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Abstract
In this paper, we propose a hybrid super-resolution method by combining global and
local dictionary training in the sparse domain. In order to present and differentiate the
feature mapping in different scales, a global dictionary set is trained in multiple
structure scales, and a non-linear function is used to choose the appropriate dictionary
to initially reconstruct the HR image. In addition, we introduce the Gaussian blur to the
LR images to eliminate a widely used but inappropriate assumption that the low
resolution (LR) images are generated by bicubic interpolation from high-resolution (HR)
images. In order to deal with Gaussian blur, a local dictionary is generated and iteratively
updated by K-means principal component analysis (K-PCA) and gradient decent (GD)
to model the blur effect during the down-sampling. Compared with the state-of-the-art
SR algorithms, the experimental results reveal that the proposed method can produce
sharper boundaries and suppress undesired artifacts with the present of Gaussian blur.
It implies that our method could be more effect in real applications and that the HR-LR
mapping relation is more complicated than bicubic interpolation.

Keywords: Super-resolution, Sparse representation, Dictionary learning, K-PCA,
Non-local mean

1 Introduction
The problem of enlarging images to the ones with bigger spatial size is regarded as image
super-resolution (SR), which builds themathematical relation between the low-resolution
(LR) image and the high-resolution (HR) image. Although image SR is a frequent manip-
ulation in image processing, this problem still remains challenging because it is under
constrained and there is no closed form without extra constraints. The concept of image
SR was first proposed and studied by Tsai and Huang in the 1980s [1]. Through the
past three decades, varieties of SR algorithms and models have been developed to deal
with this problem. Among them, single-image super-resolution (SISR) is an important
branch, which enlarges an image based on the image itself as the observation. In general,
the existing SISR algorithms can be classified into three categories: interpolation-based,
reconstruction-based and learning-based SR.
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The interpolation-based SR usually utilizes fixed function [2] or adaptive structure ker-
nels [3, 4] to predict the missing pixels in HR grid. It assumes that the LR observations
are degraded by down-sampling, and the unknown HR pixels can be estimated from their
observed neighbors. Now, the interpolation-basedmethods are often used as the compar-
ison baseline. However, considerable blurring and aliasing artifacts are often inevitable in
the up-scaled images.
Different from the interpolation-based SR, the reconstruction-based methods [5, 6]

refine the observation model. In addition to sampling, reconstruction-based SR assumes
that the LR image is obtained by a series of degradations: down-sampling, blurring, and
additive noise. Using different prior assumptions, this family of approaches are capable of
enhancing the features of low-resolution images through a regularized cost function. As
a result, they are able to produce sharper edges and clearer textures while removing the
undesired artifacts. However, these methods are usually inadequate in producing novel
details and perform unsatisfactory under high scaling factor.
Compared with the aforementioned methods, the learning-based SR is generally supe-

rior since it is capable of generating convincing novel details that are almost lost in
the low-resolution image. Basically, these algorithms and models exploit the prior tex-
ture knowledge from extensive sample images to learn the underlying mapping relations
between LR and HR images. During the past decades, numerous mapping formula-
tions have been designed, the most representative methods include neighbor-based SR,
regression-based SR, sparsity-based SR, and the ones using deep neural networks. Com-
pared with neighbor-based [7] and regression-based SR [8] that always heavily rely on the
quality and the size of sample images, the sparsity-based SR is capable of learning more
compact dictionaries based on signal sparse representation. In this case, it has been widely
studied for its superior performance in producing clear images with low computational
complexity. Based on this idea, Yang et al. proposed a classic sparse model by training
a joint dictionary pair in the sparse domain for image reconstruction [9]. Subsequently,
they introduced a coupled dictionary training approach with two acceleration schemes
which overcame the sparse coding bottleneck [10]. With the similar framework of [8],
Zeyde et al. [11] provided the refinements in dictionary training and image optimization,
so that it improves the efficiency and performance. Timofte et al. proposed an anchored
neighborhood regression (ANR) model to reconstruct the LR image via neighbor-based
dictionaries in a fast way and also introduced the global regression (GR) model for some
extreme cases [12]. They subsequently introduced the A+ [13] method that improves
the SR performance by combining ANR with SF. Shi et al. further used the anchored
neighborhood as the image prior to the deep network [14]. However, [15] implies that a
large dictionary may cause unstable HR restoration. Hence, the concept of sub-dictionary
has been widely used. Dong et al. raised an adaptive sparse domain selection (ASDS)
model with PCA-based sub-dictionary training [16]. Afterwards, they further applied this
method on their non-locally centralized sparse representation (NCSR) model [17], which
has been turned out to be one of the state-of-the-art SR algorithms which can deal with
the blur effect during the down-sampling. In addition, based on Yang’s framework in [9],
Zhang et al. also utilized the PCA-based clustering to the sample image patches, so that
multiple mapping relations can be trained [18]. In recent years, the deep neural networks
have shown powerful capability in various computer vision tasks and brought significant
benefit to image SR. To our best knowledge, Dong et al. [19] first proposed the deep
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learning-based SR method which is based on the CNN architecture. Afterwards, Kim
et al. proposed to use a much deeper residual network to achieve superior performance
[20]. In addition, Kim’s method was capable of dealing with different enlarge ratios by
expanding the training dataset to include the LR-HR patch pairs with different scaling
factors. Although the aforementioned learning-based methods performed well on their
test dataset, there was often an underlying assumption that the LR image was directly
down-sampled from the HR image by bicubic interpolation method, which might not be
the actual case in real scenarios that the blur effect could happen along with the down-
sampling. And there is no sufficient evidence that can prove that the learning model is
still valid if it is trained with the bicubic interpolation assumption.
In this paper, a novel learning-based SR method is proposed based on hybrid dictionary

