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Abstract—Canonical Correlation Analysis (CCA) is a powerful
multivariate statistical method. It can be used to find, for a
given dimension, a projection pair that maximally captures the
correlation between two target random vectors. This work intro-
duces a CCA-based approach for image retrieval. It capitalizes
on feature maps extracted from a pre-trained Convolutional
Neural Network (CNN) and leverages basis vectors identified via
CCA, in conjunction with an element-wise selection method based
on the Chernoff information, to generate compact transformed
image features; the level of similarity between two images is
determined by a hypothesis test regarding the joint distribution
of transformed feature pair. The proposed approach is bench-
marked against two popular statistical analysis methods, Linear
Discriminant Analysis (LDA) and Principal Component Analysis
with whitening (PCAw). The CCA approach is shown to achieve
competitive retrieval performances on popular datasets such as
Oxford5k and Paris6k.

Keywords—Canonical Correlation Analysis, Chernoff Infor-
mation, Hypothesis Testing, Image Retrieval, Multivariate Gaus-
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I. INTRODUCTION

The past few decades have seen the explosive growth of
online image databases. This growth presents valuable oppor-
tunities for the development of visual-data-driven applications,
but at the same time poses significant challenges to the
Content-Based Image Retrieval (CBIR) technology [1].

Traditional approaches to CBIR typically rely on hand-
crafted scale- and orientation-invariant image features [2]–[6].
Recent advances in Deep Learning (DL) for image classifica-
tion and object recognition have brought Convolutional Neural
Networks (CNNs) to the spotlight as contenders for CBIR.
Although CNN models are usually trained to perform different
tasks than CBIR, Razavian et al. [7] have shown the potential
of features extracted from modern deep CNNs, commonly
referred to as DL features. Retrieval methods utilizing DL
features can generally be differentiated by whether they train
(fine-tune) the CNN model or not. The earlier use of CNN for
CBIR focuses on methods using Off-The-Shelf (OTS) CNNs
(i.e., popular pre-trained CNNs) for feature extraction, [8], [9],
[10] and [11] to name a few. A major pro of those methods
is the low implementation cost, which is largely attributed to
the direct adoption of pre-trained CNNs. Their performance
is, overall, on par with state-of-the-art conventional methods
that rely on handcrafted features. However, in order to push
it further, another group of methods, like [12], [13], and [14],
has incorporated a CNN fine-tuning component to enhance the
discrimination power of the extracted features. The end-to-end
learning framework proposed in [15] for CBIR is by far the
cream of the crop in fine-tuned CNN-based methods. It beats
almost all popular conventional and OTS-CNN-based methods

on all standard testing datasets. However, this performance
improvement comes at a significant cost. Indeed, the method
requires the training of large triple-branched CNN architecture
using a large training dataset, which may not be affordable all
the time.

To better leverage DL features for image retrieval, many
preprocessing methods have been developed. Among them,
Principal Component Analysis with whitening (PCAw) and
Linear Discriminant Analysis (LDA) are most widely used. In
spite of their popularity, PCA and LDA have obvious weak-
nesses: the dimensionality reduction in PCA usually ignores
critical principal components with small contribution rate
while the performance of LDA tends to degrade with decreas-
ing differences between mismatched features. Therefore, it is
desirable to have a preprocessing method that is more robust
against dimensionality reduction and more sensitive to feature
mismatch. This motivates us to bring Canonical Correlation
Analysis (CCA) [16] into image information preprocessing.

CCA is a powerful tool to investigate the relationship
between two sets of multivariate data. It can be used to
identify two projection subspaces of a given dimension that
capture maximally the correlation between the two sets. The
applications of CCA in cross-modality matching/retrieval have
been extensively studied, from those based on handcrafted
features (see, e.g., [17]) to the more recent ones that rely on
DL features [18]–[20]. Some related theoretical development
can be found in [21], [22].

