
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON BROADCASTING 1

Learning for Unconstrained Space-Time
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Abstract—Recent years have seen considerable research activ-
ities devoted to video enhancement that simultaneously increases
temporal frame rate and spatial resolution. However, the exist-
ing methods either fail to explore the intrinsic relationship
between temporal and spatial information or lack flexibility in
the choice of final temporal/spatial resolution. In this work,
we propose an unconstrained space-time video super-resolution
network, which can effectively exploit space-time correlation to
boost performance. Moreover, it has complete freedom in adjust-
ing the temporal frame rate and spatial resolution through the
use of the optical flow technique and a generalized pixelshuf-
fle operation. Our extensive experiments demonstrate that the
proposed method not only outperforms the state-of-the-art, but
also requires far fewer parameters and less running time.

Index Terms—Space-time video super-resolution, arbitrary
temporal/spatial factors, optical flow, generalized pixelshuffle
layer.

I. INTRODUCTION

RECENTLY, we have witnessed the popularization of
Ultra-High-Definition TeleVision (UHDTV) and the ris-

ing of UHD TV shows in broadcasting. However, despite
new media contents can be filmed by the advanced UHD
recorder, remaking a large quantity of existed ones is impracti-
cal, leading to the overall short supply. Video Super-Resolution
(VSR) technologies provide a promising way to reconstruct
High-Resolution (HR) videos from their Low-Resolution (LR)
counterparts. Furthermore, while watching sport events on TV,
one may playback the fleeting moments with slow motion.
Video Frame Interpolation (VFI) is one of the solutions that
can temporally increase the frame rate of the broadcast videos.
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In this paper, Space-Time Video Super-Resolution (STVSR),
the combination of VSR [3]–[12] and VFI [13]–[24], is mainly
researched that aims at increasing spatial resolution and tem-
poral frame rate simultaneously. The traditional approaches
to STVSR [25]–[28] typically rely on strong assumptions
or hand-crafted priors, and consequently are only suited to
specific scenarios. The advent of deep learning has revolu-
tionized many areas in computer vision, including, among
others, image super-resolution [29], [30], image quality assess-
ment [31], image deblurring [32], image compression [33], and
video coding [34]. In particular, it enables the development of
data-driven approaches to VFI and Super-Resolution (SR) that
can capitalize on the learning capability of neural networks as
opposed to relying on prescribed rules. STVSR also naturally
benefits from this advancement since it can be realized via a
direct combination of VFI and SR. Specifically, one can first
use VFI to increase the temporal frame rate, then leverage SR to
enhance the spatial resolution. Moreover, the State-Of-The-Art
(SOTA) VFI and SR methods (e.g., the flow-based VFI meth-
ods [16]–[21] and the meta-learning-based SR methods [2])
have the freedom to adjust the frame rate and the spatial reso-
lution, respectively. As a consequence, the resulting two-stage
scheme is able to perform unconstrained STVSR. However, as
pointed out in [35], [36], this two-stage scheme does not take
advantage of the intrinsic relationship between temporal and
spatial information, which limits the highest resolution that can
be potentially achieved (see Fig. 1). In addition, performing
STVSR in a two-stage fashion tends to be highly inefficient
since VFI and SR are computationally intensive by themselves
and likely involve many operations that can be shared.

To tackle these problems, two recent works [35], [36] have
proposed a one-stage approach to STVSR by consolidating
VFI and SR. This boosts performance by a large margin,
while involving far fewer parameters and incurring less com-
putational cost. However, this gain comes at a price. Indeed,
compared to its two-stage counterpart, the new approach
in [35], [36] lacks flexibility in the choice of the final tem-
poral/spatial resolution. Specifically, in the temporal domain,
the Convolution Neural Network (CNN) employed to synthe-
size the intermediate frame (based on two input frames) is
tailored to a particular target time. As for the spatial domain,
due to the use of the pixelshuffle layer [37] or deconvolution
layer, it is impossible to adjust the up-sampling factor with-
out modifying or retraining the network. Besides, the intrinsic
limitation of these two layers renders fractional up-sampling
factors unrealizable.
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Fig. 1. Comparison between the proposed method (the first row) and a state-of-the-art two-stage method: BMBC [1] + Meta-SR [2] (the second row).

A natural question that arises here is whether the
performance of the one-stage scheme can be retained without
compromising flexibility? We offer an affirmative answer in
this work by proposing an Unconstrained Space-Time Video
Super-Resolution Network (USTVSRNet), which is able to
increase the temporal/spatial resolution of a given video by an
arbitrary factor. For temporal interpolation, the optical flow
technique is adopted to ensure the desired flexibility in the
temporal resolution. Moreover, different from [35], [36], where
the intermediate frame is synthesized at the feature level, we
make predictions at both the image and feature levels, which
leads to a noticeable performance improvement. As to spatial
up-sampling, we introduce a Generalized Pixelshuffle Layer
(GPL) that can project low-dimensional features to a high-
dimensional space with the dimension ratio freely chosen.
In addition, we construct a Scale-Attentive Residual Dense
Block (SARDB) to generate scale-aware features. Due to
the innovative features of our design, USTVSRNet is capa-
ble of up-sampling frames by an arbitrary factor with a
single model. Our experimental results will show that the
proposed method outperforms the SOTA two-stage meth-
ods, and does so with significantly lower computational
cost.

