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Abstract. Underwater images suffer from various degradation, which can sig-

nificantly lower the visual quality and the accuracy of subsequent applications. 

Moreover, the artificial light source tends to invalidate many image restoration 

algorithms. In this paper, an underwater image restoration (UIR) method using 

a novel Convolutional Neural Network (CNN) architecture and a synthesized 

underwater dataset is proposed. We discuss the reason for the over enhance-

ment that exists in current UIR methods and revise the underwater image for-

mation model (IFM) to alleviate the problem. With the revised IFM, we pro-

posed an underwater image synthesizing method that can create a realistic un-

derwater dataset. In order to effectively conduct end-to-end supervised learn-

ing, we design a network based on the characteristics of image restoration tasks, 

namely FMSNet. Different from existing networks, the decomposition and fu-

sion operation in FMSNet can process the feature maps more efficiently and 

improve the contrast more prominently. The UIR method built by FMSNet can 

directly recover the degraded underwater images without the need of any pre-

processing and post-processing. The experimental results indicate that FMSNet 

performs favorably against the widely used network architectures and our UIR 

method can outperform the state-of-the-art methods on both qualitative and 

quantitative evaluations. Comparing with the original underwater images, the 

experiments carried out by subsequent mission shows that 285% more feature 

points can be detected in the restored images by using our method. 

Keywords: Neural network · Image restoration · CNN architecture · Image 

formation model 

1 Introduction 

Underwater Image restoration (UIR) can significantly improve image quality and the 

performance of computer vision algorithms in the underwater environment. Devel-

oped UIR algorithms can also contribute to the development of marine robotics, ma-

rine geology, marine biology, and many marine industries. Although countless UIR 

algorithms are proposed to achieve the restoration, many of them tend to give rise to 

partly over enhancement, because of the influence of artificial illumination sources. 

Thus, Lu et al. [1] consider absorption, scattering, and artificial lighting as three major 
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distortion issues in the underwater environment. Through experimental observations, 

we discover that many cases can cause the over-enhancement issue despite no extra 

artificial luminance used. We attribute the over-enhancement issue to the nonhomo-

geneous background light, which particularly can be induced by artificial illuminance 

sources. Nonhomogeneous background light may also appear in other circumstances, 

such as the underwater landforms where can shelter the light and the wide-angle pho-

tographs where the certain area of the water body is brighter than the seabed.  

 The underwater image formation model (IFM) developed in [2] and [3] is a preva-

lently used mathematical model demonstrating the underwater imaging process: 

𝐼𝑐(𝑥) = 𝐽𝑐(𝑥)𝑇𝑐(𝑥) + 𝐴𝑐(1 − 𝑇𝑐(𝑥)) (1) 

where 𝑥  is the coordinate of a pixel and 𝑐 ∈ {𝑅, 𝐺, 𝐵} is a color channel. 𝐽𝑐(𝑥) and 

𝐼𝑐(𝑥) denote the clear object scene radiance and the degraded underwater image. 𝐴𝑐 

denotes the global ambient light. 𝑇𝑐(𝑥) is the transmission map that represents the 

residual energy ratio of the scene radiance after the transmission. In this IFM (1), the 

ambient light 𝐴𝑐 is a global value where people assume that the background light is 

uniform in the whole scene. The neglection of the nonhomogeneous light is one of the 

reasons that model-based UIR methods tend to suffer from over enhancement. 

In addition, most of the deep learning networks are mainly designed by inheriting 

the classic architectures proposed for the task of image classification or target detec-

tion, such as the VGG and the Inception network. There are relatively few CNN ar-

chitectures particularly designed for end-to-end image transformation. Hence, it is 

meaningful to design a network architecture that is suitable for the characteristics of 

image transformation tasks, like image restoration based on supervised learning. 