In the line of seeking computationally-efficiency and af-
fordability, a new image retrieval method based on OTS deep
CNNs is developed and presented in this work. It is built
around CCA, but has several distinctive aspects as compared
to the related works. For dimensionality reduction purposes
(feature compression), the proposed method, named CCA-
based method, employs a basis-vector selection technique
using Chernoff information. It provides a ranking on how
discriminative the basis vectors are. Those vectors and their
ranking are both learned form a training set of features that
are extracted from a pre-trained CNN – the neural network is
not trained in this work. For a new pair of unknown features,
the basis vectors are used to transform the features and
compress them if needed. Then, a hypothesis test on the joint
distribution of pairs of feature elements is carried out to obtain
a matching score. Top best retrieved matches are identified
using their matching score. The experimental results indicate
that the proposed method can achieve competitive retrieval
performances on some popular datasets such as Oxford5k and
Parise6k.

This paper is organized as follows. A detailed description of
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the proposed CCA-based preprocessing method together with
the associated matching procedure is presented in Section 3.
The experimental results and the relevant discussions can be
found in Section 4. The paper is concluded with some final
remarks in Section 5.

II. PROPOSED METHOD

Inspired by CCA, a correlation analysis method is developed
for image retrieval purposes. Using a training dataset of
features extracted from a pre-trained CNN model, a set of
canonical vectors are learned to serve as the basis vectors of
the feature space. They are used to transform the features of
a pair of images into a new subspace, in which a selection
method is applied to identify the most discriminative elements
of the transformed features. Then, those elements undergo a
hypothesis test to determine the degree of similarity between
the features and, therefore, the two images. The following four
subsections will shed more light on the details of that process.

A. Image pre-processing and feature extraction

The CNN model used for feature extraction is VGG16
[23]. It takes an input image of maximum size of 1024x1024
and produces 512 feature maps from its last convolutional
layer. A pooling technique is applied on those feature maps
to extract a single feature element from each one. Those
elements are concatenated to get a 512-dimensional vector,
which undergoes decentralization and normalization to form
the global feature vector representing the image.

B. Correlation analysis and canonical vectors

In the core of the proposed method lies the set of canonical
vectors. They are learned in a fashion inspired by CCA and
from a large training set of matching and non-matching image
features. The learning process goes through the following
steps: Step 1: The two matching matrices are shown below:

X(M) = [x1, x2, ..., xL],
Y(M) = [y1, y2, ..., yL],

where L is the total number of matching pairs, xl and yl for l ∈
{1, 2, ..., L} are a pair of feature column vectors representing
two matching images. The training data matrix of matching
features H(M) is constructed as follows:

H(M) =

[
X(M) Y(M)

Y(M) X(M)

]
(1024×2L)

. (1)

The estimated covariance matrix of matching features is given
by

Φ(M) =
1

2(L− 1)
H(M)(H(M))T

=

[
Σauto Σ(M)

Σ(M) Σauto

]
, (2)

where Σauto = X(M)(X(M))T+Y(M)(Y(M))T

2(L−1) and Σ(M) =
X(M)(Y(M))T+Y(M)(X(M))T

2(L−1) .

Step 2: By randomly permuting the columns of X(M) and
Y(M), we can get two non-matching matrices

X(N) = [xπ(1), xπ(2), ..., xπ(L)],
Y(N) = [yπ′(1), yπ′(2), ..., yπ′(L)].

With a similar procedure to that of step 1, a covariance matrix
Φ(N) is estimated for the non-matching features H(N):

Φ(N) =
1

2(L− 1)
H(N)(H(N))T

=

[
Σauto Σ(N)

Σ(N) Σauto

]
, (3)

where Σ(N) = X(N)(Y(N))T+Y(N)(X(N))T

2(L−1) .
Step 3: Since Σauto is Positive Definite (PD), both covari-

ances, Φ(M) and Φ(N), are multiplied left and right by Σ
− 1

2
auto

to de-correlate their diagonal blocks:

Φ̂(M) = Σ
− 1

2
autoΦ

(M)Σ
− 1

2
auto =

[
I J(M)

J(M) I

]
, (4)

Φ̂(N) = Σ
− 1

2
autoΦ

(N)Σ
− 1

2
auto =

[
I J(N)

J(N) I

]
, (5)

where J (M) = Σ
− 1

2
autoΣ

(M)Σ
− 1

2
auto, and J (N) =

Σ
− 1

2
autoΣ

(N)Σ
− 1

2
auto.