training in the sparse domain [21]. In our proposed algorithm, multiple global dictionary
pairs are trained from a large natural image dataset. Each global dictionary pair is trained
to reveal the general mapping relation between the LR and the HR images under different
scaling factors. In addition to the global dictionaries trained from general dataset, we also
predict a local dictionary along with a self-similarity metric based on the input LR image.
Since the local dictionary is more consistent with the input image, the reconstructed HR
result can be more robust and the blur effect during the down-sampling could be sup-
pressed. Given the dictionaries and an LR image, we iteratively enhance the details of LR
image. In each iteration, the appropriate global dictionary is chosen according to the cur-
rent LR image quality. Afterwards, the undesired artifacts are suppressed by self-similarity
prior and non-locally centralized constraints based on local dictionary. The main con-
tributions of this paper are as follows: (1) we combine the global and local dictionary to
estimate the HR image so that the result could benefit from the large training dataset and
the blur effect during the down-sampling could be also suppressed; (2) we apply multi-
ple global dictionaries from multi-scale structures to iteratively improve the HR image
quality.
The remained part of this paper is organized as follows. In Section 2, we will provide

a brief introduction to the related works of sparsity-based SR and dictionary training
methodologies. In Section 3, our proposed SR method will be described in detail, includ-
ing the multi-scale global dictionary training, K-PCA-based local dictionary training,
and the single image super-resolution based on the hybrid dictionaries. In Section 4, the
results and comparisons will be represented to prove that our proposed method can gen-
erate state-of-the-art HR images with the present of Gaussian blur effect. Finally, the
conclusion will be drawn in Section 5.

2 Related work
Based on the observed LR image, single image super-resolution can bemodeled by Eq. (1):

y = Hx + v, (1)

whereH is the degradation operator that combines down-sampling and blurring, x is the
HR image, v is the additive noise, and y is the observed LR image.

2.1 Image SR based on sparse representation

Since the problem of solving x from Eq. (1) is ill-posed, the HR recovery from LR image
is uncertain and the artifacts will be introduced. In this case, researchers proposed and
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studied different regularization terms such as total variation (TV) [22, 23], the non-local
similarity [24], and the sparsity representation [25, 26]. The total variation suppresses the
artifacts at the expense of over-smoothing the texture. In order to maintain the disconti-
nuities or spatially inhomogeneous, the sparsity-based regularization is adopted in many
recent single image super resolution methods [9, 16, 17, 27]. According to the sparse
representation, the observation model in Eq. (1) can be re-written as:

yi = HDαi + vi, (2)

where xi = Dαi is a patch of the high resolution image, D is called as the dictionary, αi is
the sparse code of patch xi, yi is the observed low-resolution patch of xi, and vi represents
the additive noise.
Based on the observation model, the sparsity-based image super-resolution can be

formulated by Eq. (3):