The main contributions of this paper are as follows:
(1) We propose a novel unconstrained STVSR method, which
possesses the strengths of the SOTA one-stage and two-
stage approaches while avoiding their drawbacks. (2) To
realize unconstrained STVSR, several new mechanisms are
introduced, including, integrating image-level and feature-
level information to improve the quality of the synthesized
intermediate frame, generalizing the Standard Pixelshuffle
Layer (SPL) to increase the degrees of freedom in terms
of up-sampling factor, and generating scale-aware features to
make the network more adaptive. (3) Even when evaluated
for particular temporal/spatial resolutions, the performance of
the proposed unconstrained STVSR method remains highly
competitive and outperforms the SOTA one-stage methods on
various datasets.

The organization of the paper is as follows. We
review some related works in Section II and present
the details of USTVSRNet in Section III. The experi-
ments of unconstrained and constrained space-time video
super resolution are described in Sections IV and V,
respectively. Finally, Section V-C contains some concluding
remarks.

II. RELATED WORK

A. Video Frame Interpolation

The goal of VFI is to increase the frame rate by synthesizing
intermediate frames while maintaining spatial and temporal
consistencies with the given video frames. There are two major
categories of video interpolation methods: kernel-based and
flow-based methods.

As a pioneer of the kernel-based method, [23] employs a
rigid spatially-adaptive convolution kernel to generate each
target pixel. Naturally, very large kernels are needed for cov-
ering large motions, which leads to a substantial memory
overhead. Reference [24] replaces regular 2D convolution
kernels with pairs of 1D kernels to reduce the memory over-
head. Even though that reduction is significant, the method
cannot handle motions that are larger than the kernel size.
To solve this problem, AdaCoF [22] breaks the rigid limi-
tation of the regular convolution kernel and proposes a 2D
deformable spatially-adaptive convolution scheme for VFI.
Later, GDConvNet, introduced in [38], further exploited the
degrees of freedom available in the three dimension of space-
time, which improves the performance significantly. While
kernel-based methods show promise, the time-oblivious nature
of the convolution kernels means that the temporal information
in the intermediate frames needs to be built into kernel-based
methods in the design phase and cannot be easily adjusted
during implementation.

In contrast, flow-based methods [17]–[21] generate the value
of each pixel in the target intermediate frame according to an
associated optical flow. Specifically, they first use the input
frames to estimate source optical flows with the help of an
optical flow estimation network [39]–[42]. They then con-
vert the source optical flows into the associated ones with
respect to the intermediate time t. Finally, the input frames are
warped to the target frame according to these optical flows.
As such, these methods have the inherent ability to perform
interpolation with respect to an arbitrary time. Flow-based
methods [17]–[20] typically adopt a linear model to convert the
source optical flows. Recently, a quadratic model was proposed
in [21], and preliminary results suggest that it may be able to
better estimate the optical flows by exploiting four consecutive
frames. For simplicity, in the present paper we will focus on
the linear model, which involves two consecutive frames. It is
straightforward to extend our work to incorporate higher-order
models.
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B. Super Resolution

SR has two main branches: Single Image Super-Resolution
(SISR) and video super-resolution, which aim at recover-
ing a visually pleasing high-resolution image and video,
respectively.

In terms of SISR, an end-to-end network which maps the
interpolated LR images to HR ones was proposed in [43],
and was enhanced by increasing network depth or stack-
ing more complicated modules in [44]–[47]. However, all of
these methods need to pre-compute an interpolated LR image
before applying convolution neural networks, which signif-
icantly increases the computational complexity. To avoid the
inefficient pre-computing process, the deconvolution layer and
Standard Pixshuffle Layer (SPL), proposed by [48] and [37]
receptively, enable the networks to directly output HR images
from LR images, which dramatically reduces the compu-
tational complexity, and contributes to recovery of more
fine-grained details.

On the other hand, the deconvolution layer and SPL also
make it possible for VSR networks [5], [7]–[9], [49], [50]
to output HR videos from LR ones directly. The processing
pipeline of the SOTA VSR methods is roughly as follows:
extract features from the reference frame and neighboring
frames, then feed them (after proper alignment and fusion)
into a reconstruction network to generate a super-resolved
frame. By employing a deconvolution layer or an SPL in the
reconstruction network, the SOTA VSR methods have been
shown to generate satisfactory results in terms of efficiency
and effectiveness on various datasets.

Although the SOTA SISR and VSR methods have per-
formed satisfactorily on many datasets, they lack flexibility in
adjusting the resolution of the final output. This is due to the
intrinsic limitations of the deconvolution layer and the SPL.
Recently, the meta-up-sample module proposed by [2] enables
up-sampling by an arbitrary factor using a single model. Its
refined version, known as the scale-aware up-sampling mod-
ule [51], can better address the resulting memory overhead
issues, but the underlying mechanism remains the same.

Unlike [2], [51], in the method proposed herein, we will
generalize the SPL to release it from the constraints on the
up-sampling factors. It will be shown that the new mechanism
performs on par with, or slightly better than, SPL in terms
of fixed scale up-sampling, and delivers better performance
than that in [2], [51] in terms of up-sampling by arbitrary
factors.

