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Abstract—Conventional Convolutional Neural Network (CNN)
based video super-resolution (VSR) methods heavily depend on
explicit motion compensation. Input frames are warped according
to flow-like information to eliminate inter-frame differences.
These methods have to make a trade-off between the distraction
caused by spatio-temporal inconsistency and the pixel-wise detail
damage caused by compensation. In this paper, we propose a
novel video super-resolution method based on dynamic local
filter network. Unlike traditional VSR techniques, our method
implicitly performs motion estimation, compensation and fusion
simultaneously via local convolutions with dynamically generated
filter kernels. An optional autoencoder based refinement module
is also proposed to sharpen edges and remove artifacts. The
experimental results demonstrate that our method outperforms
the best existing VSR algorithm by 0.53 dB in terms of PSNR,
and provides superior visual quality.

Index Terms—video super-resolution, locally-connected net-
work, dynamic filter.

I. INTRODUCTION

IMAGE super-resolution (SR) refers to the process that
recovers a high-resolution (HR) image from one or a

sequence of low-resolution (LR) images. It has been a long-
standing fundamental research topic in image processing field.
And it is widely applied to medical imaging, satellite imaging,
surveillance fields and facilitation for image/video enhance-
ment and text/object recongnition. In single image super-
resolution (SISR), the HR image is supposed to be estimated
from a single LR input, where the inherent similarities have to
be exploited to recover the lost high-frequency details. In video
super-resolution (VSR), different observations of a scene are
available in the form of multiple LR input frames, therefore
the explicit redundancy in common can be used to construct
the HR image. However, how to combine and assemble the
information from multiple frames have become a challenge,
which limits extensive explorations of VSR.

The rapid development of neural network techniques in
recent years has provided new possibilities for solving VSR
problem and significant improvements in terms of peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM). Con-
volutional neural network (CNN) was used for VSR in [1]
[2] [3] and enhanced by custom operation layers [4] [5] or
recurrent neural network (RNN) [6]. The VSRnet proposed by
Kappeler et al. [1] uses optical flow technique to estimate the
motion information among the input frames. The frames are
then warped according to the motion information and fed to an
SRCNN-inspired network [7] for super-resolving. The Video
Efficient Sub-Pixel Convolutional Neural network (VESPCN)
proposed by Caballero et al. [2] uses a motion compensation
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module, which is inspired by the Spatial Transform Network
(STN) [8], to replace the optical flow calculating procedure.
An ESPCN [9] based module is used for super-resolving. Tao
et al. [4] improved the VESPCN with a Sub-Pixel Motion
Compensation (SPMC) layer, which combines motion com-
pensation and sub-pixel upsampling into one operation and
an additional detail fusion module is appended to interpolate
previous synthesized HR image. Makansi et al. [5] proposed
a network combining with an improved VSRnet, which intro-
duces a more advanced optical flow calculation procedure and
an integrated compensation-upsampling operation. Their work
is considered to offer the state-of-the-art VSR performance and
will be denoted as Joint Upsampling and Backward Warping
(JUBW) in this paper. Video frame interpolation problem is
similar to VSR. Both of them need to analyze input video and
exploit its spatio-temporal information. Furthermore, video
frame interpolation can also be regarded as super-resolution
on temporal dimension, hence Btz et al. [10] proposed a three
dimensional approach for VSR. Our method is inspired by
recent works from Niklaus et al. [11] [12], who leveraged
dynamic filter network [13] to generate kernels for motion
estimation and frame interpolation.

The rest parts of this paper are organized as follows. Section
II introduces the motivation and contributions of our work.
Section III details the architecture of the proposed VSR neural
network. Section IV illustrates the experimental results and
Section V concludes this paper.

II. MOTIVATION AND CONTRIBUTIONS

Most of recent VSR works address the inter-frame incon-
sistency issue by a procedure consisting of three stages: 1)
Estimate inter-frame motion to achieve flow-like information;
2) Compensate additional frames to reference frame by warp-
ing pixels according to their flow-like data, which makes all
frames have similar contents; 3) Generate an HR image by
fusing the compensated LR images. The content of the HR
image is supposed be a super-resolved version of reference
frame.

Recent works [4] [5] tried to merge parts of the above stages
together to reduce the amount of duplicated computation.
However, the compensation operations are still performed by
manipulating pixels in spatial domain explicitly. The ma-
nipulation is performed according to the motion estimation,
which is usually achieved by optical flow or affine-transform
based techniques. For optical flow based methods, the final
performance largely depends on the accuracy of flow data
which is commonly considered computation-expensive and
error-prone. Moreover, when the flow data involves non-
integer coordinates, the compensated pixels have to be re-
sampled. The resampling operation usually averages pixels
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Fig. 1. Network architecture.

aggressively and makes edges blurry. Therefore details may
not be preserved well. Although the STN based techniques
avoid above disadvantages, only a limited number of motion
patterns can be expressed by affine transformation.

