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Abstract. As the revolutionary improvement being made on the perfor-
mance of smartphones over the last decade, mobile photography becomes
one of the most common practices among the majority of smartphone
users. However, due to the limited size of camera sensors on phone, the
photographed image is still visually distinct to the one taken by the dig-
ital single-lens reflex (DSLR) camera. To narrow this performance gap,
one is to redesign the camera image signal processor (ISP) to improve
the image quality. Owing to the rapid rise of deep learning, recent works
resort to the deep convolutional neural network (CNN) to develop a
sophisticated data-driven ISP that directly maps the phone-captured
image to the DSLR-captured one. In this paper, we introduce a novel
network that utilizes the attention mechanism and wavelet transform,
dubbed AWNet, to tackle this learnable image ISP problem. By adding
the wavelet transform, our proposed method enables us to restore favor-
able image details from RAW information and achieve a larger receptive
field while remaining high efficiency in terms of computational cost. The
global context block is adopted in our method to learn the non-local color
mapping for the generation of appealing RGB images. More importantly,
this block alleviates the influence of image misalignment occurred on
the provided dataset. Experimental results indicate the advances of our
design in both qualitative and quantitative measurements. The source
code is available at https://github.com/Charlie0215/AWNet-Attentive-
Wavelet-Network-for-Image-ISP.
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1 Introduction

Traditional image ISP is a critical processing unit that maps RAW images from
the camera sensor to RGB images in order to accommodate the human visual
system (HVS). For this purpose, a series of sub-processing units are leveraged
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RGB results of 1.png from our
AWNet.

R channel G1 channel

B channel G2 channel

Fig. 1. Visualization of each channel in the RAW image and the corresponding RGB
image reconstructed by AWNet. Zoom-in for better views. (Color figure online)

in order to tackle the different artifacts from photo-capturing devices, including,
among others, the color shifts, signal noises, and moire effects. However, tuning
each sub-processing unit requires legions of efforts from imagery experts.

Nowadays, mobile devices have been equipped with high-resolution cameras
to serve the incremental need for mobile photography. However, due to the com-
pact space, the hardware is limited with respect to the quality of the optics and
the pixel numbers. Moreover, the time of exposure is relatively short due to the
instability of hand-holding. Therefore, a mobile specific ISP has to compensate
for these limitations as well.

Recently, deep learning (DL) based methods have achieved considerable suc-
cess on various image enhancement tasks, including image denoising [1,39], image
demosaicing [10], and super-resolution [15,18,22,35]. Different from traditional
image processing algorithms that commonly require prior knowledge of natu-
ral image statistics, data-driven methods can implicitly learn such information.
Due to this fact, the DL-based method becomes a good fit for mapping prob-
lems [5,37,42]. In here, learning image ISP can be regarded as an image-to-image
translation problem, which can be well-addressed by the DL-based method. In
ZRR dataset from [14], the RAW images can be decomposed into 4 channels,
which are red (R), green (G1), blue (B) and green (G2) from the Bayer pattern,
as shown in Fig. 1. Remark that 2 of 4 channels record the radiance informa-
tion from green sensors. Therefore, additional operations such as demosaicing
and color correction are needed to tackle the RAW images as compared to RGB
images. Moreover, due to the nature of the Bayer filter, the size of these 4 chan-
nels is down-sampled by the factor of two. In order to make the size of prediction
and ground truth images consistent, an up-sampling operation is required. This
can be regarded as a restoration problem, where the recovery of high-frequency
information should be taken into consideration. In our observation, the misalign-
ment between the DSLR and mobile photographed image pairs is severe even
though the authors have adopted the SIFT [21] and RANSAC [33] algorithms to
mitigate this effect. It is worth mentioning that the minor misalignment between
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the input RAW image and ground-truth RGB image would cause a significant
performance drop.

To tackle the aforementioned problems, we introduce a novel trainable
pipeline that utilizes the attention mechanism and wavelet transform. More
specifically, the input of our proposed methods is a combination of a RAW
image and its demosaiced counterpart as a complement, where the two-branch
design is aimed at emphasizing the different training tasks, namely, noise removal
and detail restoration on RAW model and the color mapping on the demosaiced
model; the discrete wavelet transform (DWT) is adopted to restore fine context
details from RAW images while reserving the informativeness in features during
training; as for the color correction and tone mapping, the res-dense connection
and attention mechanism are utilized to encourage the network putting effort on
the focused areas.