αy = argmin
α

{‖y − HDα‖22 + λR(α)
}
, (3)

where ‖y − HDα‖22 is called the fidelity term, R(α) is the sparsity based regularization
term, and λ is the Lagrange multiplier which controls the balance between the fidelity and
the regularization.
In order to reliably represent the image by using sparse code α, the dictionary choice

becomes a critical issue. Generally, the dictionaries can be classified into two categories:
analytical dictionary and learning-based dictionary. Analytical dictionaries such as the
ones from DCT or Haar wavelet are easily generated, but they are not adaptive to diverse
images. Learning-based dictionary is trained according to information from real natu-
ral images. Therefore, it contains more comprehensive characteristics which make the
reconstruction precise. The learning-based dictionaries can be further divided into global
dictionary and local dictionary. The global dictionary extracts texture from a large set of
natural images which have abundant details. Therefore, it may reconstruct the details,
which are almost lost in LR image, based on the experience drawn from other images.
However, there are still risks to completely rely on global dictionary. The LR-HRmapping
relation in global dictionary is learned from large scale database, which has its own LR-
HR scaling method. Given an image, the HR estimation may fail if its scale and blur model
does not fit with the image pairs in the database. This problem could be a worthy consid-
eration especially whenmost of the learning based SRmethods built their training dataset
with the assumption that LR images is generated from HR ones by bicubic interpolation.
On the other hand, the local dictionary is trained based on the observed LR image itself
by using self-similarity and the feature statistics. Therefore, it is possible to use the local
dictionary as supplementary information to enhance the SR image quality by handling the
problem that LR image suffers from different degradation to the ones in training dataset.

2.2 Initial SR image for local dictionary training

As aforementioned, the quality of SR image estimated by global dictionary could be
improved by using local dictionary to suppress the blur effect not learned from the global
training dataset, and vice versa—the SR image from the global learning, which can be
regarded as an initial guess or the side information to a local dictionary based method,
can affect the final estimation of the high resolution image. In order to verify this, a sim-
ple example is given as follows. First, an initial HR estimation is made for an LR image
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Table 1 PSNR(dB)/SSIM values of the SR results by using K-PCA and non-locally centralized sparse
representation [17] with different initial HR values

Algorithm Bicubic Bilinear Nearest neighbor GR [12] Yang’s [9]

PSNR/SSIM 28.49/0.8894 28.42/0.8889 28.17/0.8869 28.79/0.8910 28.86/0.8916

by using 5 different SR algorithms: bicubic, bilinear, nearest neighbor, global regression
(GR) [12], and SC-SR [9]. Based on these initial guess, the HR estimation is refined by
applying the same local procedure—K-PCA and non-locally centralized sparse represen-
tation (NSCR) [17]. Table 1 presents the final HR estimation by using the local dictionaries
trained from different initial HRs. It can be observed from Table 1 that the final HR esti-
mation would be better if the initial HR value was better generated. Similar phenomenon
was also found and analyzed in another recent paper [28]. Based on this observation, [28]
proposed to use ridge regression based method to produce the initial HR image. In this
paper, we propose to update the initial HR values in each iteration of the SR processing,
so that the final result can be further improved. The details of our proposed SR method
will be introduced in the following section.

3 Methods: image super-resolution based onmulti-scale structure and
non-local mean (MSNM-SR)

According to recent researches of single image super-resolution (SR), the sparsity rep-
resentation has shown the advantages in recovering discontinuous and inhomogeneous
image regions [9, 16, 17, 27, 29]. Therefore, our proposed SRmethod still uses sparse cod-
ing to represent the image features. As we mentioned in Section 2, the global dictionary
is beneficial to provide comprehensive image structure, and the local dictionary is more
relevant to the image to be enhanced. In this case, we propose our SRmethod that utilizes
the global and local dictionaries together to generate high resolution images with clear
texture and suppressed blurring artifact.

3.1 Overview of our proposed SRmethod

The flowchart of our proposed single image super-resolution is presented in Fig. 1. First, a
set of global dictionary pairs

{
DH
i ,DL

i |i = 1.1, 1.2, . . . , 4
}
is trained from a large amount of

natural images. Here, i represents the upscaling ratio from LR to HR images, and DH and
DL represent the LR and HR image dictionary, respectively. These global dictionary pairs
are generated based on the assumption that LR and HR images share the same sparse rep-
resentation. By training multiple dictionary pairs, multi-scale mapping relation between
HR and LR images can be established.
Given a low resolution image ILR ∈ R

m×n, and the scale factor s, a high resolution image
IHR ∈ R

sm×sn will be gradually generated by our proposed SR method. First, the magni-
fication factor si is initialized as s1 = s. According to the value of si, the corresponding
global dictionary pair