C. Space-Time Video Super-Resolution

Distinct from the separated operations of VFI and VSR, in a
STVSR system we seek to simultaneously increase the tempo-
ral frame rate and the spatial resolution of a given video. This
line of research was initiated in [52]. As the STVSR operation
is a highly ill-posed inverse problem, due to the inadequacy
of the available information, traditional methods [25]–[28]
often resort to some hand-crafted priors or artificially-imposed
constraints. For instance, [25] adopts a space-time directional
smoothness prior and [26] makes a hypothesis that there is no
great change in illumination for the static regions. As a result,

these methods cannot cope with many real-world scenarios.
In addition, the optimization for these methods is extremely
computational inefficient (e.g., the processing speed for [26]
is about 1 min/frame).

With the aid of deep learning, it is now possible to develop
data-driven assumption-free STVSR methods. One simple way
to do that is to realize STVSR via sequential execution of
deep-learning-based VFI and SR. However, this two-stage
scheme is suboptimal since it is susceptible to error accumu-
lation and makes no use of space-time correlation. In addition,
a direct combination of VFI and SR without any consolidation
is clearly inefficient in terms of the running cost.

In view of the problems with the two-stage approach, some
one-stage STVSR methods [35], [36] have been proposed,
which are able to offer improved performance at a reduced
cost. While they are highly innovative, these newly-proposed
methods [35], [36], have two major limitations. Firstly, due
to the use of a CNN to directly synthesize the intermediate
frames, the temporal position of such frames is not adjustable
after training. Secondly, there is no freedom to choose the
spatial up-sampling factors to be different from those set in
the training phase, nor to accommodate fractional factors. The
main motivation of the present work is to remove these two
limitations and realize unconstrained STVSR.

After posting a preprint of this submission on arXiv [53],
we become aware of a concurrent and independent work [54],
which addresses the temporal inflexibility problem using
so-called TMBlock. But the spatial domain issue remains
unsolved in [54]. A performance comparison is included in
Section V of this submission.

III. UNCONSTRAINED SPACE-TIME VIDEO

SUPER-RESOLUTION NETWORK

The goal of the proposed USTVSRNet is to transform a low-
resolution low-frame-rate (LFR) video into a high-resolution
high-frame-rate (HFR) one. Specifically, given two LR input
frames (IL

0 and IL
1 ), an arbitrary target time t ∈ [0, 1], and an

arbitrary spatial up-sampling factor s ∈ [1,+∞), the goal is
to synthesize an intermediate HR frame IH

t with H = sL. The
overall architecture of USTVSRNet is shown in Fig. 2, which
mainly consists of 4 sub-networks: a Frame Interpolation
Network (FINet), a Feature Extractor, a Enhancement Network
(EnhanceNet), and a Reconstruction Network.

As illustrated in Fig. 2, first a LR intermediate frame ÎL
t is

constructed by the FINet based on neighboring source frames
(IL

0 and IL
1 ) and bidirectional optical flows (ft→0 and ft→1).

Then the features FL
0 , FL

t and FL
1 are generated through the

feature extractor from IL
0 , ÎL

t and IL
1 respectively. Next, FL

t is
enhanced to EL

t at the feature level through the enhancement
network, and, finally, EL

t is fed into the reconstruction network
to produce a high-resolution frame ÎH

t as an approximation of
IH
t . The details of each steps are outlined below.

A. Frame Interpolation Network

Given IL
0 and IL

1 , the FINet is employed to generate a
coarse prediction ÎL

t as the reference frame, which will be
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Fig. 2. Illustration of the architecture of USTVSRNet.

used in conjunction with the feature-level prediction to pro-
duce the final reconstruction. In principle, any flow-based
VFI algorithm can serve this purpose. However, the SOTA
systems [17]–[19], [21] often involve complex designs (e.g.,
depth information [18], quadratic model [21]), and conse-
quently are not very efficient as a component of a larger
system. For this reason, we consider a simple design for the
FINet.

First a light-weight optical flow estimation network
(PWCNet [42]) is utilized to estimate the bidirectional
flows f0→1 and f1→0. They are then passed to the flow
reverse layer [21] to predict backward flows ft→0 and ft→1.
Specifically, we have

ft→0 = FR(f0→t), (1)

where f0→t = t ∗ f0→1, and FR denotes the flow reverse oper-
ation [21]; ft→1 can be computed in a similar way. Finally the
reference frame is synthesized as:

ÎL
t = (1 − t) · B · g

(
IL
0 , ft→0

) + t · (1 − B) · g
(
IL
1 , ft→1

)

(1 − t) · B + t · (1 − B)
, (2)

where B is a blending mask generated by a small
CNN [17], [21], [55], and g(·) denotes the warping function.

B. Feature Extractor

The frame features FL
0 , FL

t and FL
1 are extracted from IL

0 ,
ÎL
t and IL

1 , respectively, through a feature extractor, which
is composed of a convolution layer and several residual
blocks [56].