In summary, our main contributions are:

1) Exploring the effectiveness of wavelet transform and non-local attention mech-
anism in image ISP pipeline.

2) A two-branch design to take a raw image and its demosaiced counterpart that
endows our proposed method the ability to translate the RAW image to the
RGB image.

3) A lightweight and fully convolutional encoder-decoder design that is time-
efficient and flexible on different input sizes.

2 Related Works

In this section, we provide a brief review of the traditional image ISP meth-
ods, some representative RAW to RGB mapping algorithms, and the existing
learnable imaging pipelines.

2.1 Traditional Image ISP Pipeline

Traditional ISP pipeline encompasses multiple image signal operations, includ-
ing, among others, denoising, demosaicing, white balancing, color correction,
gamma correction, and tone mapping. Due to the nature of the image sensor, the
existence of noise in RAW images is inevitable. Therefore, some operations are
[1,8,39] proposed to remove the noise and improve the signal-to-noise ratio. The
demosaicing operation interpolates the single-channel raw image with repeated
mosaic patterns into multi-channel color images [10]. White balancing corrects
the color by shifting illuminations of RGB channels to make the image more per-
ceptually accepted [7]. Color correction adjust the image value by a correction
matrix [17,28]. Tone mapping shrinks the histogram of image values to enhance
image details [26,38]. Note that all sub-processing units in the traditional image
ISP pipeline require human effort to manually adjust the final result.
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2.2 RAW Data Usage in Low-Level Image Restoration

The advantages of applying RAW data on low-level vision tasks have been
explored by different works in the field of image restoration. For instance, [5]
uses dark RAW image and bright color image pairs to restore dark images from
images with long exposure. In this case, the radiance information that retained by
raw data contributes to the restoration of image illumination. [37] takes advan-
tage of rich radiance information from unprocessed camera data to restore high
frequency details and improve their network performance on super-resolution
tasks. Their experiment reveals that using raw data as a substitute for cam-
era processed data is beneficial on single image super-resolution tasks. Lately,
[14,29] adopt unprocessed image data to enhance mobile camera imaging. Since
RAW data avoids the information loss introduced by quantization in ISP, it is
favorable for a neural network to restore the delicate image details. Inspired by
[14], our work makes use of the RAW data to train our network for a learnable
ISP pipeline. Instead of only taking RAW images as the input, we adopt the
combination of the input data formats from [14] and [29] to encourage our net-
work to learn different sub-tasks of image ISP, for example, noise removal, color
mapping, and detail restoration.

2.3 Deep Learning Based Image ISP Pipeline

Since CNN has achieved the promising performance on plenty of low-level vision
tasks [11,15,18,30,35], it is intuitive to leverage it for the learning of camera ISP.
[29] collects RAW low-lit images from Samsung S7 phone, and uses a neural net-
work to improve image brightness and remove noise on demosaiced RGB images
from a simple ISP pipeline. [27] generates synthetic RAW images from JPEG
ones and applies RAW-to-RGB mapping to restore the original RGB images.
Moreover, some previous works in AIM 2019 RAW to RGB Mapping Challenge
have achieved appealing results. For example, [32] considers using the stacked
U-Nets to produce a pipeline in a coarse-to-fine manner. [24] adopts a multi-scale
training strategy that recovers the image details while remaining the global per-
ceptual acceptance. The most recent work [14] tries to narrow the visual quality
gap between the mobile and DSLR color images by directly translating mobile
RAW images to DSLR color ones, where RAW images are captured by Huawei
P20 phone and color ones are from Canon 5D Mark IV. Nonetheless, all previ-
ous learnable ISP methods only focus on the general mapping problem without
mentioning other artifacts from the training dataset. For example, without addi-
tional operation, the misalignment between the DSLR and mobile image pairs
can cause severe degradation on estimated outputs. In our work, we apply the
global context block combined with the res-dense block that learns the global
color mapping to tackle misaligned image features. The added blocks enable our
network to outperform the current state-of-the-art method proposed by [14].
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Fig. 2. The main architecture of the proposed AWNet. The top and bottom ones are
the RAW and demosaiced models, respectively. We take the average of both outputs
from these two models to obtain the final prediction.

