) ≈
𝛽joint (G). When 9 < 𝑁 ≤ 40, we pick 𝑝 ′(G) such that 𝛼fast (G, 𝑝 ′(G)) ≈ 𝛼decoupled (G, 𝑝 (G)).

(7,10) (8,10) (9,10) (15,10) (20,10) (30,16) (40,16)

𝑝 ′(Geps-group) 36th 26th 23th 35th 33th 58th 56th

𝑝 ′(Geps-mesh) 28th 31th 20th 36th 36th 56th 61th

𝑝 ′(Gocs-mesh) 48th 31th 26th 46th 45th 65th 63th

Table 3. Approximating 𝛽 (Geps-group), 𝛽 (Geps-mesh) and 𝛽 (Gocs-mesh) using the Fast Approximation approach.

(7,10) (8,10) (9,10) (15,10) (20,10) (30,16)

𝛽 (Geps-group) 0.34 0.34 0.33 [0.28,0.31] [0.27,0.3] [0.25,0.28]

𝛽 (Geps-mesh) 0.24 0.23 0.22 [0.17,0.21] [0.16,0.19] [0.18,0.22]

𝛽 (Gocs-mesh) 0.45 0.45 0.44 [0.39,0.43] [0.36,0.42] [0.36,0.42]

(40,16) (128,32) (256,32) (512,64) (1024,64)

𝛽 (Geps-group) [0.24,0.26] [0.22,0.27] [0.23,0.27] [0.24,0.28] [0.25,0.29]

𝛽 (Geps-mesh) [0.18,0.2] [0.2,0.25] [0.19,0.24] [0.22,0.26] [0.21,0.28]

𝛽 (Gocs-mesh) [0.35,0.4] [0.37,0.45] [0.39,0.44] [0.38,0.43] [0.37,0.45]

cannot scale beyond 40 EPS nodes. When 𝑁 > 40, the Decoupled Optimization approach may not

produce any solution after running a few hours.

We then use the Fast Approximation approach to approximate 𝛽joint (G). As shown in Fig. 6,

the values of 𝛽fast (G, 𝑓 ) exhibit even higher variance, and the gap between min𝑓 ∈F𝑁,𝐿
𝛽fast (G, 𝑓 )

and 𝛽decoupled (G) would be even larger. To reduce the estimation gap, we let 𝛼fast (G, 𝑝 ′) be the
𝑝 ′-th percentile value among all the values of 𝛽fast (G, 𝑓 ). We aim to find 𝑝 ′ such that 𝛼fast (G, 𝑝 ′) ≈
𝛽joint (G) when 𝑁 ≤ 9 and 𝛼fast (G, 𝑝 ′) ≈ 𝛼decoupled (G, 𝑝 (G)) when 9 < 𝑁 ≤ 40. The values of

𝑝 ′(G) vary for different physical topologies and different (𝑁, 𝐿) pairs. The detailed values are

summarized in Table 2. For every G ∈ {Geps-group,Geps-mesh,Gocs-mesh}, we pick the minimum and

the maximum values of 𝑝 ′(G), and denote them by 𝑝 ′
min

(G) and 𝑝 ′
max

(G). Then, we can generate a

range [𝛼fast (G, 𝑝 ′
min

(G)), 𝛼fast (G, 𝑝 ′max
(G))] to approximate 𝛽joint (G) ≈ 𝛽 (G). We summarize the

approximation results for all 𝑁 > 9 in Table 3.

Note: The idea of using percentile values to estimate 𝛽 (G)’s is just a heuristic. There is no guar-
antee that the true values of 𝛽 (G) are indeed within the ranges provided by Table 3. Nevertheless,

we believe that our numerical estimation gives readers a sense on the magnitude of 𝛽 (G).

