This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3183403

Enabling Trimap-Free Image Matting with a
Frequency-Guided Saliency-Aware Network via
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Abstract—This paper presents a strategic approach to tackling
trimap-free natural image matting. Specifically, to address the
false detection issue of existing trimap-free matting algorithms
when the foreground object is not uniquely defined, we design
a novel tangled structure (TangleNet) to handle foreground de-
tection and matting prediction simultaneously. TangleNet enables
information exchange between foreground segmentation and al-
pha prediction, producing high-quality alpha mattes for the most
salient foreground object based on RGB inputs alone. TangleNet
boosts network performance with a frequency-guided attention
mechanism utilizing wavelet data. Additionally, we pretrain for
salient object detection to aid in the foreground segmentation.
Experimental results demonstrate that TangleNet is on par with
the state-of-the-art matting methods requiring additional inputs,
and outperforms all previous trimap-free algorithms in terms of
both qualitative and quantitative results.

Index Terms—image matting, joint-task learning, frequency-
guided attention.

I. INTRODUCTION

MAGE matting aims to predict an alpha matte that can be
leveraged to accurately extract the target foreground object
from an image with miscellaneous background objects. It has a
broad range of applications in industrial tasks including image
composition, video editing, and film production. To formulate
the problem precisely, consider the following equation that
relates composite image Z, foreground image JF, background
image B, and alpha value « at pixel i:
I = o F; + (]. — Oéi)Bi, o; € [0, 1} (1)
Image matting seeks to determine « based on Z perhaps
together with additional user-provided information. Since F
and B are unknown, the matting problem is in general math-
ematically ill-posed.
Early works on image matting making Eq. (1) solvable
by requiring solid background color [3]. Later, hand-crafted
algorithms identify alpha values by exploiting correlations
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Fig. 1: Without the location clue, the state-of-the-art trimap-
free algorithms (e.g., HAtt [1]) may make a false prediction by
extracting a wrong object (the jet). Our TangleNet mitigates
this effect and produces high-quality alpha mattes that are
comparable to other recent trimap-based methods such as CA

[2].

among pixels in small regions. For example, propagation-
based algorithms [4], [5], [6] make assumptions of local
smoothness, and sampling-based methods [7], [8], [9], [10]
utilize user-identified foreground and background patches.
These methods suffer from performance degradation on im-
ages having complex background. Starting with [11], data-
driven matting algorithms [2], [12], [13], [14], [15] leverage
user-provided trimaps to generate high-quality alpha mattes.
However, manual provision of trimaps is tedious and is infea-
sible for real-time applications such as video matting. Thus,
there has been a growing interest in trimap-free approaches [1],
[16], [17], [18], [19] that can predict alpha mattes based solely
on RGB inputs. Most of the trimap-free matting methods
[16], [17], [18] are designed with a specific kind of target
object (e.g., human) in mind. Moreover, without user inputs,
the SOTA trimap-free algorithms can easily fail to produce
an accurate alpha matte for an image with a complicated
foreground (see an example in Fig. 1).

In this paper we propose a tangled structure named Tan-
gleNet to tackle the trimap-free matting problem. The ratio-
nale behind the present work is as follows: First, we argue
that it is essential to endow the network with a certain
prior knowledge of object saliency, otherwise the process of
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foreground localization will be unreliable. A related research
area in computer vision is called salient object detection.
Surprisingly, utilizing object saliency in trimap-free matting
is largely unexplored. In the present work, we pretrain the
model on a salient object binary segmentation dataset before
performing matting-oriented training. Second, we exploit cor-
relation between salient object detection (binary segmentation)
and matting (alpha prediction) by joint learning in two tangled
sub-networks that reinforce each other, using a hybrid loss
function. Lastly, we make judicious use of the frequency-
domain feature as it is useful in revealing the fine image details
and consequently is highly informative for image matting. In
summary, the main contributions of this paper are:

o We exploit the connection between trimap-free matting
and salient object detection by pretraining our network
on a salient object detection dataset and leveraging this
prior knowledge to fine-tune our model for trimap-free
natural image matting.