The novelty of our proposed method is that, unlike previous
works, we use a dynamic local filter network for implicit
motion estimation, compensation and image fusion. The con-
tribution is that our method outperforms the best existing VSR
algorithm [5] by 0.53 dB in terms of PSNR, and provides
superior visual quality.

III. PROPOSED METHOD

In this section, we describe the proposed network archi-
tecture which consists of two components: a super-resolution
module and a refinement module, as illustrated in Fig. 1. The
input LR images are fed into the SR module to synthesize
an HR image. Then the HR image is processed by the
refinement module to obtain the final result. We first introduce
the dynamic local filter module (DLFM) which fuses multiple
input frames to integrate their spatial differences. Then we
describe the super-resolution module using the DLFM for
super-resolving. We also incorporate the tailored detail fusion
network [4] [5] as a refinement module, with which the SR
results tend to have sharper edges and higher PSNR/SSIM
values.

⨂
c n

Kernel 
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Network

Filter Kernels

Local Convolution
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Fig. 2. The structure of dynamic local filter module.

A. Dynamic Local Filter Module

The dynamic local filter module (DLFM) consists of two
parts: a kernel generation network (KGN) which produces
filter kernels based on the input images, and the generated
filters are applied to the input images via local convolutions,
as illustrated in Fig. 2.

The KGN takes an input I ∈ Rc×h×w, where c, h and w
are number of channels, height and width of the input image

I respectively, and generates filter kernels Fθ parameterized
by θ ∈ Rs×s×n×c×h×w, where s is the kernel size of the
generated filters, and n is the number of output channels. The-
oretically, this network can be any differentiable architecture.
In this work, we propose an autoencoder [14] based KGN
inspired by the work in [12]. All the convolution layers use
a kernel size of 3× 3. The average pooling layers are with a
kernel size of 2× 2. Rectified Linear Units (ReLU) are used
for all convolution layers except the last one. Other parameters
are noted in Fig. 3.

The local convolution is a translation-variant convolution
and also known as locally-connected network. It applies dif-
ferent filter kernels to corresponding patches according to its
position in the image. Suppose In is the n-th image in the
input sequence. For position (i, j), P (i,j)

n is defined as a patch
of size (2K + 1, 2K + 1) centered at (i, j) in In, which is

P (i,j)
n =
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A set of unique kernels θ(i,j)n is generated for P (i,j)
n , which is

θ(i,j)n =
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A local convolution operation Fc(θn, In) is defined as

Fc(θn, In) =
θ
(0,0)
n � P (0,0)

n · · · θ
(W−1,0)
n � P (W−1,0)

n

...
. . .

...
θ
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n � P (W−1,H−1)

n

 , (3)
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Fig. 3. Kernel generation network.

where W , H are width and height of In. The operator � is the
summation of element-wise product of two matrices, which is
defined as

A�B =

M∑
i=0

N∑
j=0

Aij ◦Bij , (4)

where A and B are two M×N matrices, and ◦ is the element-
wise product.

In the proposed method, for the local convolution result of
input image In,

Yn = Fc(θn, In), (5)

the following relation is supposed to be satisfied.

Yref ' Yn, (6)

where ref is the index of the reference frame. Spatial differ-
ences among In are compensated by the local convolution.

B. Super-Resolution Module

With DLFM, common features can be extracted from input
frames without distractions caused by inter-frame differences.
A DLFM with an appended pixel-shuffling layer [9] should
have the ability to perform VSR. However, since the KGN
generated filters have fixed kernel size, the maximum motion
magnitude that DLFM can adapt to is upper-limited. Although
this problem can be solved by increasing filter kernel size,
the network would become impractical because of the rapid
increasing computation cost.

Larger filter kernel size can be achieved by using separable
convolution in [12]. However, compared with video interpo-
lation, most of computations for SR are performed in LR
domain. The regions with s×s pixels in LR domain correspond
to αs×αs pixels patches in HR domain, where α is the upsam-
pling scale factor. Meanwhile, since the separable convolution
aims to reduce the number of parameters of a 2D filter by
using the inner-product of two 1D filters, it is inevitable to lose
representation flexibility and make performance sub-optimal.
These properties make separable convolution unsuitable for
SR.

In our proposed method, multiple DLFMs are cascaded to
increase the receptive field. Each of them uses a relatively
small kernel size, which is 3× 3, for efficiency. And inspired
by [15], [16] and [17], pixel-shuffle layer with ReLU are
appended to each DLFM to form a progressive SR proce-
dure. We also introduce skip connections [18] which add the
bicubic-upsampled reference frame to the outputs of pixel-
shuffle layers. We denote this network as the super-resolution
module. Fig. 1 illustrates a progressive 4× SR module which
consists of two 2× SR stages.

C. Refinement Module

While the SR module has the capability to generate sat-
isfactory results, we observed that an additional refinement
stage is still beneficial. We propose a refinement module,
inspired by the tailored detail fusion network [4] [5]. The
module adapts an autoencoder-style [14] architecture with skip
connections. The first and last layer use a kernel size of 5×5.
The other convolution layers have a kernel size of 3× 3. The
deconvolution layers are with a kernel size of 4 × 4. ReLUs
are used for each layer. Other parameters are illustrated in Fig.
1. Experimental results show that the refinement can achieve
considerable improvements for the final results which will be
described in the next section.