8 CONCLUSION
We study physical topology design for ODCs, and offer a novel methodology to analyze the

performance guarantee for different physical topologies in this paper. Based on our methodology,

we prove that the uniform bipartite graph based physical topology is optimal for small-scale

data centers with 𝑁 ≤ 𝑅, while optimal physical topologies do not exist when 𝑁 > 𝑅. We also

design three physical topologies that support larger-scale ODCs, and prove their performance gaps

with respect to the ideal physical topology. The methodology in this paper provides a theoretical

foundation for ODC physical topology design, and may help network operators design physical

topologies with a better guarantee.
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There are a number of interesting directions for future work. First, we do not assume any prior

knowledge on the traffic patterns while we define the performancemetric 𝛽 (G). In practice, different
ToR switches may belong to different production groups, and the intra-group traffic can be higher

than the inter-group traffic. It would be interesting to study how such traffic knowledge affects

physical topology design. Second, in addition to throughput, deployment/management/expansion

complexities may also affect the physical topology design for ODC. It remains open to find a

physical topology with the best tradeoff among different performance metrics for ODC.
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A NP-COMPLETENESS OF CALCULATING 𝜇 (G, 𝑓 )
We prove the following theorem in this section.

Theorem 12. The problem of calculating 𝜇 (G, 𝑓 ) for a given physical topology G and a given
traffic pattern 𝑓 is NP-Complete.

We prove Theorem 12 by reducing the following three-dimensional sum problem to the problem

of calculating 𝜇 (G, 𝑓 ). The three-dimensional sum problem was proven to be NP-Complete [15].

Definition 5. (Three-dimensional Sum Problem) Given a positive integer 𝑛 and three non-negative
integer matrices 𝐷 (𝑖, 𝑘), 𝐸 (𝑘, 𝑗) and 𝐹 (𝑖, 𝑗), where 𝑖, 𝑗, 𝑘 = 1, 2, ..., 𝑛 and

𝑛∑
𝑖=1

𝑛∑
𝑘=1

𝐷 (𝑖, 𝑘) =
𝑛∑
𝑘=1

𝑛∑
𝑗=1

𝐸 (𝑘, 𝑗) =
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝐹 (𝑖, 𝑗),

does there exist a non-negative integer assignment of 𝐴(𝑖, 𝑗, 𝑘) such that
∑𝑛
𝑗=1
𝐴(𝑖, 𝑗, 𝑘) = 𝐷 (𝑖, 𝑘),∑𝑛

𝑖=1
𝐴(𝑖, 𝑗, 𝑘) = 𝐸 (𝑘, 𝑗),∑𝑛

𝑘=1
𝐴(𝑖, 𝑗, 𝑘) = 𝐹 (𝑖, 𝑗).

(17)

We are now ready to prove Theorem 12.

Proof. Given an instance of the three-dimensional sum problem, we construct an ODC physical

topology G and a trafficmatrix 𝑓 as follows. G has 2𝑛 EPS nodes and𝑛 OCS nodes. The 2𝑛 EPS nodes

are separated into two groups, each with 𝑛 EPS nodes. There are 𝐷 (𝑖, 𝑘) number of bidirectional

links between the 𝑖-th EPS node in Group 1 and the 𝑘-th OCS node; there are 𝐸 (𝑘, 𝑗) number of

bidirectional links between the 𝑘-th OCS node and the 𝑗-th EPS node in Group 2. Each link is

assumed to have its link capacity 𝐵 = 1. The traffic demand from the 𝑖-th EPS node in Group 1 to the

𝑗-th EPS node in Group 2 is 𝐹 (𝑖, 𝑗). There is no traffic demand within each EPS group or from Group

2 to Group 1. In total, this network has 𝑛2
flows, and the traffic matrix 𝑓 is an 2𝑛 × 2𝑛 matrix with

at most 𝑛2
non-zero entries (see Fig.7). For topology engineering, we only allow generating one

logical topology for each traffic matrix, i.e.,𝑀 = 1. Next, we will prove that the three-dimensional

sum problem is satisfiable if and only if 𝜇 (G, 𝑓 ) = 1.