3 Proposed Methods

We describe the proposed method and training strategy in this section. First,
the overall network architecture (shown in Fig. 2) and details of each network
module are demonstrated, and then the sense of this design is illustrated. In the
end, the loss functions adopted in training is introduced.

3.1 Network Structure

The proposed AWNet employs a U-Net resembled structure and consolidates
the architecture by three main modules, namely global context res-dense mod-
ule, residual wavelet up-sampling module, and residual wavelet down-sampling
module (see Fig. 3 and Fig. 4).
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Fig. 3. Our global context res-dense module contains a residual dense block (RDB)
and a global context block (GCB). We observe that the RDB can benefit the color
restoration from RAW images and the GCB encourages the network putting effort on
learning the global color mapping. See details in Sect. 4.4.

The global context res-dense module consists of a residual dense block (RDB)
and a global context block (GCB) [3]. The effectiveness of RDB has been com-
prehensively examined [20,41]. In here, learning the residual information is ben-
eficial to the color-mapping performance. The total of seven convolutional layers
are used in RDB, where the first six layers aim at increasing the number of
feature maps and the last layer concatenates all feature maps generated from
these layers. At the end of RDB, a global context block is presented to encourage
the network to learn the global color mapping, since local color mapping might
introduce the degradation on the results due to the pixel misalignment between
RAW and RGB image pairs. The reason is evident as the existence of misalign-
ment misleads the neural network to map color into incorrect pixel locations. By
considering that the convolutional kernel only covers the local information of an
image, [34] proposed a non-local attention mechanism. This work can realize the
dependency between long-distance pixels so that the value at a query point can
be calculated by the weighted sum of the features of all positions on the input
feature. However, heavy computation is required, especially when the feature
map has a large size (e.g., the full resolution input image from ZRR dataset).
By experiments, [3] claims that the attention map obtained from different query
points has minor differences. Therefore, they propose a lightweight global context
block (GCB) that simplifies the non-local module and combines with the global
context framework and the SE block [12]. The GCB encourages the network to
learn key information spatial-wise and channel-wise while effectively reduce the
computation complexity. These characteristics are exactly what we look for in
this RAW-to-RGB mapping problem.

For up-sampling and down-sampling, we borrow the idea from the discrete
wavelet transform (DWT), since the nature of DWT decomposes the input fea-
ture maps into the high-frequency and low-frequency components, in which the
low-frequency one can be served as the result from average pooling (further dis-
cussion can be found in Sect. 3.3). As shown in Fig. 4, we use the low-frequency
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(a) Residual Wavelet Down-sampling
Block

(b) Residual Wavelet Up-sampling
Block

Fig. 4. Illustration of our up-sampling and down-sampling modules in Fig. 2. The resid-
ual design enables our model to operate in frequency-domain and spatial-domain that
facilitates the learning of abundant features in up-sampling and down-sampling blocks.

component as part of our down-sampling feature maps and connect the high-
frequency part to the up-sampling block for image recovery (i.e., inverse DWT).
However, the feature maps produced by frequency-domain operation might be
lack of spatial correlation. Therefore, an additional spatial convolutional layer
is adopted to downsample the feature map with learned kernels. Similarly, a
pixel-shuffle operation along with a spatial convolutional layer is employed for
up-sampling as the complement to the IDWT. The combination of frequency-
domain and spatial-domain operations facilitates the learning of abundant fea-
tures in up-sampling and down-sampling blocks. At the end of the proposed
method, we use a Pyramid Pooling block [6] to further enlarge the receptive
field.

3.2 Two-Branch Network

By consolidating the encoder-decoder structure with previously mentioned mod-
ules, our network is able to surpass the state-of-the-art when trained on the RAW
images. However, using multiple neural networks to train on different low-level
vision tasks is a more effective way to learn image ISP. One of the reasons is that
feeding distinct data to different network branches can provide abundant infor-
mation during training. Recently, the two-stream design has been successfully
applied in various computer vision tasks, especially in video field. Note that
fusing the information from different formats of input (e.g., optical flow and
image frames) can significantly improve the network performance. Inspired by
[4,9], we build AWNet based on the idea of two-branch architecture to facilitate
network performance on different low-level imaging tasks by utilizing different
inputs. Our two-branch design contains two encoder-decoder models, namely the
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RAW model and the demosaiced model. In here, the RAW model is trained on
224 × 224 × 4 RAW images, and the demosaiced branch takes 448 × 448 × 3
demosaiced images as input. For the RAW model, there is a need to make the
prediction size and ground truth size consistent. Therefore, this branch pays
more attention to the recovery of high frequency details. For its counterpart,
the demosaiced branch has no need to upscale the output size for consistency.
Instead, this branch focuses more on the color mapping between the demosaiced
image and RGB color image. We train the two networks separately and average
their predictions at testing. As expected, a great performance boost is observed
by applying this architecture (see details in Sect. 4.3).