In this paper, we aim to propose a novel CNN network architecture, namely 

FMSNet, by which we can create a systematic method to recover underwater images 

with the ability to circumvent the problem of over enhancement and improving the 

performance of UIR. We revised the traditional underwater IFM by adding an extra 

item to denote the nonhomogeneous light. And an underwater image synthesizing 

method is designed to simulate various degraded underwater environments and create 

an underwater dataset. With the synthesized underwater dataset, we establish a super-

vised learning framework to train the FMSNet. The FMSNet with frequency-based 

feature separation and fusion structure is designed based on the characteristics of 

image restoration tasks and the human visual optimization behaviors. By the convolu-

tional operation with frozen Gaussian convolution kernel, the feature maps can be 

decomposed into low and high-frequency components and processed efficiently and 

pertinently.  

2 Related Work 

Model-based Underwater Image Restoration. Most model-based methods [4-7] 

follow the scheme of estimating the variables, like ambient light 𝐴𝑐 and transmission 

map 𝑇𝑐(𝑥), then calculate the restored images by the underwater IFM (1). As the es-

timations from a single degraded image is considered as an ill-post inverse problem, 
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effective prior information tends to be necessary for these methods. The underwater 

light attenuation prior (ULAP) [4] is proposed for the estimation of the depth map and 

𝐴𝑐. The underwater dark channel prior (UDCP) [5] modifies the Dark channel prior 

(DCP) [6] by the consideration of the divergency of underwater light attenuation to 

estimate the 𝑇𝑐(𝑥). Li et al. [7] estimate the variables by minimizing the information 

loss in the red channel. Model-based methods can markedly improve the contrast and 

reduce the scattering effect. However, specific priors will inevitably fail in certain 

cases and lead to incorrect estimation. Moreover, the reliance on the traditional IFM 

often results in over-enhancement or over compensatory failure for these methods. 

Learning-based Underwater Image Restoration. Learning-based methods [8-12] 

tend to train a neural network to learn the map between the distorted images and its 

corresponding clear version from a large amount of data. Hence, the main issue to 

resolve is the requirement of the paired datasets. Fabbri et al. [8] use real underwater 

images to train a CycleGAN [9], which can generate the degraded version of good 

quality underwater images. Furthermore, Islam et al. [10] apply a dataset generated by 

the method of [8] to their proposed FUnIE-GAN network architecture to obtain the 

recovered results. However, generating datasets using the style-transform ability of 

GAN is extremely inefficient, because one well-trained GAN can only generate one 

type of distortion. On the contrary, Li et al. [11] synthesize underwater images direct-

ly from the simplified underwater IFM, and the UWCNN network is designed to 

achieve better restoration performance with end-to-end training. Wang et al. [12] fuse 

the prior information into the process of the image synthesizing and two CNN frame-

works are designed to learn the estimation of the 𝐴𝑐 and 𝑇𝑐(𝑥) respectively. Learning-

based methods are relatively robust, but the performance of the results is restrained by 

the quality of datasets and the performance of the CNN architectures.  

3 Proposed Method 

3.1 Synthesizing Underwater Dataset 

Our dataset synthesizing method roughly follows the process of [11], by which we 

can efficiently simulate underwater data from a clear depth map dataset (RGBD da-

taset). In our method, the randomly generated variables for IFM can ensure the diver-

sity of synthesized data. To synthesize underwater datasets that take nonhomogeneous 

light conditions into account, we revise the underwater IFM by adding an extra item 

to simulate the nonhomogeneous background light. Once the synthesized underwater 

dataset can simulate the appearance of the nonhomogeneous light, the neural network 

trained by the dataset will be able to learn the way to eliminate the effect： 

𝐼𝑐(𝑥) = 𝐽𝑐(𝑥)𝑇𝑐(𝑥) + 𝐴𝑐(1 − 𝑇𝑐(𝑥)) + 𝜂𝑁(𝑥) (2) 

where 𝑁(𝑥) denotes the nonhomogeneous light component, 𝜂  is the weight of the 

𝑁(𝑥). Considering that the nonhomogeneous light should be a smoothed signal with a 
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gentle changed gradient, we use Perlin noise to simulate it. The Perlin noise is config-

ured as 2-dimension noise with only one noise cycle. We randomly generate 1000 

Perlin noises as the set for 𝑁(𝑥). Besides, we randomly generate 𝜂 in the range of 