C. Enhancement Network

As illustrated in Fig. 3, the inputs to the enhancement
network consist of the three extracted feature maps FL

0 , FL
t ,

FL
1 as well as the pre-computed bidirectional optical flows

ft→0, ft→1. The goal of this sub-network is threefold: 1)
leverage the source frame features (FL

0 and FL
1 ) and the bidi-

rectional optical flows (ft→0 and ft→1) to predict the features
of the intermediate frame F

′L
t ; 2) refine the generated reference

frame at the feature level to alleviate the error accumulation
problem as the coarse prediction ÎL

t obtained in the first stage
tends to have many artifacts; 3) fuse the source frames to the

Fig. 3. Illustration of the architecture of EnhanceNet.

intermediate frame for better reconstruction under the guid-
ance of ft→0, ft→1. The operation of the enhancement network
can be expressed as:

M = NetM
([

ft→0, ft→1
])

, (3)

F
′L
t = Netp

([
FL

0 , FL
1 , M

])
, (4)

EL
t = Netr

([
FL

t , F
′L
t

])
. (5)

Here [, ] denotes channel-wise concatenation; NetM , Netp, and
Netr are three small CNNs, which comprise several residual
blocks and a convolution layer; M denotes the motion features
extracted from ft→0 and ft→1 through NetM .

D. Reconstruction Network

The reconstruction network is designed using the residual
dense network [47] as the backbone. We replace the SPL
with a novel GPL described below, making it possible to
up-sample low-resolution features by an arbitrary scale fac-
tor s. Moreover, we substitute one out of every K RDBs
with our newly constructed SARDB, which is able to gen-
erate scale-adaptive features and contribute positively to the
overall performance.

1) Generalized Pixelshuffle Layer: a new GPL is proposed
to address the lack of flexibility in the SPL. Here we describe
both the SPL and the GPL in parallel and highlight their
differences.

The goal of the SPL and the GPL is to convert input feature
maps of size Cin × H × W to output feature maps of size
Cout × sH × sW for some scale factor s (s is allowed to be
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Fig. 4. Examples of the standard and generalized pixelshuffle layers, where
(a) shows the standard layer while Cin = 2, Cint = 4, Cout = 1, and s = 2;
(b) shows the generalized pixshuffle layer while Cin = 2, Cint = 4, Cout = 2,
s = 1.5, and pc = 0.

fractional for GPL but not for SPL). They both proceed in
three steps:

Widen Input Features: The input feature maps are trans-
formed via convolution to the intermediate feature maps T of
size Cmid × H × W. Note that Cmid must be equal to s2Cout
for SPL, but can be an arbitrary positive integer for GPL.

Location Projection: Each spatial position on the output fea-
ture maps (i, j), i ∈ [0, sH − 1], j ∈ [0, sW − 1] is projected to
(i′, j′) = ( i

s ,
j
s ) on the intermediate feature maps.

Feature Mapping: Sample features from the intermediate
feature maps T for each 3D output position (i, j, c), c ∈
[0, Cout − 1] on the output feature maps according to a cer-
tain rule. Specifically, for SPL, the rule can be formulated as
follows according to [37]:

SPL(T)i,j,c = T�i′	,�j′	,Cout·s·mod(i,s)+Cout·s·mod(j,s)+c. (6)

A concrete example can be found in Fig. 4 (a). In contrast,
for GPL, we propose to sample using

GPL(T)i,j,c = T�i′	,�j′	,pc+�pc , (7)

where pc is a pre-determined channel position and �pc denotes
an adaptive offset predicted by a small fully connected network
with (i′−�i′	, j′−�j′	, 1/s) as input (which is inspired by [2]).
Note that we associate each 3D output position with a �pc,
resulting in sH · sW · Cout offsets in total. In the case where
pc + �pc is not an integer, the sampling value T�i′	,�j′	,pc+�pc

can be computed using a linear interpolation function:

T�i′	,�j′	,pc+�pc =
Cout−1∑

i=0

max(0, 1 − |pc + �pc − i|) · T�i′	,�j′	,i.

(8)

By designing so, the sampling position (�i′	, �j′	, pc+�pc) on
the intermediate feature maps is capable of moving along the

Fig. 5. Illustration of the SARDB architecture.

channel direction to sample the needed feature. We provide a
concrete example in Fig. 4 (b)

From Eqs. (6)-(7) and Fig. 4, we have two observations:
1) the proposed GPL not only achieves unconstrained up-
sampling of feature maps but also has the capability to
freely specify the channel dimension of the intermediate fea-
ture maps; 2) the GPL degenerates to the SPL if we set
Cmid = s2Cout, pc = Cout · r ·mod(i, s)+Cout · r ·mod(j, s)+ c,
and force �pc = 0. From these two points, it can be seen that
the proposed GPL is a generalized version of the SPL with
more degrees of freedom that can be fruitfully explored.

In our implementation, we set pc = c · Cmid
Cout

+ Cmid/Cout−1
2 .

As such, the initial sampling positions are evenly distributed
along the channel direction, which makes it possible to capture
features as diverse as possible. We initialize �pc with 0 and
set the learning rate of the small fully connected layer to be
the same as the global learning rate.

2) Scale-Attentive Residual Dense Block: As pointed out
in [51], the features generated by SR networks can be divided
into scale-independent ones and scale-dependent ones, and the
latter should be adapted to different scales. However, the scale-
aware adaptation module introduced by [51] is built solely
upon the spatial-wise attention mechanism, and makes no use
of channel-wise attention [57]. With this observation, we pro-
pose SARDB to exploit the available degrees of freedom more
thoroughly.