IV. EXPERIMENTAL RESULTS

In the experiments, we collected 3022 720p video clips
online as training dataset and normalized the pixel values to
[−1.0, 1.0]. The super-resolution scale factor is fixed to 4. We
use Adam [19] solver with β1 = 0.9, β2 = 0.999 and various
learning rates. L1 and L2 loss functions are incorporated to
measure the differences between super-resolved image Isr and
corresponding ground truth Igt. The mini-batch size is fixed
to 1 due to hardware limitations. The training procedure are
divided to 3 stages. Firstly, only the SR module is trained with
L1 loss and learning rate 0.0001 for about 600k iterations.
Then the parameters of the SR module are freezed. The
refinement module is attached and trained with L1 loss and
learning rate 0.0001 for about 120k iterations. Finally, the
whole network is trained jointly with learning rate 0.00001
for 480k iterations using L2 loss function.

We chose the widely-used VID4 [20] as the testing dataset.
We compared our method with an SISR method, SRCNN
[7] and five recent VSR methods: BayesSR [20] , VSRNet
[1], VESPCN [2], SPMC [4] and JUBW [5]. The BayesSR
is a traditional VSR algorithm. The other five methods are
based on neural network. The JUBW [5] is a state-of-the art
algorithm and it provides the best VSR performance so far in
terms of PSNR and visual quality. In our experiments, all the
measurements are performed on the luminance channel. For
visual comfort, the chrominance channels of images are up-
sampled by bicubic interpolation. In Table I, our method uses
3 consecutive frames. The quantitative and visual comparisons
are illustrated in Table I and Fig. 4. The experimental result
of SRCNN is from [2]. The experimental results of BayesSR,
VSRNet, VESPCN, SPMC are from [4]. The experimental
results of JUBW result is from [5]. Our method outperforms
the JUBW by 0.53 dB in terms of PSNR. Due to the absence
of SSIM metric in the original paper on JUBW, we did
not compare our method with JUBW in terms of SSIM.
From the close-up images, we see that the texture details and
object edges of the original video are better recovered by the
proposed method.

For VSR problem, the multiple input frames can be viewed
as various observations of the ground truth. A proper VSR
method should be able to generate superior results when
extra observations are provided. To prove that our proposed
method can exploit information from additional input frames,
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TABLE I
QUANTITATIVE COMPARISON WITH OTHER VSR METHODS

Method SRCNN BayesSR VSRNet VESPCN SPMC JUBW Proposed
(without Refinement)

Proposed
(with Refinement)

PSNR / SSIM 24.68 / 0.72 24.42 / 0.72 22.81 / 0.65 25.35 / 0.76 25.52 / 0.76 25.85 / - 26.04 / 0.80 26.38 / 0.81

Full Image BayesSR VSRnet VESPCN SPMC Proposed Ground Truth

Fig. 4. Visual comparison with previous VSR methods.

Full Image 3 Frames 5 Frames 7 Frames Ground Truth

Fig. 5. Visual comparison with inputs of various lengths.

TABLE II
QUANTITATIVE COMPARISON OF VARIOUS INPUT LENGTHS AND THE

EFFECT OF REFINEMENT IN PSNR/SSIM.

Input Length With Refinement Without Refinement
3 Frames 26.38 / 0.81 26.04 / 0.80
5 Frames 26.51 / 0.82 26.17 / 0.81
7 Frames 26.52 / 0.82 26.20 / 0.81

we evaluate our network on 3, 5 and 7 consecutive frames. Ex-
perimental results show that more consecutive inputs do lead
to results with sharper edges as well as higher PSNR/SSIM
values, as illustrated in Fig. 5 and Table II.

Unlike the SPMC and JUBW, the refinement module in
our method is not used for interpolation. The synthesized
HR images without refinements are still complete, which
means the refinement module in this work is optional. Table
II and Fig. 6 indicate that the refinement is beneficial to
the final results. However, the stand-alone SR module can
still outperform other VSR methods in terms of PSNR/SSIM
values, as illustrated in Table I.

Our experiment platform is equipped with a single NVIDIA
GTX 1080Ti graphical adapter. The program took 4.727
seconds to process all the 147 frames in VID4 with 3 frames

Full Image Without
Refinement

With Refinement

Fig. 6. Visual comparison of the effect of refinement with 3 frames input.

as inputs.

V. CONCLUSION

In this paper, we proposed a novel video super-resolution
framework which consists of a dynamic local filter based video
SR module and an autoencoder based refinement module. The
experimental results demonstrated that our proposed frame-
work outperforms the existing best-performing method by 0.53
dB in terms of PSNR and provides superior visual quality. As
for future work, we are trying to further improve the model
efficiency and explore more applications for the DLFM.
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