3.3 Discrete Wavelet Transform

To elaborate the reason of choosing DWT in our design opinion, we introduce
the connection between DWT and traditional pooling operation. In 2D discrete
wavelet transform, there are four filters, i.e., fLL, fLH , fHL, and fHH , can
be used to decomposed an image [23]. By convolving with each filter, a full-
size image x is split into 4 sub-bands, i.e., xLL, xLH , xHL, and xHH . Due
to the nature of DWT, we can express xLL as (fLL � x) ↓2 (the expressions
of xLH , xHL, and xHH are similar), where � represents convolutional oper-
ation and ↓2 indicates down-sampling by the scale factor of 2. According to
the bi-orthogonal property, the original image x can be restored by IDWT,
i.e., x = IDWT (xLL, xLH , xHL, xHH). Therefore, the down-sampling and up-
sampling operations of DWT can be considered as lossless. In addition, inspired
by [19], the wavelet transform can be employed to replace the traditional pooling
operation that usually causes information loss. We define the mathematical for-
mat to further elaborate the connection between DWT and pooling operation.
For example, in Haar DWT, fLL =

(
1 1
1 1

)
. Thus, the (m,n)-th value of xLL after

2D Haar wavelet transform can be defined as

xLL(m,n) = x(2m−1, 2n−1)+x(2m−1, 2n)+x(2m, 2n−1)+x(2m, 2n). (1)

Moreover, by defining xp to be the feature map after p-level of average pooling,
the (m,n)-th value of xp can be expressed as

xp(m,n) = 0.25 × (xp−1(2m − 1, 2n − 1) + xp−1(2m − 1, 2n)
+ xp−1(2m, 2n − 1) + xp−1(2m, 2n)).

(2)

As we can see, Eq. (2) is highly correlated with Eq. (1). By taking four subbands
into account, pooling operation discards all the high-frequency components and
only makes use of low-frequency part. Therefore, the information loss in tra-
ditional pooling operation is severe. To alleviate this problem, we design our
up-sampling and down-sampling modules in the way that uses both wavelet
transform and convolutional operation to manage scaling. By doing that, our
network can learn from both spatial and frequency information. Our experi-
ments reveal the superior performance of this design (see details in Sect. 4.4).
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3.4 Loss Function

In this section, we introduce our three loss functions and the multi-scale loss
strategy. We denote I as the target RGB image and Ĩ as the predicted result
from our method.

Pixel Loss. We adopt the Charbonnier [2,40] loss as an approximate L1 term for
our loss function to better handle outliers and improve the performance. From
previous experiments, we realize that Charbonnier loss can efficiently improve
the performance on the signal-to-noise ratio of reconstructed images. In addition,
Charbonnier loss has been applied in multiple image reconstruction tasks and
outperforms the traditional L2 penalty [40]. The Charbonnier penalty function
is defined as:

Lchar =
√

(Ĩ − I)2 + ε2, (3)

where we set ε to 1e − 3. Note that using only the pixel loss on RAW-to-RGB
mapping results in blurry images as reported in [32]. Thus, we redeem this
problem by adding other feature loss functions.

Perceptual Loss. To deal with the pixel misalignment problem from ZRR
dataset, we also employ perceptual loss. The loss function is defined as

LP = LMSE(F (Ĩ) − F (I)), (4)

where F denotes the pretrained VGG-19 network, Ĩ and I represent the predicted
image and ground truth, respectively. As misaligned images are processed by the
pretrained VGG network, the resulting downsampled feature maps have fewer
variants in terms of the misalignment. Therefore, adding a L2 term on such
feature maps is beneficial for the network to recognize the global information
and minimize the perceptual difference between the reconstructed image and
the ground truth image.