The architecture of the proposed SARDB is shown in Fig. 5.
The features F output by the LFF [47] are fed into several
convolution layers to generate spatial attention map Ms and
channel attention map Mc respectively. Then, the scale-aware
convolution [51] is employed to convert the features F into
scale-dependent features Fd, which are then modulated by
Ms and Mc by broadcasting and multiplication. The above
operations can be expressed as follows:

Fd = Sconv(F),

Mc = Netc(F),

Ms = Nets(F),

Fo = Fd 
 Mc 
 Ms + F. (9)

Finally, the results from the upper branch Fo and lower
branches x are merged to produce scale-adaptive features.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on March 05,2022 at 09:43:47 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON BROADCASTING

IV. EXPERIMENTS FOR UNCONSTRAINED

SPACE-TIME VIDEO SUPER-RESOLUTION

Unconstrained STVSR methods can flexibly adjust the tem-
poral frame rate and the spatial resolution of the output video.
In this section, we discuss the unconstrained STVSR. The
experiment for fixed STVSR will be presented in Section V.

A. Implementation Details

In our experiments, we explore the performance for different
values of the target time t and the up-sampling factor s. We let
t vary from 0 to 1 with a step size of 0.125, and s vary from
1 to 4 with a step of 0.5. During the implementation, we set
K = 4 and Cmid = 5Cin = 5Cout = 5 × 64 respectively. The
adopted loss function, training dataset, and training strategy
are described below.

1) Loss Function: We employ two loss terms to train our
network, being L1 loss and perceptual loss [58], respectively:

Reconstruction Loss: The L1 loss is used to measure the
difference between the prediction and the ground-truth in a
per-pixel manner, and can be formulated as follows:

L1 =
∑

x

∥∥∥ÎH
t (x) − IH

t (x)
∥∥∥

1
. (10)

The L2 loss can also be used, but it is widely known in the
image synthesis area that the L2 loss could lead to blurry
results to a certain degree. Following [22], [59], we adopt
Charbonnier penalty function [60] to optimize L1 loss function
and set ε = 10−6.

Perceptual Loss: Different from the per-pixel loss, the per-
ceptual loss seeks to measure the difference from a global
visual view, which has been shown effective in generating
visually realistic images. The perceptual loss often leverages
multi-scale feature maps extracted from a pre-trained network
to quantify the difference. Here, we adopt VGG-16 [61] as the
pre-trained network, and use feature maps from the last layer
of each of the first three stages to measure the difference (i.e.,
Conv1_2, Conv2_2 and Conv3_3). The loss can be expressed
in the following form:

Lp =
3∑

i=1

∥∥∥�i

(
ÎH
t

)
− �i

(
IH
t

)∥∥∥
2

2
, (11)

where �i(IH
t ), i = 1, 2, 3 are the aforementioned three feature

maps corresponding to IH
t while �i(ÎH

t ) corresponds to ÎH
t .

Overall Loss: By combining the L1 loss and the perceptual
loss, the overall loss can be defined as:

L = L1 + λLp, (12)

where λ is a hyper-parameter to balance the L1 loss term and
the perceptual loss term. Experimentally, we find setting λ =
0.04 reaches the best performance.

2) Training Dataset: Adobe-240 dataset [62] consists of
133 handheld recorded videos, which mainly contain outdoor
scenes. The frame rate of each video is 240 fps, with spa-
tial resolution as 720 × 1, 280. From this set, 103 videos
are randomly selected to construct our training dataset. That
set is formed by successively grouping every 9 consecutive

TABLE I
MODEL SIZE AND RUNNING TIME COMPARISONS WITH s = 4, WHERE

THE MODEL SIZE IS REPORTED IN MILLIONS (M) AND THE RUNNING

TIME IS REPORTED IN SECOND (S) PER FRAME

frames, and resizing them to 360 × 640 to form a training
sequence IH

0 , IH
0.125, . . . , IH

1 . In this way, we obtain 10, 895
sequences in total. The LR frames are generated through bicu-
bic down-sampling from the HR frames. We randomly crop
image patches of size 56×56 from the LR frames for training.
Horizontal/vertical flipping as well as temporal order reversal
is performed for data augmentation.

3) Training Strategy: During the training phase, t and s
are randomly selected to build each training batch. The image
patches within a single batch share the same t and s. We adopt
the Adam optimizer [63] with a batch size of 18, where β1
and β2 are set to the default values 0.9 and 0.999, respectively.
We train our network for 30 epochs in total with the initial
learning rate set to 10−4, and the learning rate is reduced by
a factor of 10 at epoch 20. The training is carried out on two
NVIDIA GTX 2080Ti GPUs, which takes about one day to
converge.

B. Evaluation Dataset

1) Adobe Testing Dataset [62]: We treat the remaining
30 videos of the Adobe-240 dataset as an evaluation dataset.
As in the case of the training dataset, we successively group
every 9 consecutive frames (resized to 360×640), resulting in
2, 560 test sequences. For each sequence, the LR frames are
generated from the HR ones via bicubic down-sampling.

2) Gopro Testing Dataset [64]: This dataset contains 11
videos recorded by a hand-held camera. The frame rate of
each video is 240 fps, and the image resolution is 720×1, 280.
The dataset is released in image format with a total of 12, 221
images. We successively group every 9 consecutive images
as a test sequence. In this way, 1, 355 test sequences are
generated.