{
DH
si ,D

L
si
}
is used to magnify the low resolution image. In order to

suppress the artifacts and the noises introduced by sparse representation, a local dictio-
nary

{
D0
si
}
is generated. Since

{
D0
si
}
is constructed based on the self-information of the

image, this dictionary would be more consistent with the image content. Based on
{
D0
si
}
,

a sparse fidelity term and a non-local smoothing term are used as the constraints, so
that the structure of the reconstructed HR image is similar to the original input image.
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Fig. 1 Flowchart of the proposed SR method. s is the size ratio between the output HR and the input LR; si is
the image magnification factor in the ith iteration, and it determines the choice of the global dictionaries DH

si
and DL

si ; D
0
si is the local dictionary trained from the image itself

Afterwards, the magnifying factor si is updated according to a blind image quality esti-
mation function f (HRc), where HRc is the current estimated HR image. The HR image is
iteratively updated until function f (HRc) converge.
The detailed descriptions of our proposed SR method will be introduced as follows.

3.2 Global dictionary training based onmulti-scale image structures

According to Section 2.2, the initial value significantly affects the quality of the final HR
image in local dictionary-based SR method such as NCSR. Compared with using the
NCSR’s default initial value, which is generated by bicubic interpolation, the quality of the
estimated HR image can be significantly improved if the initial values are better gener-
ated by other SR methods. Therefore, we propose to train global dictionaries from large
dataset within multiple scaling factors to better generate the initial guess of the HR image.
In global dictionary-based sparse image representation, it is often assumed that the

same image patch should have the same sparse code in different resolutions. Given an LR
image Ilr and a dictionary trained Dlr from LR image dataset, the sparse codes of image
patches in Ilr can be estimated. According to the assumption that the corresponding HR
image Ihr shares the same sparse code with Ilr , we can reconstruct the high resolution
image from the low-resolution one if an appropriate high resolution dictionaryDhr is also
available. It is obvious that the most important step is to find out the dictionary pair Dhr
and Dlr that can reliably represent the HR image and its LR version with the same sparse
code.
Given a large high-resolution training dataset Shr = {Ihr1, Ihr2, . . . , Ihrn} with clear nat-

ural images Ihri, the low-resolution training dataset Slr = {Ilr1, Ilr2, . . . , Ilrn} is generated
by applying Gaussian blurring, down-sampling, and bicubic scaling to the same size as
the images Ihri in Shr . Afterwards, the images in Slr and Shr are decomposed into patch
sets Plr = {plr1, plr2, . . . , plrm} and Phr = {phr1, phr2, . . . , phrm}, where m is the number of
patches extracted from the dataset.
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In order to guarantee the dictionary a good representation of viewing-sensitive tex-
tures, we represent the image by its high-frequency component other than the original
image. Similar with [11], the features in HR patch (phri) are extracted by subtracting the
corresponding LR from the original HR, while the features in LR patch (plri) are extracted
by using first- and second-order gradient filters. Afterwards, two training matrix can
be generated: HR training matrix (Xhr =[ xhr1, xhr2, . . . , xhrm]) and LR training matrix
(Xlr =[ xlr1, xlr2, . . . , xlrm]), where each x is a column vector reshaped from one training
patch. Given Xhr and Xlr , the high- and low-resolution dictionaries can be estimated by
Eqs. (4) and (5), respectively:

Dh = argmin
Dh,α

{‖Xhr − Dhα‖22 + λ‖α‖1
}
, (4)

Dl = argmin
Dl ,α

{‖Xlr − Dlα‖22 + λ‖α‖1
}
. (5)

Because the sparse code α is shared between LR and HR patches, Eqs. (4) and (5) can
be combined in Eq. (6):

[Dl,Dh] = argmin
Dl ,Dh,α

{‖Xlr − Dlα‖22 + ‖Xhr − Dhα‖22 + λ‖α‖1
}
. (6)