« We introduce a novel network structure for joint learning
of alpha prediction and binary segmentation, implement-
ing the two tasks with dedicated sub-networks which are
“tangled” by means of decoder and task switcher modules
that optimize information flow between them, together
with a mutli-scale hybrid loss function.

o We present an effective attention mechanism that lever-
ages the frequency information to guide the behavior of
the model. With the alpha prediction task directed to the
high-frequency area, the binary segmentation task can
focus more on the low-frequency counterpart.

II. RELATED WORK

Natural image matting. Most natural image matting algo-
rithms utilize user input to help solve the problem, typically
given in the form of scribbles [20] or trimaps [21] that identify
the foreground, background, and unknown regions.

Traditional matting algorithms can be roughly divided into
two categories: propagation-based methods, and sampling-
based methods. Both types rely on image regularity condi-
tions. Propagation-based methods [4], [5], [6], [22] solve an
optimization problem by assuming local smoothness of color
distribution. Sampling-based methods [7], [8], [9], [10], [23]
solve Eq. (1) by inferring each pixel’s foreground or back-
ground membership based on user-provided image patches.
The quality of alpha predictions generated by traditional
methods varies significantly from case to case, depending on
the applicability of those hypothetical regularity conditions.
The data-driven approach in image matting has seen increasing
popularity over the past few years. Cho et al. [11] combine
some traditional matting algorithms and CNNs to form an end-
to-end training pipeline. Xu et al. [14] propose an encoder-
decoder structure to make alpha predictions based on RGB
images and trimaps. This opens the floodgates to a host of
learning-based matting algorithms with various innovations
[2], [12], [13], [24], [25], [26], [27].

Trimap-free matting. It is desirable to predict alpha mattes
using only RGB images because the provision of user input
typically ranges from inconvenient to impractical. To tackle
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this challenging problem, some works [16], [17] leverage
CNNs to segment images and guide alpha predictions. In
contrast, Sengupta et al. [18] utilize different priors (soft
segmentation and background) to replace trimaps. Zhang et al.
[19] fuse the foreground and background predictions to obtain
alpha mattes. Qiao et al. [1] utilize an attention mechanism
to guide alpha predictions. However, most of the trimap-free
methods focus on a specific type of foreground (e.g., human).
Moreover, for natural image matting tasks, the lack of object
location clues can cause false detection when extracting the
foreground from a complex background. The present work
resolves the issue by taking object saliency into account.

Attention mechanisms. Attention mechanisms in deep
learning has enhanced performance of machine translation
[28], [29] and computer vision [30], [31], [32], [33]. Wang et
al. [32] introduce a non-local attention module that measures
spatial information using a correlation matrix, using it to guide
contextual information aggregation. Following this idea, a
series of papers [34], [35], [36] leverage the non-local module
to guide spatial or channel-wise learning. In image matting, Li
et al. [12] introduces the idea of guided contextual attention
that uses low-level features from different areas of the RGB
image to guide propagation of the alpha prediction. In trimap-
free matting we exploit frequency domain information to guide
the feature propagation process. Inspired by [12] and [34], we
design a frequency-guided attention module to facilitate our
alpha prediction and binary segmentation processes.

Multi-task learning. Prediction accuracy for multiple tasks
can be improved by multi-task learning when the tasks mutu-
ally reinforce each other, e.g. depth estimation and semantic
segmentation [37], [38], [39]) In image matting, Cai et al.
[24] leverage multi-task learning to refine trimap input and
predict alpha matte simultaneously. However, we argue that
due to loosely connected model structures, the alpha prediction
branch does not make full use of the task correlation, and
therefore their method is not suitable for trimap-free matting.
Inspired by [39], we propose a tangled structure that facilitates
joint learning of alpha prediction and binary segmentation by
structuring information flow between the two tasks.