C. Comparisons to SOTA Methods

To the best of our knowledge, there is no one-stage method
of this kind in the literature. So we only consider two-
stage methods composed of SOTA unconstrained VFI methods
(BMBC [1] and DAIN [18]) and SOTA SISR methods (since
the code of [51] is not publicly available, we choose to
use Meta-SR [2]). Here we set t = 0, 0.125, . . . , 1 and
s = 1, 1.5, . . . , 4 respectively.

Fig. 6 and Fig. 7 show (a)-(c) PSNR scores for differ-
ent temporal positions with s = 2.5, 3.5, 4.0, (d)-(f) PSNR
scores for different scale factors with t = 0.375, 0.500, 0.625,
on the Adobe240 and Gopro testing datasets, respectively.
More results can be found in the supplementary materials.
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Fig. 6. Quantitative comparisons of unconstrained STVSR methods on Adobe240 dataset.

Fig. 7. Quantitative comparisons of unconstrained STVSR methods on Gopro dataset.

According to the experimental results, we make two obser-
vations: 1) the usage of more advanced VFI or SR methods
contribute to better predicted results. For example, although
BMBC+MetaSR and DAIN+MetaSR are both equipped with
the same SR method, the former performs better than the lat-
ter due to the fact that BMBC is more advanced than DAIN;
2) compared to two-stage methods, the proposed method has
better performance and is much more stable. This is due to
the fact that the components of the two-stage methods work in
isolation and cannot exploit the relationships between behavior
in space and time.

Fig. 8 shows some qualitative comparisons with t = 0.5
and s = 4. It can be seen that the proposed method tends to
generate more visually appealing results than the others. For
instance, the proposed USTVSRNet yields sharper and clearer
strips in the first row of Fig. 8; the leaves and the flower pattern
generated by our method are much clearer than others in the
second and the third rows, respectively.

Table I provides comparisons between these methods in
terms of model size and running time. Since two-stage
methods are simple concatenations of the VFI and SR algo-
rithms, they tend to be overweight and slow. In contrast, the
proposed method is more compact and efficient. Specifically,
compared to the best performing two-stage method, namely
BMBC + Meta-SR, the proposed USTVSRNet only has about
1/4 of size and takes half time to reconstruct one frame.

D. Ablation Study

1) Effectiveness of Image-Level and Feature-Level
Interpolation: To validate the effectiveness of the image-level
and feature-level interpolation, we consider the following
three variants: a) USTVSRNet without FINet (where the flow
estimation and reverse network are still preserved to generate
optical flows for EnhanceNet). For this variant, we directly
pass F

′L
t to the reconstruction network; b) USTVSRNet
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Fig. 8. Qualitative comparisons of different Unconstrained STVSR algorithms.

TABLE II
QUANTITATIVE RESULTS OF ABLATION STUDY REGARDING FINET

AND ENHANCENET WITH s = 1, 2, 3, 4, WHERE PSNR AND

SSIM SCORES ARE AVERAGED OVER t

without EnhanceNet. For this variant, FL
t is directly fed into

the reconstruction network; c) the complete network. We
only provide the average scores over t with s = 1, 2, 3, 4 in
Table II due to paper space limitation (Noted we excluded
t = 0, 1 for s = 1). However, we observe similar results for
different values of s.

From Tables II (a) and (c), we can make the following
two observations: 1) interpolating at the image level in addi-
tion to the feature level does contribute positively to the final
reconstruction. It is expected that the performance can be
improved further if more advanced VFI methods are adopted;

Fig. 9. Qualitative results of ablation study regarding FINet and EnhanceNet.

2) even without the explicit image-level prediction by FINet,
the network still retains some, albeit reduced, ability to gen-
erate intermediate frames for different target times, owing to
the implicit feature-level synthesis in EnhanceNet. A visual
example is illustrated in Figs. 9 (a–b), in which two frames
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TABLE III
COMPARISONS BETWEEN SPL AND GPL IN TERMS OF THE FIXED

SCALE UP-SAMPLING ON THE VIMEO90K DATASET

for different times are generated through USTVSRNet without
FINet.

As can be seen from Tables II (b–c), removing EnhanceNet
degrades the performance in terms of PSNR and SSIM.
Indeed, in addition to the loss of feature-level interpolation,
removing EnhanceNet deprives the system of the ability to
refine the reference frame and gain information from the
source frames for reconstruction, which leads to unsatisfactory
results, as shown in Figs. 9 (c–d).

2) Effectiveness of GPL and SARDB: We next demonstrate
the effectiveness of the GPL and SARDB. Since the recon-
struction network is functionally orthogonal to the other three
sub-networks, we repurpose it as an SISR network. The fol-
lowing experiments are based on the SISR network and the
RDN [47] is adopted as the backbone. The Vimeo90K dataset
is commonly used in the SR area, thus we adopt this dataset
in this part. We first demonstrate the effectiveness of the GPL
and then SARDB.

Comparison With SPL: As we stated in the previous section,
the proposed GPL is a generalized version of the SPL. Here
we compare them in terms of the fixed scale up-sampling.
The baseline is RDN, which employs the SPL at the end of
the network to upscale features by a fixed scale factor. We will
denote this system by S-RDN. Then, we replace the SPL by the
proposed GPL to obtain a system called G-RDN. We evaluate
each method on up-sampling factors r = 2, 3, 4, respectively.
For each scale factor, the baseline RDN needs to be modified
and re-trained. In contrast, for G-RDN, there is no need to
modify the network structure. For fair comparisons, we also
train it on each scale factor. The experiment results can be
found in Table III.