Step 4: Eigen Decomposition (ED) [24] is applied on the
J(M):

J(M) = UΛUT . (6)

The eigenvectors in the columns of U are the sought-after
canonical vectors for matching image features, and the block-
wise left- and right-multiplication of both Φ̂(M) and Φ̂(N) by
UT and U, respectively, yields the following pair of matrices:[

UTU UT J(M)U
UT J(M)U UTU

]
=
[ I Λ
Λ I

]
, (7)[

UTU UT J(N)U
UT J(N)U UTU

]
=
[ I Π
Π I

]
, (8)

where Π = UT J(N)U. The off-diagonal blocks of Equ. (7) are
de-correlated by the canonical vectors U whereas Π of Equ.
(8) is not. This is due to the fact that Σ

(N)
XY and Σ

(N)
Y X are the

cross covariances of non-matching image features, X(N) and
Y(N).

C. Chernoff information for feature element selection

The learned canonical vectors of matching image features
are orthonormal basis vectors that span the whole R512, and
it is expected that they are not all useful in the process of
measuring the similarity between two feature vectors of an
unknown pair of images– more on this in the next subsection.
Hence, it is of great interest to identify those canonical
vectors that are more discriminative than others. The off-
diagonal blocks of the covariance matrix of non-matching
image features come on handy right now. Using Chernoff
information (CI) [25] with the diagonal elements of both Λ
and Π, a ranking of the most different diagonal element pairs
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could be established. This helps select a subset of n-canonical
vectors, amounting to a selection of some elements from the
feature vectors.

Starting with the diagonal elements of Λ and Π:

Λ =


c
(M)
1 0 . . . 0

0 c
(M)
2 . . . 0

...
...

. . .
...

0 0 . . . c
(M)
512

 (9)

Π =


c
(N)
1 π1,2 . . . π1,512
π2,1 c

(N)
2 . . . π2,512

...
...

. . .
...

π512,1 π512,2 . . . c
(N)
512

 . (10)

Therefore, matching coefficient c
(M)
t = [Λ]tt, and non-

matching coefficient c(N)
t = [Π]tt where t ∈ {1, 2, . . . , 512}.

Define the following set of 2× 2 matrices:

S(M)
t =

[
1 c

(M)
t

c
(M)
t 1

]
,S(N)
t =

[
1 c

(N)
t

c
(N)
t 1

]
.

Now, let (S(λt)
t )−1 = λt(S

(M)
t )−1 + (1 − λt)(S(N)

t )−1, λt ∈
[0, 1] and define

D(S(λt)
t ||S(M)

t ) =
1

2
loge

|S(M)
t |
|S(λt)
t |

+
1

2
tr((S(M)

t )−1S(λt)
t )− 1,

(11)

D(S(λt)
t ||S(N)

t ) =
1

2
loge

|S(N)
t |
|S(λt)
t |

+
1

2
tr((S(N)

t )−1S(λt)
t )− 1,

(12)
where tr(·) represents the trace of input matrix in linear
algebra. The equation D(S(λt)

t ||S(M)
t ) = D(S(λt)

t ||S(N)
t )

has a unique solution λt = λ∗t . The Chernoff information
CI(S(M)

t ||S(N)
t ) is defined as

CI(S(M)
t ||S(N)

t ) = D(S(λ∗t )
t ||S(M)

t ) = D(S(λ∗t )
t ||S(N)

t ). (13)

Solving for each λ∗t , CI of all pairs (S(M)
t ,S(N)

t ) could be
evaluated, leading to a ranking of the most different pairs of
diagonal elements (c

(M)
t , c

(N)
t ) and, therefore, the most dis-

criminative k-canonical vectors of U. Those vectors make the
columns of the new canonical vector matrix Ũ . In additional,
the top k different pairs of diagonal elements (c̃

(M)
i , c̃

(N)
i ),

and the corresponding (S̃
(M)
i , S̃

(N)
i ) are selected, where i ∈

{1, 2, . . . , k}.