SSIM Loss. We also employ the structural similarity (SSIM) loss LSSIM [36]
that is aiming to reconstruct the RGB images by enhancing on structural simi-
larity index. The resulting images are more perceptually accepted than the pre-
dictions without applying SSIM loss. Note that the loss function can be defined
as:

LSSIM = 1 − FSSIM (Ĩ − I), (5)

where F denotes the function of calculating structural similarity index.

Multi-scale Loss Function. Inspired by [25], we apply supervision on outputs
from different decoder layers to refine reconstructed images of different sizes. For
each scale level, we focus on different restoration aspects, thus different loss com-
binations are applied. In our RAW model, there are 5 up-sampling operations,
which form feature maps in 6 different scales, named as scale 1–6 from small to
large. Similarly, there are 5 different scales presented in the demosaiced model
and we name those as scales 1–5.
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1) Scale 1–2 process feature maps that are down-scaled by a factor of 16 and
32. The feature maps at this scale contain less context information compare
with ground truth. Thus, we mainly focus on global color and tone mapping.
These layers are supervised only by Charbonnier loss, which can be written
as:

L1,2 = Lchar. (6)

2) Scale 3–4 are computed on feature maps with down-scaled factors of 4 and 8;
since these features are smaller as compared to the size of ground truth yet
contain richer information than the scale 1–2, we apply a loss combination
that incorporates perceptual and Charbonnier losses to perform global map-
ping while remaining the perceptual acceptance. The loss function of these
layers is defined as:

L3,4 = Lchar + 0.25 × LP . (7)

3) In scale 5–6, the size of feature maps is close or equal to the original one, thus
we are able to pay more attention to the recovery of image context in addition
to the color mapping. We choose a more comprehensive loss combination at
this level, which can be shown as:

L5,6 = Lchar + 0.25 × LP + 0.05 × LSSIM . (8)

Note that we manually choose the coefficients of different loss terms. The
total loss function can be expressed as:

Ltotal =
k∑

n=1

Ln, (9)

where k is equal to 5 and 6 for demosaiced model and RAW model, respec-
tively.

4 Experiments

We conduct comprehensive experiments to demonstrate that the proposed
method performs favorable against the baseline model [14] in terms of quan-
titative and qualitative comparisons on ZRR dataset.

4.1 Datasets

To enhance smartphone images, the Zurich dataset from AIM 2020 Learned
Smartphone ISP Challenge [14] provides 48043 RAW-RGB image pairs (of size
448×448×1 and 448×448×3, respectively). The training data has been divided
into 46,839 image pairs for training and 1,204 ones for testing. In addition, 168
full resolution image pairs are used for perceptual validation. For data prepro-
cessing and augmentation, we normalize the input data and perform vertical and
horizontal flipping.
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4.2 Training Details

Our model is trained on PyTorch framework with Intel i7, 32 GB of RAM, and
two NVIDIA RTX2080 Ti GPUs. The batch size is set to 6 and 2 for the RAW
model and the demosaiced model, respectively. Except for that, our two models
share the same training strategy. We employ Adam optimizer [16] with β1 =
0.9, β2 = 0.999 and set the initial learning rate as 1 × 10−4. We decrease the
learning rate by half in every 10 epochs and train for 50 epochs in total.

PSNR / SSIM

PSNR / SSIM

PSNR / SSIM

PSNR / SSIM

Ground Truth

21.9890 / 0.7534

20.0099 / 0.6912

16.8522 / 0.7124

13.6305 / 0.8503

Ours-3 Output

23.0414 / 0.7743

21.8351 / 0.7082

17.7539 / 0.7195

16.4578 / 0.8939

Ours-4 Output

23.2214 / 0.7981

21.9083 / 0.7138

20.1982 / 0.7381

24.4593 / 0.9016

Ensemble Output

Fig. 5. PSNR/SSIM and visual comparisons of reconstructed images from different
network models. Ours-3 and Ours-4 denote our demosaiced and RAW models, respec-
tively. Zoom-in for better views.
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4.3 Ensemble Strategy