Salient object detection. This task aims to recognize the
most attention-grabbing foreground in an image [40], [41],
[42], [43], [44]. Our work exploits the knowledge from this
task by performing pretraining on a salient object detection
dataset and introducing a customized loss to couple the
learning processes for salient object detection and trimap-free
image matting.

III. OUR METHOD
A. Method overview

Trimap-free natural image matting is a challenging problem
as one has to locate the foreground and extract the fine details
from the target object concurrently. Most existing trimap-free
methods start by generating a trimap, thereby providing a
location estimate for the foreground.

In contrast, the present work uses interactive learning,
with switcher modules to direct network flow during the
joint learning of alpha prediction and binary segmentation. A
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Fig. 2: Architecture of the proposed TangleNet. The orange and blue boxes indicate the binary segmentation branch and the
alpha prediction branch, respectively. The two modules are tangled together to form a joint learning pipeline, where information
is exchanged via the task switchers. A residual refinement module completes the process.
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Fig. 3: Flow chart of interactive joint learning. We denote
the alpha prediction task at stage i as A; and the binary
segmentation task as ;. For all cases except ¢ = 0,1, and n,
we use task switchers to distribute information from previous
stages. Note that ¢ = 0 denotes the backbone stage, which
feeds features to A (S7).

graphical illustration is shown in Fig. 3. Formally, we denote
the alpha prediction and binary segmentation tasks as A and
S, respectively.

Using ~y to represent the task switcher function (to be dis-
cussed later), our interactive learning process can be expressed
as:

FS _ ¢f(‘FL€17 Wzs)7 if 4 = 17 n,
’ ¢;9(7(]:;4717 ‘F;il) —|—E€17 Wzs)a OtherWiSC7
Fa_ | TR © FF o, iti=1,n,
' ¢24(’Y(fﬁ17 F2) +]:fil, WZA), otherwise.
2

Note that (©) denotes the feature map concatenation; ¢:* (¢7)
is a prediction function with learnable parameter Wg“ (WZS )
for stage i; F/, (F2,) is the output from the previous
stage of the alpha prediction (binary segmentation) task; when

i =0, }"iA and .Fis are the same, which is the output from
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the last layer of backbone. To extract fine details for alpha
prediction, a frequency-guided attention (FGA) module is
used to direct network attention to high-frequency regions.
We obtain frequency domain information through the discrete
wavelet transform (DWT), and realize a frequency-guided self-
attention mechanism following the idea of [12] and [32]. In
addition, we pretrain our model on a salient object detection
dataset and tailor our multi-task loss function to accommodate
the binary segmentation task.

B. Network architecture

We introduce a tangled structure that jointly learns binary
object segmentation and alpha matte prediction by sharing
information between the two tasks. As shown in Fig. 2, our
network takes the form of an encoder-decoder structure. For
the encoder, we adopt a modified version of ResNet-50 that
integrates SE blocks into all stages of residual blocks as
suggested in [31]. The reason for choosing this design option
is to obtain useful channel features while extracting semantic
information. The core of our TangleNet is the decoder, which
can be depicted as three parts, namely, the tangled decoder,
task switcher (TS), and the frequency-guided attention module
(FGA). We enhance the result with a UNet residual refinement
module.

C. Tangled decoder

The tangled decoder aims to decode the feature maps and
learn binary segmentation and alpha prediction simultaneously.
As shown in Fig. 2, the blue and orange boxes indicate the
corresponding branches for the two tasks, which are supervised
by a customized multi-scale loss function using two kinds of
ground truth. Inspired by the residual structure from [45] and
[46], we use residual dense blocks (RDB) followed by squeeze
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Fig. 4: The overview of our task switcher module.

and excitation (SE) blocks [31] as our main processing units
(gbg4 and gzbf) for each stage in Eq. (2). Here, RDB serves
as a strong feature extractor that decodes the features for TS
modules and the rest of network units.