(0.2, 0.4) with uniform distribution. In some cases, the nonhomogeneous background 

light does not exist, so we set 30% of the 𝜂 as 0. 𝐴𝑐 is the ambient light scattered into 

the sight, which is considered as the homogeneous component of background light 

with three global values for RGB channels. For the best simulation of 𝐴𝑐, we propose 

to use the ambient light values from real-world underwater images. Specifically, we 

use the ULAP [4] to calculate the ambient light in a real-world underwater dataset 

that can comprehensively cover various water types. Therefore, nearly 1000 groups of 

ambient light values, 𝐴𝑟, 𝐴𝑔, 𝐴𝑏, are obtained. Before using these values in the syn-

thesizing process, we multiply them by a random jittering generated from a Gaussian 

distribution. The transmission map 𝑇𝑐(𝑥) is important, which can be expressed as: 

𝑇𝑐(𝑥) = 𝑒−𝑝𝜆
𝑐𝑑(𝑥) (3) 

where 𝑝𝜆
𝑐 is the attenuation coefficient and the 𝑑(𝑥) is the distance between the object 

and the camera. We followed the approach in [7] to generate  𝑇𝑐(𝑥), in which we 

generated the 𝑝𝜆
𝑐 of the blue channel in the uniform distribution between 1 and 3. 

We randomly draw an 𝑁(𝑥) and 𝐴𝑐  in the set of nonhomogeneous background 

light and the set of ambient light. Based on equation (2) and the variables mentioned 

above, we can synthesize the underwater images from any RGBD images. To avoid 

the overexposure phenomenon brought by the additional 𝑁(𝑥), an adaptive rule is 

applied to the value of 𝜂. To be specific, we calculate the proportion of white pixels 

before and after adding the 𝜂𝑁(𝑥), and mark them as 𝑝𝑜 and 𝑝𝑁. If 𝑝𝑁 −  𝑝𝑜 ≥ 0.1, 

we reset the 𝜂 = 𝜂 ∗ 0.6 until the 𝑝𝑁 −  𝑝𝑜 < 0.1 or 𝜂 < 0.1. We visually illustrate 

the images synthesized by our method in Fig. 1. The synthesized images can simulate 

both the color characteristics and the light conditions of realistic underwater scenes. 

 

Fig. 1. The synthesized underwater images of our method 

3.2 Proposed FMSNet CNN Framework 

The advanced visual system of humans can easily distinguish objects from distorted 

scenes. Goffaux et al. [18] found that the effect of a low-pass filtered object on the 

holistic face perception for humans is significantly larger than the high-pass filtered 

object. On the other hand, most of the hazy and turbid distortions are appeared in the 

low-frequency components of an underwater photograph, while most information 

expected to be preserved, like edges and textures, exists in the high-frequency com-

ponents. Hence, if we hope a neural network can do the restoration job as well as 
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humans, we should guide low spatial frequencies and high spatial frequencies to dif-

ferent paths. We propose a novel CNN structure, namely FMSNet, which embodies 

the frequency-based decomposition and fusion operations for feature maps. The 

FMSNet consists of three parts: downsampling, backbone, and upsampling. 

 

Fig. 2. Architecture of the proposed network 

Downsampling and Upsampling Block. The downsampling and upsampling blocks 

roughly follow the architecture of [14], where there is a convolutional buffer layer 

with a large receptive field of the inputs for performing the trainable pre-processing 

and post-processing. In the sampling blocks, we use two stride-2 convolutional layers 

for downsampling and two stride-1/2 transposed convolutional layers for upsampling 

of the feature maps. With these blocks, we can save the computational cost and lay 

the foundation for the subsequent processing. All the convolutional layers use 3*3 

kernels, except for the buffer layers who use 9*9 kernels. 