As we can see from Table III, G-RDN achieves slightly bet-
ter results than S-RDN at all scales with a negligible running
time increase (except for ×4 up-sampling on which G-RDN
performs a little worse in terms of the SSIM value), which
implies the performance of the GPL is on par or marginally
better than that of the SPL in the scenario of fixed scale
up-sampling. More importantly, compared to the SPL, the
GPL enables the network to have the capability to perform
unconstrained up-sampling task (will be demonstrated in the
next), instead of restricted to certain specific scaling factors.
Therefore, from these two aspects, the GPL can be considered
as a generalized version of the SPL.

Comparison With Unconstrained Up-Sampling Methods:
Different from constrained counterparts, unconstrained

TABLE IV
COMPARISONS FOR DIFFERENT UNCONSTRAINED

UPSCALE METHODS ON VIMEO90K DATASET

Fig. 10. Qualitative results of ablation study regarding channel dimension
freedom.

methods are able to upscale an image by an arbitrary factor
within a single model. For this part, we compare the GPL
with certain unconstrained up-sampling modules. Since
only a few methods concentrate on arbitrary scale factor
upsampling, we need to design several baseline systems.
The following three baselines are taken into consideration:
1) the first baseline directly adopt the bicubic interpolation
technique to up-sample images, denoted as Bicubic; 2) we
first use a standard RDN to up-sample a image by k times
(k is a fixed integer), then resize the up-sampled image
to the desired size with bicubic interpolation, denoted as
I-RDN(×k); 3) we replace the SPL of RDN with the bicubic
interpolation method, which means that bicubic interpolation
is used to upscale the feature maps, denoted as Bi-RDN.
In addition, we also compare with the SOTA unconstrained
up-sampling method, Meta-RDN [2], which is the same
as Bi-RDN and G-RDN except for the final up-sampling
module. Bi-RDN, Meta-RDN, and G-RDN are trained with
the same unconstrained training strategy. Table IV shows the
evaluation results, which are averaged over s ∈ [1, 4].

Table IV illustrates the effectiveness of the proposed GPL.
It has a clear advantage over other methods in terms of PSNR
and SSIM. In particular, GPL outperforms the SOTA up-
sampling module, Meta-Upscale, by about 0.18 dB and has
a faster running speed.

Importance of Channel Direction Freedom: To illustrate the
importance of channel direction freedom, we consider the fol-
lowing variant: we keep other components the same as G-RDN
except for forcing �pc = 0, in which the sampling posi-
tion cannot move along the channel direction. This system is
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TABLE V
COMPARISONS OF FG-RDN AND G-RDN WITH DIFFERENT CMID

denoted by FG-RDN. The experimental results can be found
in Table V, where one can easily find freedom of channel
direction that leads to better reconstruction results. Indeed, if
�pc = 0, then the local feature vectors of the output feature
maps will become identical, which tends to generate blurry
results or jagged edges. A visual example can be found in
Fig. 10. Specifically, consider two different output positions
on the output feature maps (i1, j1) and (i2, j2). If they are pro-
jected to the same location on the intermediate feature maps
�i′1	, �j′1	 = �i′2	, �j′2	, their output feature vectors GPL(T)i1,j1
and GPL(T)i2,j2 will be exactly the same according to Eq. (7)
(due to �pc = 0), which limits the diversity of the output
feature maps. From another point of view, forcing �pc = 0
corresponds to using the nearest interpolation to up-sample the
feature maps. Naturally, its performance is not as good as that
of G-RDN, and it is even worse than Bi-RDN (since bicu-
bic interpolation is superior to nearest interpolation in nature).
Therefore, the channel direction freedom plays an important
role in the GPL.

Choice of Cmid: For the all experiments above, we set
Cmid = 5Cin = 5Cout = 5 × 64. Now, we investigate how
to choose the channel dimension of intermediate feature maps
Cmid. We fix Cin = Cout = 64 and vary Cmid. Table V shows
the results, which are averaged over s ∈ [1, 4]. As shown in
Table V, as the dimension increases, the performance improves
initially, but eventually becomes saturated. In particular, set-
ting Cmid to more than 7 × 64 does not further improve the
quality of the reconstructed HR image.

Effectiveness of SARDB: We finally investigate the contribu-
tion of the SARDB. Two networks are trained and evaluated
on scale factor r ∈ [1, 4]: one with SARDB; the other one
with RDB. We experimentally find that the scale-dependent
features generated by SARDB improve the performance by
0.28 dB and 0.0012 in terms of PSNR and SSIM, respectively,
with negligible increasing in the running cost.

E. Failure Case

Recent years have witnessed the rising of large-factor super-
resolution [65]–[67] due to its applications to small object
recognition in traffic [68], sports [69], and surveillance [70]
scenes. However, the largest scale factor in the above exper-
iments is s = 4. To investigate how the proposed method
performs in the large-factor scenario, we conduct experiments
with s = 8. Fig. 11 shows some visual results. It can be seen
that the proposed method fails to reconstruct clear frames due
to the fact that most details and textures are lost during down-
sampling and the conventional CNNs used in reconstruction

Fig. 11. Qualitative results of large-factor super-resolution.

network cannot restore them. This problem can be poten-
tially solved by leveraging generative models or invoking some
informative priors. We shall leave this line of research for
future work.