D. Task switcher (TS)

In image matting, alpha matte can be thought of as an
extension of binary segmentation because it contains alpha
values and solid foreground information. We use TS modules
to exploit the correlation between binary segmentation and
alpha prediction, thereby improving alpha matte. Specifically,
we employ the TS modules during interactive learning (¢ €
[2,n — 1] in Eq. (2)) to weigh and distribute the decoded
feature maps. As shown in Fig. 4, our TS module consists
of two frequency-guided attention modules (FGA) and an
information aggregation module. First, we utilize frequency-
guided attention to direct spatial-level and channel-level atten-
tion, using correlation between decoded features and original
image frequency domain features to measure the spatial and
channel information. Next, we use a pyramid pooling operation
to aggregate weighted features, and we leverage channel-wise
attention to perform task-specific modulation of feature maps.
Using + to indicate the task switcher function, the TS module
can be formulated as:

S
FAFS )= fse(frsp((FLy, Ir))), for task S,
Y(FZ1s Fiia) fse(frsp(W(FA L, Ty))), for task A,
3)

where ¢ denotes the FGA, which takes (F ;,Z;) in binary
segmentation task .S, and (F |, Zx) in alpha prediction task
A. In addition, Z;, and Zp indicate the low and high-frequency
subbands, respectively; fpgsp is the pyramid pooling operation
for aggregating information; fsg denotes the squeeze and
excitation (SE) [31] operation that weighs channel information
according to the target task. Thus, our TS module employs
attention mechanisms on the spatial level, channel level, and
task level.

E. Frequency-guided attention

As part of the TS module, the frequency-guided attention
module (FGA) directs spatial and channel attention. In the
trimap-free matting problem, the main issue is that lack of
foreground location information allows for false detection of
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Fig. 5: Overview of FGA modules for each tasks. Green boxes
indicate the frequency-guided operation.

foreground objects and consequently the extraction of wrong
image details. Also, it is a heavy load for the network to solve
both object segmentation and alpha prediction. This motivates
methods that locate the foreground and relieve the learning
load. By inspecting the image matting dataset, we notice
that most of the fine details are located in high-frequency
areas, which makes the frequency domain information a useful
hint for inferring the alpha value. For the frequency-domain
analysis, we adopt DWT in view of its ability to preserve
information inside the CNN structures, as proved in the
literature [47], [48], [49]. To be specific, we take the 2D Haar
wavelet for DWT with the four filters defined as frr=(11),
fLH=( ’11 ’11 ), fHL:( j %) fHH=( _11 ]1). The resulting
four subbands can be viewed as a low-frequency component, a
high-frequency component along the x-axis, a high-frequency
component along the y-axis, and a high-frequency component
along the diagonal. As shown in Fig. 5, we use the low-
frequency component in binary segmentation, and the high-
frequency components in alpha prediction. We implement
FGA using the idea of non-local operation [32], which can
be modelled as yi=zjj\i’i fgg;;)g(xj) Note that y; and z;
are the respective values of input and output features at query
position ¢; j is the index that enumerates all possible positions;
Np denotes the total number of positions (H x W for image);
g(-) denotes the linear transformation function, e.g., 1 x 1
convolution; f(x;,«;) denotes the function that measures the
similarity between x; and z;; C(X) is the normalization
function. In FGA, we first reshape the RGB image to make
the size of frequency subbands the same as the input feature
maps. Then we use Embedded Gaussian [32] to compute the
similarity between position ¢ on feature maps and position j on
frequency subbands. To reduce computational complexity, we
adopt the simplified design from [34] to implement FGA. The
frequency-guided feature y{ produced by frequency-guided
operation (green boxes in Fig. 5) at location ¢ can be expressed
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f Al Gkaf’req f
g _ eat ) eat
v =2l W) <ty @
- eWkTm
j=1 m=1