Sufficiency (⇒): Let 𝐴(𝑖, 𝑗, 𝑘) be a solution of the three-dimensional sum problem. Then, we

can set up the OCS configurations as follows: for the 𝑘-th OCS, establish 𝐴(𝑖, 𝑗, 𝑘) number of
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Fig. 7. Network topology and traffic model.

bidirectional links between the 𝑖-th EPS node in Group 1 and the 𝑗-th EPS node in Group 2. Under

this set of OCS configurations, we establish

∑𝑛
𝑘=1

𝐴(𝑖, 𝑗, 𝑘) = 𝐹 (𝑖, 𝑗) number of logical links between

the 𝑖-th EPS node in Group 1 and the 𝑗-th EPS node in Group 2. Then, if we route every flow

along its shortest path, it is easy to check that the achievable throughput 𝜇 (G, 𝑓 ) = 1. Note that

𝜇 (G, 𝑓 ) = 1 is indeed the optimal throughput, because the bisection bandwidth from Group 1 to

Group 2

∑𝑛
𝑖=1

∑𝑛
𝑘=1

𝐷 (𝑖, 𝑘) = ∑𝑛
𝑖=1

∑𝑛
𝑗=1

∑𝑛
𝑘=1

𝐴(𝑖, 𝑗, 𝑘) divided by the total traffic demand from from

Group 1 to Group 2

∑𝑛
𝑖=1

∑𝑛
𝑗=1
𝐹 (𝑖, 𝑗) = ∑𝑛

𝑖=1

∑𝑛
𝑗=1

∑𝑛
𝑘=1

𝐴(𝑖, 𝑗, 𝑘) is exactly 1.

Necessity (⇐): Let G𝑙 be the logical topology such that the optimal throughput 𝜇 (G, 𝑓 ) = 1 is

achieved, and let Π = {Π1,Π2, ...,Π𝑛} be the corresponding configurations of the 𝑛 OCS nodes.

Since the throughput is 1 under the logical topology G𝑙 , the bisection bandwidth from Group 1 to

Group 2 in G𝑙 must be at least

∑𝑛
𝑖=1

∑𝑛
𝑗=1
𝐹 (𝑖, 𝑗). Note that the egress capacity of Group 1 and the

ingress capacity of Group 2 are both at most

𝑛∑
𝑖=1

𝑛∑
𝑘=1

𝐷 (𝑖, 𝑘) =
𝑛∑
𝑘=1

𝑛∑
𝑗=1

𝐸 (𝑘, 𝑗) =
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝐹 (𝑖, 𝑗).

Hence, in order to deliver

∑𝑛
𝑖=1

∑𝑛
𝑗=1
𝐹 (𝑖, 𝑗) amount of traffic, the following statements must be true

for G𝑙 :
(1) Every egress EPS port of Group 1 must be connected with an ingress EPS port of Group 2

throughput an OCS node;

(2) Every flow must be delivered directly from its source to its destination.

Now, let 𝐴(𝑖, 𝑗, 𝑘) be the number of links from the 𝑖-th EPS node in Group 1 to the 𝑗-th EPS node

in Group 2 formed in the 𝑘-th OCS node. Note that there are 𝐷 (𝑖, 𝑘) number of bidirectional

links between the 𝑖-th EPS node in Group 1 and the 𝑘-th OCS node; there are 𝐸 (𝑘, 𝑗) number of

bidirectional links between the 𝑘-th OCS node and the 𝑗-th EPS node in Group 2. Combined with

the first statement, we must have

∑𝑛
𝑗=1
𝐴(𝑖, 𝑗, 𝑘) = 𝐷 (𝑖, 𝑘) and ∑𝑛

𝑖=1
𝐴(𝑖, 𝑗, 𝑘) = 𝐸 (𝑘, 𝑗). According

to the second statement and the fact that the bisection bandwidth from Group 1 to Group 2 is at

most

∑𝑛
𝑖=1

∑𝑛
𝑗=1
𝐹 (𝑖, 𝑗), the total number of links from the 𝑖-th EPS node in Group 1 to the 𝑗-th EPS

node in Group 2 must be exactly 𝐹 (𝑖, 𝑗). Hence, ∑𝑛
𝑘=1

𝐴(𝑖, 𝑗, 𝑘) = 𝐹 (𝑖, 𝑗).
The above analysis indicates that all the three-dimensional sum problem can be reduced to a