The global dictionary pair is trained to reveal the underlying relation between the LR
and HR images based on the knowledge from the training dataset. If the LR training
images are generated by down-sampling the HR training images with a fixed scaling fac-
tor s, the LR images can only provide the structure knowledge in a fixed level. Therefore,
one global dictionary pair trained from such datasets may not be suitable in different sit-
uations. For example, we can generate the LR training images by down-sampling the HR
training images with a scale factor 4 and then estimate the global dictionary pair to reveal
the LR-HR mapping relation. Although this dictionary pair may be effective if we scale an
LR image to 4 times of its original size, it may performs unsatisfactorily if we scale the LR
image to some other sizes. With this concern, we down-sample the HR training images
by different scaling factors to generate multiple LR training set {Slr1, Slr2, . . . , Slrm}. The
LR images in different training sets Slri represent the low-resolution structures in multi-
scale. As shown in Fig. 2, we generate the LR-HR dictionary pair for each LR-HR training
set pair {Slri, Shr}. Given the global dictionary pairs under different structure level, we can
always choose the appropriate dictionary to enhance the LR image according to different
situations.
In order to illustrate the necessity of multiple global dictionary pairs under different

structure level, we generate 30 LR training datasets {Slr1, Slr2, . . . , Slr30} from one HR
training dataset Shr . Every LR set is generated by down-sampling the HR images at the
ratio of si. In this paper, si ∈ {1.1, 1.2, 1.3, . . . , 4.0}. In Fig. 3, we reconstruct the HR image
from the LR image by using different global dictionary pairs. The horizontal axis repre-
sent the down-sampling ratio si at which the LR training set is generated. The vertical
axis represent the PSNR value of the reconstructed HR image. In Fig. 3a, the LR image
is scaled by 2.4 to generate the HR image, and the best reconstruction result is obtained
when the LR training set is down-sampled by 2.5. Similarly, the LR image is scaled by 3.3
to generate the HR image in Fig. 3b, and the best reconstruction result is obtained when
the LR training set is down-sampled by 3.5. It is clear that the choice of global dictionary
pair affects the HR reconstruction result. In Fig. 4, the visual quality of the reconstructed
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Fig. 2 Global dictionary training

HR images are presented along with the ground truth HR. It is visually noticeable that the
quality of reconstructed HR would be better if appropriated global dictionary pair is used.

3.3 Local dictionary training using K-PCA

There is a need for great diversity in global dictionary, so that it can be used to recover
general images. Despite the comprehensive information provided by global dictionary, it
is proved to be unstable for sparse representation because of the highly diversity [15]. In
order to represent the image by using a robust and compact dictionary, we use K-PCA and
non-locally centralized sparse representation (NSCR) [17] to generate the local dictionary
that is consistent with the input image.
The input LR image is scaled to a set of images SI = {

Isk |k = 1, 2, 3, . . . ,N
}
with dif-

ferent sizes by using bicubic interpolation. If the input LR ∈ R
m×n, the desired output

HR ∈ R
sm×sn, the height and width of the scaled image Isi is 0.8sk sm and 0.8sk sn. By

extracting 7 × 7 image patches from SI , we generate the patch set P, which is further
clustered into K groups P = {Pi|i = 1, 2, . . . ,K} using K-means clustering. We assume
the patches within one group are similar, so these patches can be robustly represented

Fig. 3 Quality of HR image reconstructed by using different global dictionary pairs
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Fig. 4 Enhance LR image to HR with different global dictionaries. HRba represents the estimated HR image
with different scale factors and global dictionaries, where a is the scale factor of the test image and b is the
scale factor used in the training phase

by using a compact dictionary Di. Principal component analysis (PCA) is applied, and
the PCA bases is regarded as Di for group Pi. After we combine all Di (i = 1, 2, . . . ,K)

together, a complete local dictionary D0 = [D1,D2, . . . ,DK ] can be generated based on
the input LR image itself.

3.4 Image super-resolution based on local and global training

In this section, we introduce the high resolution image reconstruction based on the global
and local dictionaries. As shown in Eq. (3), a standard solution for image sparse repre-
sentation can be formulated by the minimum optimization of an energy function with
the fidelity term and the regularization term. The fidelity term ensures that the observed
low-resolution image is a blurred and down-sampled version of the high-resolution image
that is constructed by sparse representation. In this case, a reliable sparse representation
is critical for high-resolution image reconstruction. In this paper, we adopt the global and
the local dictionaries at the same time to ensure that the sparse representation can pro-
vide rich texture details and can be consistent with the observed low resolution image.
With these concerns, we reformulate Eqs. (3) to (7).