where W,; and W), are 1 x 1 convolutions; x;c "4 and xjf eat de-
note respective values of location j on the frequency subband
and input feature map; xf e is the value of query location
i on the input feature map. Note that frequency guidance
takes effect by influencing the fraction term in Eq. (4). For
example, at high-frequency subbands, the low-frequency part
will have a small value of x;t "®? making the fraction term very
small as well, and vice versa for the low-frequency area. After
the frequency-guided operation, we invoke another simplified
non-local operation with y9={y/ };-v:pl as the input to model
the pixel-wise relationship within the guided feature map.
In addition, we add a bottleneck term to model the channel
attention, as in [34]. By denoting the output of FGA at location
i as y;, the entire FGA module can be defined as:

er2y;-7

Np
Yi = J){eat + Wu4fRe <fLN (WU3 Z Wng>) ’
j:l Zmzl e U m
(5)

where W,5_,4 are convolutional operations with kernel size
as 1 while Wyafre(fLn(Wys(+))), fre» and frn denote
the bottleneck operation, ReLU function, and LayerNorm,

respectively. More details of the attention visualization can
be found in Fig. 9 and Section V-D.

F. Loss function and pretraining strategy

Since trimap-free matting inevitably faces the problem of
locating the foreground object, we design a hybrid loss for
binary segmentation and alpha prediction.

For binary segmentation, we adopt the loss combination
of [42] due to its promising performance on salient object
detection. Segmentation loss ¢°¢Y is defined as

g9 — Ebce 4 essim _i_giou’ (6)

where (b€, (557 and (" are respectively BCE loss [50],
SSIM loss [51], and IoU loss [52]. The IoU loss measures the
set similarity, and is given by £°% = 1— %, where
p; and p; are predicted probability and ground truth labels at
location ¢, respectively. For the image matting part, we use
0 = % |a; — o] and £°0MP = 7. \fl — Z;| from [14], and
compose them with gradient loss £97%¢ = 3" |g; — g;| and
aforementioned SSIM loss 5" to form £,,,:

mo= pe +£comp _|_€grad _|_€ssi7n7 (7)

where ¢ specifies pixel location, «; indicates predicted alpha
value, Z; is the composite RGB image value defined as
T, = a; F; + (1—a;)B;, and g; (g;) denotes the gradient of the
predicted (ground-truth) alpha matte. TangleNet uses multi-
scale loss during training; we denote the composed losses at
scale j as £;°/ and £7". Consequently, the overall loss during

alpha prediction is
kl k?z
total _ seg m
total = ijlej - ZH@ : (8)
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Fig. 6: Visualization of our customized binary segmentation
map and other types of ground truth. It is evident that
our binary segmentation map (c) preserves more semantic
information than the foreground area of the trimap (d) does.

Here k1 = 4 as there are 4 different scales for the output
segmentation map while ko = 5 as there is an additional
refined alpha matte from the residual refinement module.

To further address the problem of how to locate the
foreground object, we pretraining on the DUTS-TR dataset
[53] to let the network acquire some prior knowledge before
proceeding to training for alpha matting. This pretraining
enables the network to identify the salient objects and further
facilitates the alpha prediction task in the later stage. More
implementation details can be found in the subsequent section.