D. Similarity measurement with hypothesis testing

The selected canonical vectors could be used to measure
the similarity between any new pair of images through a
hypothesis test. For any pair of feature vectors (xr, yc), the
transformed feature column vectors are computed as follows:

w = [w1, w2, . . . , wk]
T
= ŨTΣ

− 1
2

autoxr, (14)

v = [v1, v2, . . . , vk]
T
= ŨTΣ

− 1
2

autoyc, (15)

where r, c ∈ {1, 2, . . . , L}. The main assumption underly-
ing the hypothesis test is that the pair of feature vectors
(xr, yc) comes from a jointly Gaussian distribution. Hence,
the elements (wi, vi) for i ∈ {1, 2, . . . , k} are also jointly
Gaussian and independent from each other. All the Gaussian
distributions are characterized by a zero-mean vector and a
set of 2×2-covariance matrices (S̃(M)

i , S̃(N)
i ). Since the final

outcome of the test is whether the two images are matching
or not, each pair has two possible Gaussian densities, one is
characterized by S̃

(M)
i and the other is characterized by S̃

(N)
i .

Considering the multivariate gaussian distribution [26], the
density function of a pair (wi, vi) is defined as

PM (wi, vi) =
e

− 1
2 [wi vi]

 1 c̃
(M)
i

c̃
(M)
i 1

−1[
wi
vi

]
√√√√(2π)2

∣∣∣∣∣ 1 c̃
(M)
i

c̃
(M)
i 1

∣∣∣∣∣
, (16)

or

PN (wi, vi) =
e

− 1
2 [wi vi]

 1 c̃
(N)
i

c̃
(N)
i 1

−1[
wi
vi

]
√√√√(2π)2

∣∣∣∣∣ 1 c̃
(N)
i

c̃
(N)
i 1

∣∣∣∣∣
. (17)

Using the pair of density functions, Equ. (16) and Equ. (17),
the hypothesis test is carried out to obtain a confidence score
with the following expression:

score =
k∑
i=1

log
PM (wi, vi)

PN (wi, vi)
. (18)

Substituting Equ. (16), (17) and expanding, it becomes

score =

k∑
i=1

(logPM (wi, vi)− logPN (wi, vi))

=
n∑
i=1

(
− w2

i − 2wivic̃
(M)
i + v2i

2π

√
(1− (c̃

(M)
i )2)

+
w2
i − 2wivic̃

(N)
i + v2i

2π

√
(1− (c̃

(N)
i )2)

+ log

√
1− (c̃

(N)
i )2√

1− (c̃
(M)
i )2

)
. (19)

This score determines how similar the two images are. The
higher the score is, the more likely the two images are a
match.

III. EXPERIMENTAL RESULTS

A. Training datasets

Two datasets are independently used for training, namely
120k-Structure from Motion (120k-SfM) and 30k-Structure
from Motion (30k-SfM) [27]. Both are preprocessed to avoid
overlapping elements with the evaluation datasets. A brief
description of both datasets is given below:
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1) 120k-Structure from Motion (120k-SfM) [27]: This
dataset is selected from the dataset used in the work of Schon-
berger et al, [28] which contains 713 3D models with nearly
120k images. Each image has a size of 1024 x 1024. The raw
unprocessed dataset includes all image from Oxford5k and
Paris6k. Thus, those subsets are both removed (98 clusters are
eliminated).

2) 30k-Structure from Motion (30k-SfM) [27]: This training
dataset is a subset of the 120k-SfM, which contains around
30k images and 551 classes. The maximum dimensions of
each image is resized to 362x362.

Each dataset serves its own purpose; the 30k-SfM is an
example of training on a small dataset while 120k-SfM is
an example of training on a large dataset, exploring the pros
and cons of both. Compared to the 30k-SfM set, the 120k-
SfM is expected to provide richer features for all methods
being tested, PCAw, LDA, the proposed method (G-CCA), and
a variation of proposed method by replacing the hypothesis
testing with the scalar similarity (S-CCA).