Decomposition Block. In the backbone of the FMSNet, we introduce the operation of 

Gaussian filtering to partition the feature maps into low and high-frequency compo-

nents. The filtering is performed by a convolutional operation with a pre-set Gaussian 

kernel. The configuration of the Gaussian kernel is treated as a hyperparameter. In our 

implementation, we set the kernel size as 15 ∗ 15 pixels and the gaussian standard 

deviation as 2.75 for both x and y-directions. The parameters in the kernel are frozen, 

which will not affect the gradient descent process. With the reflected padding, the 

filtering will not change the shape of the feature maps. The results of the filtering are 

the low-frequency components of the feature maps, denoted by 𝑚𝑎𝑝𝐿 . To refrain from 

the information loss, 𝑚𝑎𝑝𝐿  is subtracted by the original feature maps synchronously 

to receive the high-frequency feature maps, denoted by 𝑚𝑎𝑝𝐻 . The operation above is 

merged as a decomposition block in the backbone block. 

Backbone Block. Since the output image should share structure with the input for the 

image restoration task, the residual learning is employed in the backbone block. As 
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the certified performance, we adopt the residual block designed in [15] for feature 

processing, where there are two convolutional layers with residual connection. All the 

convolutional layers use 3 ∗ 3 kernels. We adjust the batch normalization to instance 

normalization which can significantly improve the quality of feedforward. The body 

of FMSNet thus consists of the alternate decomposition blocks and residual blocks. 

The 𝑚𝑎𝑝𝐿 and 𝑚𝑎𝑝𝐻  from decomposition blocks will be processed by different re-

sidual blocks and crosswise fused to reduce the number of maps. The output of the 

last pair of residual blocks are summed and propagated to the upsampling block.  

In addition, due to the effectiveness of the multi-scale residual learning presented 

in [16], we design two residual connection for the feature maps of different levels to 

enforce the network to learn the residual information between the input side and out-

put side. The exact architecture of our FMSNet network is shown in Fig. 2. 

4 Experimental Evaluation and Discussion 

4.1 Datasets and Training Strategy 

Training and Testing Dataset. Synthesizing realistic underwater images to compose 

a training and testing dataset with high generalization capability is a crucial step. We 

use the RGBD dataset from [17] with 600 outdoor in-street scenes to synthesize the 

underwater dataset. On the other hand, the network will learn the explicit/implicit 

statistical relationship between the degraded images and their ground truth [18]. If 

there are too many scenes with different features in the ground-truth targets, the net-

work may confuse about the features of its output, which is not conducive to the one-

way training of the network. Hence, we only select 200 images that have consistent 

features of high contrast and appropriate luminance among the RGBD dataset. We 

synthesize 8 underwater images with different parameters for each RGBD image. 

Thus, there are only 1600 underwater images in our training and testing dataset.  

Training Strategy. We use the summation of L1 loss and the weighted multi-scale 

structural similarity (MS-SSIM) loss in [19] as the loss functions to achieve super-

vised learning for the FMSNet. We randomly set 80% of the synthesized data as the 

training set, and the others as the testing set. For the augmentation of the training set, 

we crop a patch of 400 ∗ 400 pixels at a random position of the training samples, and 

we resize the images who smaller than the size to  400 ∗ 400. Moreover, we set three 

types of transforms to augment the training set: horizontal flipping, vertical flipping, 

and rotate 90 degree. Each of them may happen in a probability of 30% on the train-

ing set. 

The network is initialized by the normal distribution. We set the batch size as 10 

and train the network for 100 epochs. The Adam optimizer with 𝛽1 and 𝛽2 of default 

values is used to accelerate the training. The learning rate is set as 0.002 initially, and 

we decrease it by half when the epoch number reaches the milestones of 25, 45, 60, 

70, 80, 90. The process of the training is performed on a PC with two NVIDIA Ge-

Force GTX 1080Ti GPU and Xeon(R) Gold 5218 CPU. 
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4.2 Network Performance 

To demonstrate the performance of the FMSNet, we reimplement the widely used 

network architectures, the ResNet [14] and the GridDehazeNet [18], as baselines. All 

the models are trained by our synthesized training set for 100 epochs. Since the loss 

function is the summation of L1 loss and MS-SSIM loss, we compare the PSNR and 

SSIM metrics on both the training set and the testing set to show the loss function 

minimizing process of the three networks. Fig. 3(left) depicts the PSNR curves, where 

the PSNR of both the training set and testing set for FMSNet are significantly higher 

than the other models all over the epochs. In Fig. 3(right), the GridDehazeNet 

achieves highest SSIM curve because of its multi-scale structure.  The SSIM curves 

of the other networks are extremely similar, where FMSNet’s SSIM curves are slight-

ly higher. The experimental results demonstrate that the proposed FMSNet performs 

favorably against the widely used baseline networks for end-to-end training. With the 

help of the decomposition and fusion structure, the FMSNet is particularly sensitive to 

the pixel-level loss function, like L1, which leads to the rapid convergence and the 

best PSNR of 26.8 dB on the training set and 26.2dB on the testing set. 