IV. IMPLEMENTATION DETAILS
A. Experiment setup

TangleNet is trained using the PyTorch framework. We first
conduct a pretraining on the DUTS-TR dataset with images
resized to 256 x 256 and then randomly cropped to 224 x 224.
We initialize the backbone for pretraining using ImageNet
weights. For image matting training, we randomly choose
whether to crop an image or directly resize it to 320 x 320
(as the resized image can retain more semantic information).
For the first choice, the input image is randomly cropped to
320 x 320, 480 x 480, 640 x 640, and 720 x 720 along the
unknown region in the trimap (smaller patches reveal more fine
details). Then we resize all image patches to 320 x 320. Both
training stages use vertical, horizontal, and diagonal flipping
as an additional augmentation strategy. For the ground truth
of the segmentation branch, we use a customized binary map
(Fig. 6c), in lieu of the normal trimap, with each pixel value
marked to be 255 if the corresponding alpha value is greater
than 0.5. The reason is that the morphological methods used
for trimap generation can distort the original object shape
whereas the customized binary map can better retain the shape
of the foreground . For both stages, we use batch size of 4 and
“poly” learning rate decay, where Ir = Irj; (1 — —Ler )P
with 17, =le~* and p = 0.9. For the pretraining staée, we
train 50k iterations and take only the segmentation outputs
(bounded by the orange box in Fig. 2) for calculating the loss,
and deactivate the residual refinement module. For the image
matting training stage, we train for 10 iterations and make
use of all outputs.

B. Datasets and evaluation metrics

For the pretraining stage, we use the DUTS-TR dataset,
which is derived from ImageNet and contains 10, 553 images
with salient objects. Our main focus is on the matting training
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stage, where we adopt the Adobe Composition-1k dataset
from [14] for training and testing. The training set consists
of 431 foregrounds, each of which is composited randomly
with 100 unique background images from the MS COCO
dataset [54]. For testing, the dataset provides 50 foregrounds,

TABLE I: Numerical results on the Composition-1k testing set
calculated on the unknown region indicated by the trimap.

Methods MSE| SADJ Grad] Connl
KNN [7] 0.103  175.45 124.13 176.39
ClosedForm [6] 0.091 168.13 126.88 167.92
BGM [18] 0.022 56.81  74.79  56.21
Late Fusion® [19] 0.020 49.02 34.33 50.60
DIM [14] 0.014 50.40  31.00  50.80
IndexNet [13] 0.013 45.48 25.9 433.7
ATNet [15] 0.013 4050  21.50  39.40
GCA [12] 0.009 3528  16.92  32.53
CA [2] 0.008 35.80  17.30  33.20
PIIA [27] 0.009 36.40  16.90  31.50
A2U [55] 0.008 3215  16.39  29.25
TIMI [56] 0.006  29.08 11.50  25.36
SDF 0.027 75.51  47.28  73.47
TD' 0.021 51.71  40.32  50.94
TD+TS* 0.018  49.24  38.93  47.33
TD+TS+FGAT 0.015  48.06  29.46  46.12
TD+TS+FGA-+msloss' 0.013 4523 2531  45.23
TD+TS+FGA-+pretrain’ 0.013 4552  26.11  46.06
IDJ“ITS*;FGAJ“pretram 0.011  43.03 2252  44.69
IMS10SS

TD+TS+F.G‘f‘+mSl°SS+R°f 0.011 43.36 2212  41.17
w/o pretrain

TDATSHFGAg 0.011 4201 2282  39.55
+msloss+Ref+pretrain

Ours’ 0.010 40.16  18.87  37.31

each of which is composited with 20 background images
from PASCAL VOC [57] that are randomly picked without
replacement. Additionally, we train the model on the Dist-646
dataset [1] for comparison with other state-of-the-art natural
image matting methods. Note that the training set has 596
foreground images and the testing set has 50 foregrounds; both
of them are composited using the same composition rules as
Composition-1k.

We use four quantitative metrics to evaluate our model: sum
of absolute differences (SAD), mean squared error (MSE),
gradient (Grad), and connectivity (Conn) [58]. To make a fair
comparison and avoid bias, the reported performance results
are based on official model weights, images, and numbers
provided by the relevant papers.