B. Training details

The feature vector of an image is extracted from the last
convolutional layer of a pre-trained VGG16 using one of the
following three pooling strategies: Sum-Pooled Convolutions
(SPoC) [9], Maximum Activation of Convolutions (MAC) [8],
and Standard Deviation (SD) pooling. Training is performed
once for each one of those strategies for the purpose of
performance comparison.

For benchmarking, the proposed method (G-CCA) and its
variation (S-CCA) are trained along with two more feature-
space analysis methods, namely PCAw [29], and LDA. The
former analyzes the covariance matrix of the training image
features to derive a basis matrix of the feature space. That basis
matrix is used to whiten and compress new image features,
which are later used with the scalar similarity measure to make
a matching or non-matching decision. The details of the PCAw
method and its performance have been laid out in [9]. On the
other hand, due to the popularity of LDA [30] in statistical
analysis, it has been applied in image-retrieval problems [31].
Here it will be used as a competing method of feature-space
analysis.

LDA is trained on the classes provided with both training
datasets. It develops a set of projection vectors for which the
classes are best linearly separated. Those projection vectors are
stored and used as a means to transform and compress (reduce
the dimensionality of) new feature vectors. Scalar similarity is,
then, applied to the transformed features to determine whether
they are matching or not.

C. Evaluation datasets and details

Two datasets are used to evaluate the performance of each
retrieval method, namely Oxford5k and Paris6k. They are part
of the large raw 120k-SfM dataset, but are excluded from the
training dataset. A short description of these two datasets is
given below.

1) Oxford5k [32]: It is a dataset with 5063 images and 55
query images for 11 different buildings. It is annotated with
bounding boxes for the main objects.

2) Paris6k [33]: It is a dataset with 6412 images and 55
query images for 11 different buildings. It is also annotated
with bounding boxes.

The performance of a retrieval method is assessed using
mean-Average Precision (mAP) [32]. Standard evaluation pro-
tocol is followed for the Oxford5k, Paris6k. The query images
are all cropped with the provided bounding boxes before they
are fed to VGG16. All methods are trained and evaluated
twice. We first perform training on the small dataset, 30k-
SfM, followed by evaluation. The second training is based on
the larger 120k-SfM. In this way, the effect of the dataset size
and diversity on all methods could be studied.

D. Performance evaluation and analysis

In Table I, the baseline performances of MAC, SPoC,
and SD methods are reported without any preprocessing and
dimensionality reduction (DR). In the evaluation, we use the
proposed method (G-CCA), and a variation of the proposed
method by replacing the multivariate Gaussian distribution
with the scalar similarity (S-CCA). From Table I, we observe
that the G-CCA achieves higher performance than S-CCA on
most cases except for the SPoC in Paris6k, and RParis.

Using three different pooling strategies, two image retrieval
methods are trained on the 30k-SfM dataset, and evaluated
on the two test sets. Table II is a comprehensive depiction of
all those experiments. It shows the results of each retrieval
method using all pooling strategies and with different feature
dimensionality choices (compression levels). The LDA results
are not reported there, for LDA cannot be trained on the
30k-SfM dataset. It is a consequence of the fact that the
difference between each class is too small for LDA training.
From the table II, four observations stand out. The first is
the effect of the pooling strategy on the G-CCA, SD pooling
seems to boost up the performance of all methods at every

TABLE I
PERFORMANCE COMPARISON OF THE
BASELINE, S-CCA, AND G-CCA ON
OXFORD5K AND PARIS6K WITHOUT

DIMENSION REDUCTION

Method Oxford5k Paris6k
MAC 0.5311 0.7455
S-CCA + MAC 0.5765 0.7287
G-CCA + MAC 0.6229 0.7671
SPoC 0.5315 0.6320
S-CCA + SPoC 0.6851 0.7849
G-CCA + SPoC 0.7131 0.7455
SD 0.6073 0.7330
S-CCA + SD 0.6900 0.7799
G-CCA + SD 0.7393 0.8160
1 The evaluation results are based on 120k-