Inspired by [31], we applied a self-ensemble mechanism during the validation
and testing stage of AIM2020 Learned Smartphone ISP Challenge. Specifically,
we use ensembles comprised of 8 variants (original, rotated 90◦, rotated 180◦,
rotated 270◦, rotated 90◦ & flipped, rotated 180◦ & flipped, and rotated 270◦

& flipped ones). After that, we average out the ensemble outputs and obtain
our final result. To evaluate the benefit of ensembles, we apply our method to
the validation dataset (without ground truth) during the development stage to
validate our methods by calculating the PSNR values. In our experiments, the
non-ensembles version of the RAW model and the demosaiced model in Track 1
achieves 21.55 dB and 21.68 dB on the validation dataset (without ground truth),
respectively. Subsequently, by averaging out the results from both models, the
PSNR can be significantly boosted to 21.97 dB. To achieve optimal ensemble
result, for each model, we prepare weights with different PSNR scores, and then
carry out experiments to test different combinations of weights across two mod-
els (see Table 1 for details). At the final testing stage, we choose the 21.36 dB
(RAW model) and 21.52 dB (demosaiced model) weights to generate predictions.
Figure 5 shows the qualitative and quantitative results from these models and
their ensemble outcomes (tested on offline validation data from provided ZRR

Table 1. Validation scores by different model ensembles. We use bold text to indicate
the best performance and italic text to indicate the second best performance.

RAW model PSNR
(dB)/SSIM

Demosaiced model
PSNR (dB)/SSIM

Ensemble score
PSNR (dB)/SSIM

21.36/0.7429 21.30/0.7455 21.60/0.7818

21.36/0.7429 21.38/0.7522 21.92/0.7761

21.36/0.7429 21.52/0.7484 21.95/0.7788

21.36/0.7429 21.58/0.7488 21.79/0.7818

21.38/0.7451 21.58/0.7488 21.97/0.7784

Table 2. The result of AIM2020 Learned Smartphone ISP Challenge for the two tracks.
Our method can achieve high MOS while remaining competetive in PSNR and SSIM
metrics.

Rank Track 1 Track 2

Method PSNR SSIM Method PSNR SSIM MOS

1 Airia CG 22.2574 0.7913 MW-ISPNet 21.574 0.777 4.7

2 skyb 21.9263 0.7865 AWNet 21.861 0.7807 4.5

3 MW-ISPNet 21.9149 0.7842 Baidu 21.9089 0.7829 4.0

4 Baidu 21.9089 0.7829 skyb 21.734 0.7891 3.8

5 AWNet 21.8610 0.7807 STAIR 21.569 0.7846 3.5
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dataset). Table 2 shows the result of AIM2020 Learned Smartphone ISP Chal-
lenge [13] for the two tracks. We are ranked in the 5th and 2nd place in track 1
and 2, respectively.

4.4 Performance Comparisons and Ablation Studies

We conduct an experiment by first comparing it with other state-of-the-arts to
demonstrate the superior performance of our method. After that, we provide
solid justification for the effectiveness of wavelet transform and global context
blocks. Our proposed method is tested on offline validation data that is provided
during the development stage. We choose some popular network architectures
from different computer vision tasks, including UNet and RCAN, for compar-
isons. The qualitative comparisons can be seen from Table 3, and Fig. 6 shows
the qualitative comparison between our method and other state-of-the-arts. As
we can see, both U-Net and RCAN have some color mapping artifacts, which
manifests the incapability of mapping color into RGB space correctly in a pixel-

Ground Truth U-Net RCAN PyNet Ours-3 Ours-4

Fig. 6. Qualitative comparisons of reconstructed images from different networks. Ours-
3 and Ours-4 denote our demosaiced and RAW models, respectively. Zoom-in for better
views.
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to-pixel manner. For example, in the first row of Fig. 6, the color of the sky is
inaccurately predicted. Although the PyNet performs better in the color map-
ping aspect, it tends to obscure the image details. This artifact is obvious in the
second, the third, and the last row of images. Beneficial from DWT and GCB
blocks, the proposed method remedies these artifacts, which present in other
state-of-the-arts. Moreover, the RAW model provides more fine image details
whereas the demosaiced model has a better matching in color space; this reveals
the effectiveness of our design.

Table 3. Quantitative results from different models. Both of our proposed models
outperform the state-of-the-arts. Ours-3 and Ours-4 indicate our demosaiced and RAW
models, respectively.