V. EXPERIMENTS
A. Composition-1k dataset

We compare TangleNet with ten trimap-based matting algo-
rithms: KNN [7]; ClosedForm [6]; DIM [14]; IndexNet [13];
GCA [12]; CA [2]; PIIA [27]; ATNet [15]; A%2U [55]; and
TIMI [56], and to three trimap-free methods: Late Fusion [19];
BGM [18] and HAtt [1]. More precisely, Late Fusion, HALtt,
and our method only need RGB inputs; BGM requires the
background image as an additional input; and others need
both RGB and trimap images, produced according to the
procedure described in [14]. Table I and Table II provide
quantitative comparisons on the Composition-1k dataset. Here,
“t” indicates that the corresponding method takes only RGB
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TABLE II: Numerical results on the Composition-1k testing
sets calculated on the whole image.

Names MSE] SADJ Grad Connl
KNN [7] 0.026 126.20 117.17 131.05
ClosedForm [6] 0.023 105.73 91.76  114.55
BGM [18] 0.008 57.21  74.83  56.57
DIM [14] 0.009 47.56  43.29  55.90
IndexNet [13] 0.005  44.52  29.88  42.37
GCA [12] 0.003 3291  15.33  29.58
CA [2] 0.003 32.62  13.89 2891
Late Fusion® [19] 0.011  58.34  41.63  59.74
HAtt! [1] 0.009  48.98 41.57 49.93
SDF 0.019 75.63  46.23  80.54
TD' 0.016  65.31  44.43  72.32
TD+TS* 0.014  55.85 33.52 61.13
TD+TS+FGAT 0.012  50.66  29.63  55.04
TD+TS+FGA+msloss’ 0.010 48.96 2851  51.10
TD+TS+FGA-+pretrain® 0.010  48.33  28.67  50.62
Iﬁ;:f;;mmwwam 0.008 46.07 2771  46.22
TD+TSHFGA+mslosstRel 507 4406 2622 44.96
w/o pretrain

TD+TS+FGAg 0.007 4313 2506  44.20
+msloss+Ref+pretrain

Ours' 0.006  41.31  23.44  43.56

images as inputs. Red denotes the best result for methods
that use additional inputs while Blue indicates the best result
for methods that use only the RGB images. Several variants
of our method are shown in grey rows (see Section V-C
for their respective definitions). From these table, we can
see that the proposed TangleNet outperforms all trimap-free
methods by a large margin. Table I focuses on performance
of fine detail extraction, as we only measure errors in the
unknown region indicated by the trimap. In this respect, our
method is comparable to most state-of-the-art trimap-based
algorithms and is only inferior to GCA and CA. This is
expected because these trimap-based algorithms use strong
user input to guide the prediction. In contrast, the present
method does not have user input, utilizing only intrinsic image
features for alpha prediction, yet it performs competitively
against the trimap-based methods. The qualitative results in
Fig. 7 further prove effectiveness of our method. For other
trimap-free methods, performance is limited by the need to
learn both semantic and alpha features. Benefiting from joint
training and frequency guidance, the proposed TangleNet is
more effective in predicting alpha values while retaining good
semantic features. In fact, our results are very close to ground
truth and visually comparable to those of the state-of-the-art
trimap-based methods.

B. Dist-646 dataset

We also compare our results with the benchmark provided
by [1]. The performance results of several variants of our
method on the Dist-646 dataset can be found in Table III.
Here, the Boldface indicates the best result and the grey rows
are variants of our method described in Section V-C. These
results follow the same trend from the Composition-1k dataset
in the sense that our method outperforms all other trimap-
free algorithms and makes comparable prediction against the
state-of-the-art trimap-based algorithms. It is noticeable that
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(b) ClosedForm

I

(j) Ground Truth

(g) Late Fusion (h) BGM (i) Ours

Fig. 7: The visual comparison results on the Adobe Composition-1k dataset. See supplementary material for more results.

TABLE III: Numerical results the Dist-646 testing sets calcu-
lated on the whole image. * means that the relevant numbers
are quoted from [1].