 

Fig. 3. The PSNR and SSIM curves trained by our network and the baseline networks 

4.3 Evaluation on Synthesized Underwater Images  

The FMSNet trained by our synthesized underwater dataset can directly recover any 

degraded underwater images. By which, we can conveniently construct a UIR method 

without the need of any pre-processing or post-processing. For the evaluation of the 

restoring performance, we synthesize extra underwater images from the OTS dataset 

in RESIDE [20], which is never observed by our model. We use the synthesized un-

derwater images to evaluate the restoring results of our method and several state-of-

the-art UIR methods, including ULAP in [4], UDCP in [5], the method in [7], FUnIE-

GAN in [10], and UWCNN in [11]. We compare the restoring results in Fig. 4.  

According to Fig. 4, although the clarity can be improved, the results of [7] and 

UDCP prone to over enhancement the light and overcompensate the color. Similarly, 

the first image of column (e) can be restored by ULAP, but it is nearly invalid for the 

other images. (f) and (g) are from learning-based methods, thus their performances in 

different scenarios are relatively stable. The contrast ratio of every result from 
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UWCNN gets increased, while the original color saturation is completely dropped. 

The FUnIE-GAN’s restoration can correct the color significantly, nevertheless, the 

hazy effect cannot be eliminated completely. In contrast, the results of our method in 

(h) can produce the best clarity and free of the major turbid distortion.  

We treat the images before appending the underwater effect as the reference to 

evaluate the restoration ability of the methods. The Peak Signal-to-Noise Ratio 

(PSNR), Structural Similarity (SSIM), and Color-Difference Formula CIEDE2000 are 

used as the quantitate metrics. Table 1 shows the comparison of the metrics and the 

best numbers are bolded. Our method performs the best result for all the metrics. 

 

Fig. 4. Comparison on synthesized images: (a) the synthesized images; (b) the corresponding 

reference images; (c) the method of [7]; (d) the method by UDCP; (e) the method by ULAP; (f) 

the method by UWCNN; (g) the method by FUnIE-GAN; (h) our proposed method 

Table 1. Comparison of the methods on quantitate metrics 

Method 
Method 

[7] 
UDCP  ULAP 

FUnIE-

GAN 
UWCNN 

Our 

method 

PSNR 14.44 12.24 11.01 14.99 12.87 18.70 

SSIM 0.75 0.69 0.66 0.78 0.58 0.87 

CIEDE 2000 20.63 23.17 28.39 20.80 22.84 14.14 

4.4 Evaluation on Real-World Underwater Images 

Evaluating the algorithms on real-world underwater images is the hinge to validate 

their performance and generalization ability. We collect 80 various real underwater 

images carrying serious distortion. 60 of them are from the challenging dataset of [13] 

and the rest are collected from the internet. Fig. 5 presents the visual comparison of 

the restoration results on the real-world underwater images.  
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Fig. 5. Evaluation on the real-word images: (a) the real-world underwater images; (b) the meth-

od of [7]; (c) the method by UDCP; (d) the method by ULAP; (e) the method by UWCNN; (f) 

the method by FUnIE-GAN; (g) our proposed method 

According to the images in the row (b), the results of [7] can balance the color distri-

bution and the contrast ratio to a large extent. But the manifest over enhancement and 

oversaturation are also produced in images I, II, and III because of the ignoration of 

the nonhomogeneous light in their model. The prior of UDCP and ULAP in the row 

of (c) and (d) succeed in removing the foggy noise utterly but tend to drastically 

change the original color distribution and darken the brightness. The loss of their 

effectiveness is due to the fact that their specific priors can hardly adapt to these light-