ODC throughput optimization problem. Since the three-dimensional sum problem is NP-Complete,

the ODC throughput optimization problem must also be NP-Complete. □

B PROOF OF LEMMA 2
Proof. Let (G∗(𝑚)

𝑙
, 𝑓 ∗𝑖 𝑗 (𝑢, 𝑣)) be the optimal topology+routing solution that attains the optimal

throughput 𝜇 (G, 𝑓 ). Next we consider 𝜇 (G′, 𝑓 ).
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Note that the logical topologies G∗(𝑚)
𝑙

are realizable as overlay topologies of G′
. Let G

′∗(𝑚)
𝑙

be

the corresponding underlay logical topology of G∗(𝑚)
𝑙

. Consider the following overlay-topology

based routing allocation in G′
. For every flow from 𝑆𝑖 to 𝑆 𝑗 , we allocate 𝑓

∗
𝑖 𝑗 (𝑢, 𝑣) amount of traffic

to the overlay paths from 𝑆𝑢 to 𝑆𝑣 . It is easy to verify that the resulting throughput is 𝜇 (G, 𝑓 ). Note
that restricting routing allocation to overlay paths reduces routing flexibility. In contrast, our TE

formulation (3)(4) computes network throughput based on the underlay topologies G
′∗(𝑚)
𝑙

directly,

and thus the resulting throughput must be no smaller than 𝜇 (G, 𝑓 ). Combined with the definition

of 𝜇 (G′, 𝑓 ), we must have 𝜇 (G′, 𝑓 ) ≥ 𝜇 (G, 𝑓 ). □

C NOTATIONS
The notations in this paper are summarized in Table 4.

Table 4. Notations used in this paper

𝑁 , S 𝑁 electrical-packet-switching (EPS) nodes S = {𝑆1, 𝑆2, ..., 𝑆𝑁 }.
𝐾 , O 𝐾 optical-circuit-switching (OCS) nodes O = {𝑂1,𝑂2, ...,𝑂𝐾 }.
G Physical topology G = (V, E), where V = S ∪ O. (see §3.1).

G𝑙 Logical topology G𝑙 = G𝑙 (G,Π) = (V𝑙 , E𝑙 ) (see §3.1).
𝑥𝑖 𝑗 𝑥𝑖 𝑗 (G𝑙 ) denotes the number of links from 𝑆𝑖 to 𝑆 𝑗 in G𝑙 .
𝛽 (G) Performance ratio of the physical topology G (see §3.3).

𝑓 Traffic matrix among the 𝑁 EPS nodes (see §3.1).

𝜇 (G, 𝑓 ) Optimal throughput for the given physical topology G and traffic matrix 𝑓 (see §3.2).

𝐿 Each EPS node has 𝐿 ports.

𝑅 Each OCS node has 𝑅 ingress ports and 𝑅 egress ports.

𝐵 EPS port capacity.

Π OCS configuration Π = {Π1,Π2, ...,Π𝐾 } (see §3.1).
𝑀 The number of logical topologies generated by ToE for each traffic matrix (see §3.2).

𝑓𝑖 𝑗 (𝑢, 𝑣) Amount of traffic from 𝑆𝑖 to 𝑆 𝑗 that is allocated to the link (𝑆𝑢, 𝑆𝑣) (see §3.2).
𝐶 , A𝑐 𝐶 mutually disjoint EPS node groups satisfying ∪𝐶𝑐=1

A𝑐 = S.
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