SfM learning database.
2 The MAC, SPoC, and SD are evaluated

without any preprocessing methods.
3 For the same type of features, the best

performances are highlighted in bold.
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TABLE II
EVALUATION RESULTS FROM 30K-SFM LEARNING DATABASE ON OXFORD5K AND PARIS6K

Learning dataset: 30k-SfM

Oxford5k

Dim MAC SPoC SD
LDA PCAw S-CCA G-CCA LDA PCAw S-CCA G-CCA LDA PCAw S-CCA G-CCA

25 — 0.3504 0.2424 0.3901 — 0.4796 0.2511 0.4879 — 0.4993 0.3355 0.5008
50 — 0.4264 0.3290 0.4690 — 0.5153 0.3149 0.5437 — 0.5129 0.4542 0.5856

100 — 0.4980 0.4106 0.5064 — 0.5217 0.4549 0.6219 — 0.6038 0.5292 0.6300
200 — 0.5547 0.4933 0.5592 — 0.6072 0.5123 0.6658 — 0.6580 0.6838 0.6877
300 — 0.5710 0.5400 0.5406 — 0.6433 0.5274 0.6723 — 0.6728 0.6610 0.6824
400 — 0.5726 0.5614 0.5463 — 0.6516 0.5373 0.6713 — 0.6825 0.6699 0.6831
450 — 0.5731 0.5618 0.5424 — 0.6549 0.5333 0.6696 — 0.6869 0.6750 0.6812
512 — 0.5620 0.5621 0.5418 — 0.6535 0.6535 0.6704 — 0.6805 0.6786 0.6815

Paris6k

Dim MAC SPoC SD
LDA PCAw S-CCA G-CCA LDA PCAw S-CCA G-CCA LDA PCAw S-CCA G-CCA

25 — 0.5171 0.4096 0.5306 — 0.5411 0.4412 0.5223 — 0.5746 0.4467 0.5820
50 — 0.6130 0.5305 0.7118 — 0.5680 0.5601 0.6240 — 0.6459 0.6207 0.6964

100 — 0.6201 0.5893 0.7118 — 0.6374 0.6279 0.6806 — 0.7335 0.6934 0.7494
200 — 0.7049 0.6417 0.7118 — 0.6887 0.6981 0.7152 — 0.7747 0.7561 0.7851
300 — 0.7037 0.6699 0.7065 — 0.7080 0.7319 0.7208 — 0.7846 0.7769 0.7895
400 — 0.7056 0.6915 0.7099 — 0.7345 0.7404 0.7213 — 0.8037 0.7961 0.7899
450 — 0.7115 0.7008 0.7046 — 0.7447 0.7481 0.7217 — 0.8120 0.8027 0.7897
512 — 0.7063 0.7064 0.7039 — 0.7530 0.7532 0.7218 — 0.8067 0.8086 0.7895

1 The best performances in each dimension are highlighted in bold.

TABLE III
EVALUATION RESULTS FROM 120K-SFM LEARNING DATABASE ON OXFORD5K AND PARIS6K

Learning dataset: 120k-SfM

Oxford5k

Dim MAC SPoC SD
LDA PCAw S-CCA G-CCA LDA PCAw S-CCA G-CCA LDA PCAw S-CCA G-CCA

25 0.3603 0.3830 0.2682 0.4235 0.4758 0.4472 0.3203 0.4783 0.4759 0.4779 0.3262 0.5017
50 0.4760 0.4277 0.3720 0.4780 0.5612 0.4930 0.4085 0.5627 0.5375 0.5129 0.4521 0.5688

100 0.5157 0.5185 0.4510 0.5432 0.6017 0.5675 0.5379 0.6338 0.6429 0.6038 0.5547 0.6597
200 0.5887 0.5443 0.5516 0.6182 0.6571 0.6399 0.6440 0.6947 0.6861 0.6337 0.6485 0.7176
300 0.6028 0.5619 0.5723 0.6246 0.6643 0.6575 0.6651 0.7089 0.7030 0.6638 0.6770 0.7325
400 0.5974 0.5793 0.5680 0.6251 0.6688 0.6808 0.6699 0.7116 0.7020 0.6933 0.6824 0.7381
450 0.5939 0.5819 0.5777 0.6233 0.6678 0.6862 0.6754 0.7124 0.6972 0.6952 0.6894 0.7391
512 0.5868 0.5765 0.5765 0.6229 0.6613 0.6851 0.6851 0.7131 0.6958 0.6900 0.6900 0.7393