Models PSNR (dB)/SSIM

U-Net 21.01/0.7520

RCAN 20.85/0.7510

PyNet 21.17/0.7460

Ours-3 21.58/0.7488

Ours-4 21.38/0.7451

To validate that the wavelet transform and GCB blocks enable to improve
the output performance, two corresponding experiments are conducted. The first
one is to remove wavelet transform and GCB blocks (see Fig. 4) from residual
wavelet up-sampling module, residual wavelet down-sampling module, and global
context res-dense module; the another one is to restore GCB blocks and leave
wavelet transform blocks absent. As shown in Table 4, by adding GCB blocks,
both of our models can be boosted by 0.1 dB in terms of PSNR metric. The
performance can be further improved by 0.2 dB while adding DWT block. Note
that all these variants are trained in the same way as before and tested on the
offline validation dataset from AIM2020 Learned Smartphone ISP Challenge.

Table 4. The benefit of using DWT and GCB blocks is evident. Both of our models
can receive approximate 0.3 dB gains.

Model Operation PSNR (dB)\SSIM

Demosaiced model w/o DWT and w/o GCB 21.13/0.7398

w/o DWT 21.22/0.7421

Proposed model 21.38/0.7451

RAW model w/o DWT and w/o GCB 21.22/0.7325

w/o DWT 21.31/0.7398

Proposed model 21.58/0.7488



AWNet: Attentive Wavelet Network for Image ISP 199

Our qualitative and quantitative results validate superiority of our two-
branch design as well as the effectiveness of wavelet transform block and atten-
tion mechanism, in the application of learning RAW-to-RGB color mapping.

5 Conclusion

In this paper, we propose a novel two-branch network structure, named AWNet,
which can effectively enhance the smartphone images. We embed wavelet trans-
form blocks into the scaling modules associated with convolutional operations
that enable our network to learn from both the spatial and frequency domains.
In addition, the presence of GCB blocks improves the robustness of our network
to deal with the misalignments that occurred in the ZRR dataset. Our work can
shed some light on the application of wavelet transform in image ISP problem.
As for future work, our network is able to tackle other low-level imaging tasks,
such as image denoising and super-resolution.
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2. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: com-
bining local and global optic flow methods. Int. J. Comput. Vision 61(3), 211–231
(2005). https://doi.org/10.1023/B:VISI.0000045324.43199.43

3. Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNet: non-local networks meet squeeze-
excitation networks and beyond. In: Proceedings of the IEEE International Con-
ference on Computer Vision Workshops (2019)

4. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the
kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 6299–6308 (2017)

5. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3291–
3300 (2018)

6. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with
atrous separable convolution for semantic image segmentation. In: Proceedings of
the IEEE European Conference on Computer Vision, pp. 801–818 (2018)

7. Cheng, D., Price, B., Cohen, S., Brown, M.S.: Beyond white: ground truth colors for
color constancy correction. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 298–306 (2015)

8. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-
D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8),
2080–2095 (2007)

9. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network
fusion for video action recognition. In: Proceedings of the IEEE European Confer-
ence on Computer Vision, pp. 1933–1941 (2016)

10. Gharbi, M., Chaurasia, G., Paris, S., Durand, F.: Deep joint demosaicking and
denoising. ACM Trans. Graph. (TOG) 35(6), 1–12 (2016)

https://doi.org/10.1023/B:VISI.0000045324.43199.43


200 L. Dai et al.

11. He, B., Wang, C., Shi, B., Duan, L.Y.: Mop moire patterns using MopNet. In:
Proceedings of the IEEE International Conference on Computer Vision, pp. 2424–
2432 (2019)

12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141
(2018)

13. Ignatov, A., Timofte, R., et al.: AIM 2020 challenge on learned image signal pro-
cessing pipeline. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537,
pp. 152–170. Springer, Cham (2020)

14. Ignatov, A., Van Gool, L., Timofte, R.: Replacing mobile camera ISP with a single
deep learning model. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pp. 536–537 (2020)

15. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very
deep convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1646–1654 (2016)

16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

17. Kwok, N.M., Shi, H., Ha, Q.P., Fang, G., Chen, S., Jia, X.: Simultaneous image
color correction and enhancement using particle swarm optimization. Eng. Appl.
Artif. Intell. 26(10), 2356–2371 (2013)

18. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative
adversarial network. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4681–4690 (2017)

19. Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image
restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops, pp. 773–782 (2018)

20. Liu, X., Ma, Y., Shi, Z., Chen, J.: GridDehazeNet: attention-based multi-scale
network for image dehazing. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 7314–7323 (2019)

21. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.
94

22. Lugmayr, A., Danelljan, M., Timofte, R.: NTIRE 2020 challenge on real-world
image super-resolution: methods and results. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops, pp. 494–495 (2020)

23. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet rep-
resentation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

24. Mei, K., Li, J., Zhang, J., Wu, H., Li, J., Huang, R.: Higher-resolution network
for image demosaicing and enhancing. In: Proceedings of the IEEE International
Conference on Computer Vision Workshops, pp. 3441–3448. IEEE (2019)

25. Qian, R., Tan, R.T., Yang, W., Su, J., Liu, J.: Attentive generative adversarial
network for raindrop removal from a single image. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2482–2491 (2018)

26. Rana, A., Singh, P., Valenzise, G., Dufaux, F., Komodakis, N., Smolic, A.: Deep
tone mapping operator for high dynamic range images. IEEE Trans. Image Process.
29, 1285–1298 (2019)

27. Ratnasingam, S.: Deep camera: a fully convolutional neural network for image sig-
nal processing. In: Proceedings of the IEEE International Conference on Computer
Vision Workshops (2019)

28. Rizzi, A., Gatta, C., Marini, D.: A new algorithm for unsupervised global and local
color correction. Pattern Recogn. Lett. 24(11), 1663–1677 (2003)

http://arxiv.org/abs/1412.6980
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94


AWNet: Attentive Wavelet Network for Image ISP 201

29. Schwartz, E., Giryes, R., Bronstein, A.M.: DeepISP: toward learning an end-to-end
image processing pipeline. IEEE Trans. Image Process. 28(2), 912–923 (2018)

30. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep
image deblurring. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 8174–8182 (2018)

31. Timofte, R., Rothe, R., Van Gool, L.: Seven ways to improve example-based single
image super resolution. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1865–1873 (2016)

32. Uhm, K.H., Kim, S.W., Ji, S.W., Cho, S.J., Hong, J.P., Ko, S.J.: W-Net: two-
stage U-Net with misaligned data for raw-to-RGB mapping. In: Proceedings of the
IEEE International Conference on Computer Vision Workshop, pp. 3636–3642.
IEEE (2019)

33. Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer
vision algorithms. In: Proceedings of the 18th ACM International Conference on
Multimedia, pp. 1469–1472 (2010)

34. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7794–7803 (2018)

35. Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: EDVR: video restoration
with enhanced deformable convolutional networks. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops (2019)

36. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image
quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Sys-
tems & Computers, vol. 2, pp. 1398–1402. IEEE (2003)

37. Xu, X., Ma, Y., Sun, W.: Towards real scene super-resolution with raw images. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1723–1731 (2019)

38. Yuan, L., Sun, J.: Automatic exposure correction of consumer photographs. In:
Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012.
LNCS, vol. 7575, pp. 771–785. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33765-9 55

39. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser:
residual learning of deep CNN for image denoising. IEEE Trans. Image Process.
26(7), 3142–3155 (2017)

40. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution
using very deep residual channel attention networks. In: Proceedings of the IEEE
European Conference on Computer Vision. pp. 286–301 (2018)

41. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image
super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2472–2481 (2018)

42. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 2223–2232 (2017)

https://doi.org/10.1007/978-3-642-33765-9_55
https://doi.org/10.1007/978-3-642-33765-9_55

	AWNet: Attentive Wavelet Network for Image ISP
	1 Introduction
	2 Related Works
	2.1 Traditional Image ISP Pipeline
	2.2 RAW Data Usage in Low-Level Image Restoration
	2.3 Deep Learning Based Image ISP Pipeline

	3 Proposed Methods
	3.1 Network Structure
	3.2 Two-Branch Network
	3.3 Discrete Wavelet Transform
	3.4 Loss Function

	4 Experiments
	4.1 Datasets
	4.2 Training Details
	4.3 Ensemble Strategy
	4.4 Performance Comparisons and Ablation Studies

	5 Conclusion
	References