αy = argmin
αl

{‖y − HD0αl‖22 + λ‖αl − βl‖1
}
, (7)

s.t.

‖UIP(y) − DLαg‖22 < ε, (8)

where ε is a small factor, y is the observed low-resolution image,H is a matrix for blurring
and down-sampling,D0 is the local dictionary, αl is the sparse code of the high-resolution
image according to local dictionary,DL is the global LR dictionaries, αg is the sparse code
of the image according to global dictionary, U(·) is the upscaling operator, UIP(y) is the
initial prediction of the upscaled y in the gradient decent based optimization for Eq. (7),
and βl is the non-local mean of αl, which is formulated as follows:

βi =
∑

n∈Ni

ωi,nαn, (9)

where αn denotes the sparse code of an image patch xn, Ni denotes the N most similar
patches to patch xi, βi is the sparse code of patch xi after nonlocal smoothing, and ωi,n is
the weight factor defined as follows:
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ωi,n = exp
(−‖xi − xn‖22

)

∑

n∈Ni

exp
(−‖xi − xn‖22

) . (10)

Given an LR image, its HR version is estimated by iteratively solving Eq. (7). In the ith
iteration, the global sparse code of the current LR image αi

g is estimated by using Eq. (11):

αgi = argmin
α

{‖XL
i − DL

i α‖22 + λ‖α‖1
}
, (11)

where XL
i is the initial LR image in the ith iteration and also the final HR image estimation

in the (i− 1)th iteration, note that U(y) in Eq. (8) is the general representation for XL
i ; DL

i
is the LR global dictionary used in the ith iteration; α is the sparse code of XL

i ; and αgi is
the optimal α that can minimize Eq. (11).
With the global sparse code αgi from Eq. (11), the HR estimation from global dictionary

in the ith iteration is given in Eq. (12):

XL
i+1/3 = DH

i αgi, (12)

where DH
i is the HR global dictionary used in the ith iteration, and XL

i+1/3 is an inter-
mediate HR estimation, and it is also the initial HR guess feeding to the following local
dictionary based HR estimation.
Given XL

i+1/3, the local dictionary D
0 and the corresponding local sparse code αl in Eq.

(7) can be generated by K-PCA as mentioned in Section 3.3. According to Eqs. (9) and
(10), the sparse code βi of each patch’s non-local mean can be estimated. With βi, the
regularization term Xβi

i can be calculated as follows:

Xβi
i = D0

i βi. (13)

After we have H, D0, the initial sparse code αl, and the sparse code βl of non-local
mean, the optimal αy in Eq. (7) could be iteratively approached. First, we fix the second
regularization term, and the optimization problem becomes a least square problemwhich
can be efficiently solved, the gradient decent-based updating processing is given in matrix
form by Eq. (14):

XL
i+2/3 = D0αl + θHT (

y − HD0αl
)
, (14)

where θ is the learning step size, which is set to 2.4 in this paper. Afterwards, we fix the
first fidelity term in Eq. (7), and now, this function can be solved by iterative shrinkage
algorithm:

XL
i+1 = Sτ

(
XL
i+2/3 − Xβi

i

)
+ Xβi

i (15)

where Sτ is a soft-thresholding operator; Xβi
i is calculated in Eq. (13). According to the

work presented in [30], the aforementioned algorithm is empirically converge. We also
present the PSNR convergence of our proposed method in Fig. 5. There are three cases
being compared: (1) the global SR DHαg is not used, and the SR image is generated based
on local dictionary only; (2) the global SR is used only for once as the initial estimation for
local SR; and (3) the global SR is used for two times to update the initial estimation dur-
ing the gradient decent optimization of local SR. It can be observed that the use of global
SR significantly improves the SR quality. It is worth notice that the global SR at the 201th
iteration firstly reduces the PSNR but the final PSNR converges to a higher value com-
pared with the cases without using global SR. It is very likely that the global SR updates
the estimation during the gradient decent (GD) processing in local SR, and it avoids the
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Fig. 5 The convergence comparison of our proposed method

GD processing being trapped in the local minima. According to our experiments, the
proposed SR method can converge within 300 iterations for calculating Eq. (14).
The last problem is to find out the proper global dictionary in each iteration. Although

we already generated global dictionary pairs in multi-scale structure, it is still difficult to
select themost appropriate one in each iteration. According to our extensive experiments,
we use the iteration number to stand for the degradation level and introduce a non-linear
function in Eq. (16) to imply the selection of global dictionary pairs:

f (i) = a
i

+ b (16)

where a and b are numeric parameters, i is the iteration number, and f (i) is the index
number for global dictionary selection. In this paper, we set a and b to be s − 1 and 1 for
all test images, and here ,s is the scaling factor of the HR image.