Paris6k

Dim MAC SPoC SD
LDA PCAw S-CCA G-CCA LDA PCAw S-CCA G-CCA LDA PCAw S-CCA G-CCA

25 0.5553 0.4907 0.4566 0.5828 0.5781 0.4851 0.4601 0.5541 0.6204 0.5746 0.5036 0.6328
50 0.6362 0.6186 0.5254 0.6576 0.6384 0.5693 0.5127 0.6139 0.6900 0.6459 0.5781 0.7001

100 0.6994 0.6822 0.6160 0.7242 0.6916 0.6608 0.6375 0.6781 0.7502 0.7335 0.6972 0.7593
200 0.7162 0.7095 0.6739 0.7606 0.7244 0.7111 0.7122 0.7248 0.7845 0.7877 0.7700 0.8023
300 0.7299 0.7251 0.6921 0.7678 0.7493 0.7417 0.7460 0.7424 0.8030 0.8070 0.7993 0.8159
400 0.7247 0.7233 0.7126 0.7683 0.7548 0.7679 0.7724 0.7451 0.8042 0.8180 0.8089 0.8156
450 0.7197 0.7229 0.7191 0.7675 0.7540 0.7796 0.7786 0.7455 0.8003 0.8169 0.8123 0.8158
512 0.7111 0.7274 0.7287 0.7671 0.7549 0.7845 0.7849 0.7455 0.7971 0.8178 0.8179 0.8160

1 The best performances in each dimension are highlighted in bold.

choice of feature dimensionality while MAC makes the G-
CCA somehow superior to PCAw in almost all dimensions of
the all test sets. This is interesting because for the MAC, SPoC,
and SD pooling strategies, the proposed method outperforms
PCAw at low feature dimensionality, which is the second
observation. It suggests that the proposed method is a better
choice for producing compact features than PCAw regardless
of the pooling strategy. The third observation is that G-CCA
have higher robustness to DR than S-CCA, this is showed by
all experiment results in Table II. It is worth to point out that
S-CCA is useful with SPoC on Paris6k, and its performance is
even better than G-CCA and PCA at high dimensions, which
gives the last observation.

The moderate performance of the proposed method could be
improved by the use of a larger training set like the 120k-SfM.
Table III, similar to Table II, shows the evaluation results of all
three methods using the three pooling strategies and different
dimensionality choices. Clearly, the increased-size training set
results in an improved mAP performance on all test sets and

using all pooling strategies. The most interesting observation
there is how the proposed method outperforms all others on
Oxford5k. This superiority across all dimensionalities is only
attained on the Paris6k using MAC pooling. Other pooling
strategies improve the retrieval performance of all methods
in general but have different effects on the proposed one;
although SPoC improves the mAP, it causes the G-CCA
to lose its edge at almost all dimensionalities on Paris6k.
This is not the case with SD pooling, which retains the
dominating performance of the proposed method at reduced
feature dimensionalities.

Based on the Table II and III, there are two main advantages
of G-CCA over the PCAw and LDA. The First is that the CCA-
based methods can be trained from the learning dataset that
the difference between each classes are small, but LDA cannot
be trainable on such dataset. The second advantage is that the
G-CCA usually have better performance than PCAw after DR.
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IV. CONCLUSION

Leveraging the good performance of OTS CNNs in image
classification, CCA-based methods are proposed to analyze
DL features for image retrieval applications. By avoiding
CNN fine-tuning, it achieves good retrieval accuracy with
as minimal computational burden as possible. Experimental
results on standard evaluation datasets have shown that its
performance is very competitive to that of other OTS-CNN-
based methods.
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