V. EXPERIMENTS FOR FIXED SPACE-TIME

VIDEO SUPER-RESOLUTION

Different from unconstrained STVSR, in fixed STVSR
the temporal frame rate and the spatial resolution are not
adjustable without retraining or modifying the network. Some
experimental comparisons with fixed STVSR are provided
below.

A. Implementation Details

In this section, t can only vary among {0, 0.5, 1} and s is set
to 4, which means the network can only up-sample a video by
×2 and ×4 times in terms of temporal and spatial resolutions,
respectively. As in the previous section, we set K = 4 and
Cmid = 5Cin = 5Cout = 5 × 64. The training dataset and
training strategy are described below.

1) Training Dataset: Same as [35], the Vimeo90k Triplet
Training Dataset [16] is adopted to train our model, where
we have 51, 312 sequences in total and the image resolution
is 256 × 448. Within each sequence, the first, the second and
the third frames are treated as IH

0 , IH
0.5 and IH

1 , respectively.
Similarly, we use the bicubic down-sampling method to gen-
erate LR images from HR ones. We also perform horizontal
and vertical flips, as well as temporal order reversal, for data
augmentation.

2) Training Strategy: For each training iteration, t is ran-
domly selected from {0, 0.5, 1} and s is set as 4 to construct the
corresponding training batch. The Adam optimizer is adopted
with a batch size of 24. We train the network for 25 epochs in
total, with the initial learning rate as 10−4. The learning rate is
reduced by ×2 times at every 8 epochs for the first 16 epochs
and by ×5 times every 3 epochs for the last 9 epochs. The
training is carried out on two NVIDIA GTX 2080Ti GPUs,
which takes about one day to converge.

B. Evaluation Dataset

1) Adobe Testing Dataset and Gopro Testing Dataset:
The Adobe Testing Dataset and the Gopro Dataset from
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TABLE VI
QUANTITATIVE COMPARISONS ON ADOBE240 DATASET, GOPRO DATASET, AND VIMEO90K DATASET WITH s = 4, WHERE ‘CENTER’

DENOTES THE PSNR AND SSIM VALUE OF THE CENTER FRAME ÎH
0.5 WHILE ‘WHOLE’ IS FOR AVERAGE VALUES OF ÎH

0 , ÎH
0.5,

AND ÎH
1 . WE HIGHLIGHT THE FIRST PLACE AND THE SECOND PLACE IN RED AND BLUE, RESPECTIVELY

Fig. 12. Qualitative comparisons of different constrained STVSR algorithms.

the previous section are directly used as the two evaluation
datasets for this section. There are 2, 560 and 1, 355 sequences
in the Adobe dataset and the Gopro dataset, respectively, each
with 9 frames. We only use the first, the fifth and the last
frame of each sequence to compare different algorithms.

2) Vimeo90k Triplet Testing Dataset [16]: This dataset con-
sists of 3, 782 video sequences, each with 3 frames. The image
resolution of this dataset is 256 × 448. The first, second, and
third frames in each video sequence are treated as IH

0 , IH
0.5,

and IH
1 respectively.

C. Comparisons to SOTA Methods

Here the STARNet [35], Zooming SloMo [36], and
TMNet [54] are chosen as representatives of one-stage fixed

STVSR methods. For fair comparison, they are retrained on
our training dataset using the same strategy. As to two-
stage methods, we combine pre-trained SOTA VFI methods
(AdaCoF [22] and BMBC [1]) and SR methods (RSDN [9],
RBPN [6] and DBPN [46] are chosen as representatives of the
VSR and SISR methods, respectively).

We quantitatively compare our method with the chosen one-
stage and two-stage methods under two well-known objective
image quality metrics (PSNR and SSIM). The scores of the
center frame and the average scores over all three frames are
provided in Table VI. It can be seen that the proposed method
ranks consistently at the top performance-wise, and comes in
a close second in terms of the number of parameters. The
two-stage methods not only suffer from large model size, but
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also lack competitiveness in performance since the constituent
VFI and SR techniques are constrained to work in isolation.
Although STARNet, Zooming SloMo, and TMNet are capable
of handling diverse space-temporal patterns and improve the
performance significantly, they are still behind the proposed
method by a visible gap.

Fig. 12 shows some qualitative comparisons. It can be seen
that the proposed method is capable of generating clearer and
sharper results. For example, the proposed USTVSRNet pro-
duces clearer words in the first row; the cards generated by
other methods are blurrier than those by the USTVSRNet in
the second row.

VI. CONCLUSION

In summary, we have proposed an unconstrained STVSR
method that has the freedom to arbitrarily adjust the temporal
frame rate and spatial resolution of the output video. Beyond
using the optical flow technique for temporal interpolation,
several new ideas are introduced, which include the general-
ized pixelshuffle operation for upsampling, a refined mecha-
nism to generate scale-adaptive features, and the integration
of image-level and feature-level representations. Despite their
excellent performance, it is conceivable that these new ideas
could be further developed to yield even better performance.
Moreover, there could well be likely alternative approaches
to realizing unconstrained STVSR. In this sense, our work
should be viewed as a stepping-stone towards a full-fledged
framework for AI-enabled STVSR.
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