4 Results and discussion
We evaluate and compare our proposed method with the present of Gaussian blurring
during the down-sample procedures. All the methods are compared on Set5 [31], Set9
[17], and Set14 [11]. The hyperparameters in our method are set as follows: the patch size
is 6 × 6 and the dictionary size is 1024 in global training, the patch size is 7 × 7, the K-
PCA cluster size is 70, the learning rate in gradient decent is 2.4, and the sparsity lambda
is 0.35 in local training.
Given the test HR image, it is first blurred by Gaussian kernel (windows size=7, stan-

dard deviation=1.6), and afterwards, it is directly down-sampled to generated the test
LR image. It is worth to notice that the LR image generation in this paper is differ-
ent from many existing SR methods that applied bicubic interpolation. In practice, it is
not convincing to make the assumption that the relation between LR and HR images
obeys the bicubic interpolation models. Therefore, introducing the blurring effect dur-
ing the down-sampling makes the SR method more robust in real practice. In Table 2,
the PSNR/SSIM comparison is made in the Y channel of YCbCr color space. Specifically,
we compare our method with 5 other SR methods, which include the bicubic interpo-
lation, the sparse representation based on global dictionary (SC) [11], A+ [13], anti-blur
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SR based on local dictionary (NCSR) [17], and the deep learning-based SR (SRCNN)
[19], since the performance of deep learning-based methods highly depends on the train-
ing dataset. Therefore, we provide two deep learning models: SRCNNb and SRCNNg .
SRCNNb is the original model in [19]; the training HR-LR pairs are generated by bicu-
bic interpolation. SRCNNg is the model trained by ourselves; the training HR-LR pairs
are generated by Gaussian blur (windows size=7, standard deviation=1.6) and direct
down-sample.
Because the LR-HR mapping relation in the test phase is not consistent with the

assumption made (i.e., bicubic interpolation) in the training phase of SC, A+, and
SRCNNg , it is not surprising that our proposed method outperforms SC, A+, and
SRCNNg in Table 2. The anti-blur SR based on local dictionary (NCSR) performs
well with the present of Gaussian blur. As we mentioned in Section 2.2, the ini-
tial SR estimation in NCSR benefits the final result. Therefore, our proposed method
outperforms NCSR by iteratively feeding the SR prediction from global dictionary to
the local estimation. Although the training dataset for SRCNNg includes Gaussian
blur effect, our proposed method can still generate better SR images with respect to
PSNR/SSIM.
In Fig. 6, we provide the visual comparison in the RGB color space. Due to the combina-

tion of global and local dictionary, our proposedmethod provide clearer details. Although
it is potentially possible to produce artifacts and even errors when using global dictio-
naries, the self-similarity constraints and non-local centralized sparsity will efficiently
suppress this problem. Compared with the other methods, our proposed SR method can
produce convincing novel details, sharper boundaries, and clearer textures while it also
effectively suppresses undesired artifacts.

Fig. 6 Visual comparison between different SR methods (scale ratio=4). Each column presents the HR
estimations from one SR method. From the left to the right, the compared methods are SC [11], A+ [13],
SRCNNb [19], SRCNNg [19], NCSR [17], and our proposed method
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5 Conclusion
In this paper, we propose a novel and effective SR method that utilize multi-scale image
structures and non-local similarities. Specifically, a set of global dictionary pairs are
trained under different image resolutions, so that the LR-HR mapping relations can be
comprehensively established. When an LR image is enhanced to an HR image, the appro-
priate global dictionary pair can be chosen from the dictionary set by using a non-linear
function. In addition, a K-PCA-based local dictionary is also trained according to the
input LR image content. This local dictionary is more consistent with the input, and it
helps to reduce the artifacts introduced by the feature inconsistency between the test
image and the global training dataset. Furthermore, the sparsity-based non-local mean,
which is proved to be effective in many SR methods, is used to smooth the estimated HR
image in every iteration. In this case, less artifact will be propagated to the next itera-
tion. The experimental results show that our proposed SRmodel is capable to recover HR
images with clear textures, sharp edges, and convincing novel details.
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