ing conditions. Comparing with UDCP, the method by UWCNN in (e) can maxi-

mumly eliminate the color distortion, but the beneficial color information is destroyed 

too. Owing to the using of a real underwater dataset in the method of FUnIE-GAN, 

the results in (f) look limpid and natural, whereas the degree of removing scattering 

effect is still not enough. The reason is maybe relative to the architecture of their neu-

ral network. By contrast, our method can enhance the best visibility and the relatively 

pleasing color distribution. Thanks to the consideration of the nonhomogeneous light 

condition in our method, we have fewer over-enhancement areas. By the comparison 

of the marked region of I, II, and III, we can figure out much more haze-free details 

and actual information in (g), which is contributed by the FMSNet architecture. For 
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the quantitate evaluation of the results, we use two non-reference metrics, Underwater 

Image Quality Metric (UIQM) and Blind/Referenceless Image Spatial Quality Eval-

uator (BRISQUE), on the 80 restoration results. Smaller BRISQUE means better nat-

uralness and larger UIQM means better comprehensive quality. In table 2, we list the 

average scores of the different methods and bold the best scores. Our method gets the 

best score for UIQM and the second-best score for BRISQUE. 

Table 2. Comparison on real-world testing set with non-reference metrics and feature points 

matching 

Algorithms 
Non-reference Metrics Matched Feature Points Number 

UIQM BRISQUE Image I Image II Image III AVG INC (%) 

Original 1.24 39.17 64 134 32 76 0% 

Method [7] 2.76 34.00 412 226 83 240 213.71% 

UDCP 2.15 40.02 187 99 60 115 50.52% 

ULAP 1.83 38.17 217 180 53 150 95.82% 

UWCNN 2.11 43.78 91 80 24 65 -15.14% 

FUnIE-GAN 2.16 23.59 209 184 64 152 98.82% 

Our method 3.13 23.78 489 272 119 293 285.52% 

Fig. 6. Experiment of SIFT feature points matching: (a) is for the original underwater images; 

(b) is for the restoration results of our method 

4.5 Evaluation by The Subsequent Application 

In this experiment, we indirectly measure and compare the quality of the restorations 

by observing that how much the restoring results can improve the performance of the 

subsequent algorithm. The feature point detecting and matching by SIFT algorithm 

[21] is implemented on the restoration results of section 4.4. We choose three typical 

underwater scenes with fish groups and rugged seabed as testing objections (I, II, III). 

These images are rotated and zoomed in to format the paired targets for feature points 

matching. Fig 6. shows the matching lines on the original underwater images and the 

restored images of our method. The more feature points that can be detected and 

matched means the more information is reserved in the image. Therefore, we list the 

matched number of the feature points of each image in Table 2. The AVG is the aver-

age number for the three examples and the INC shows the improvement comparing 

with the original underwater images. From Table 2, our method gets the highest num-

ber of feature points for all the examples, which shows that the results of our method 



11 

can grab more detailed information. After the restoration by our method, the average 

number of the matched feature points increased by 285.52%. 

5 Conclusion 

In this paper, we presented an underwater image restoration method based on an end-

to-end CNN model and a synthesized underwater dataset. The proposed CNN archi-

tecture, FMSNet, showed promising performance on image restoration tasks. Com-

paring with the baseline models, the FMSNet can efficiently perform supervised 

learning. We also gave an explanation about the over enhancement caused by artifi-

cial luminance for the existed methods. To circumvent the effect of nonhomogeneous 

background light, we revised the IFM and designed a new underwater image synthe-

sizing method, by which we can create realistic underwater datasets for network train-

ing. The experimental evaluations indicate that our restoration method can significant-

ly improve the quality of underwater images and refrain from the effect of over en-

hancement. The experiment by SIFT algorithm shows that our restoration method can 

increase the matched feature points number by 285%.  

In the FMSNet, we designed a decomposition block to separate the feature maps 

into two components by fixed Gaussian filtering, which sheds some light on future 

works about more appropriate ways to modify the decomposition block, such as in-

troducing the multi-scale Gaussian filtering or random-scale Gaussian filtering. 
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