Names MSE| SADJ Grad| Connl

KNN* [7] 0.025 116.68 103.15 121.45

ClosedForm* [6] 0.023 10573  91.76  114.55

DIM* [14] 0.009 47.56 43.29 55.90

HAtt* [1] 0.009  48.98  41.57  49.93

SDF 0.021 84.33 61.04 89.88

TDY 0.017 66.64 52.41 78.53

TD+TST 0.015  59.24  48.32  66.12

TD+TS+FGAT 0.014 52.06 41.63 58.13

TD+TS+FGA+msloss’ 0.012 48.06 38.32 54.20

TD+TS+FGA+pretrain® 0.011 48.52 39.72 51.20 (a) sD (b) TD+TS (C) TD+TS+FGA (d) Ours
Iﬁ ;TOEJFGAJ’W*’M“ 0.009 4423  37.01  47.61 . o . .
TD+TS+FGA+msloss+Ref Fig. 8: Qualitative results for different designs of our method.

w/o pretrain® 0.008 42.54 36.99 45.74

TD+TS+FGA g - 0.007 41.98 37.54 43.17
+msloss+Ref+pretrain C. Ablati d
Ours’ 0.007 40.88 3622 40.23 - Ablation Study

To justify our design, we examine nine alternatives:
single decoder (SD); tangled decoder (TD); tangled decoder
with task switcher module (TD+TS); tangled decoder
with task switcher module and FGA (TD+TS+FGA);

our method outperforms HAtt, which sets a new state-of- tangled decoder with task switcher module and FGA with
the-art result for trimap-free matting on this dataset. See multi-scale loss (TD+TS+FGA-+msloss); tangled decoder
supplementary material for qualitative results. with task switcher module and FGA with pretraining
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(TD+TS+FGA+pretrain); our design without refinement

module (TD+TS+FGA+pretrain+msloss w/o Ref); our
design without pretraining (TD+TS+FGA-+msloss+Ref
wlo pretrain); and FGA  with RGB input

(TD+TS+FGA gy +msloss+Ref+pretrain). In the single
decoder case, we remove the segmentation branch and only
train the alpha prediction branch; in the tangled decoder
case, the binary segmentation branch is added back, but
the alpha prediction branch takes segmentation information
directly without the assistance from the TS module. Without
refinement module means that the refinement module is
removed from Fig. 4; in the w/o pretrain case, the alpha
prediction task is trained from scratch. FGA,, means FGA
with wavelet components in its input replaced by the original
RGB image.

Some quantitative and qualitative results are shown in
Table I, Table II, Table III, and Fig. 8. We make the following
observations: 1) Removing the TS module jeopardizes the
performance of the tangled decoder as the information from
different tasks cannot be utilized efficiently. 2) The TS module
can be viewed as an information regulator that selects useful
information to facilitate training. In fact, by adding the TS
module, we observe 13% and 12% performance gains in
MSE for the whole image error on Composition-1k and Dist-
646 datasets, respectively. 3) The FGA module contributes
significantly to the model performance under the Gradient
metric as evidenced by 12% improvement for the gradient
error on the Composition-1k dataset and 14% for the gradient
error on the Dist-646 dataset (see Table II and Table IIL.).
4) By comparing TD+TS+FGA, TD+TS+FGA-+msloss, and
TD+TS+FGA-+msloss+Ref w/o pretrain, we see that adding
the refinement module and incorporating multi-scale loss yield
about 30% and 20% MSE performance gain, respectively.
5) The contribution of pretraining is most evident under the
MSE metric, leading to about 22% performance improve-
ment on the Dist-646 dataset (Table III) and 13% on the
Adobe dataset (Table II) as shown by the comparison between
TD+TS+FGA w/o pretrain and TD+TS+FGA-+pretrain.
This further supports our assumption that prior knowledge
of image saliency is useful for trimap-free matting. In ad-
dition, in order to assess the proposed framework in the
absence of pretraining data, we also test our full design
without pretraining. Experimental results indicate that our w/o
pretraining version already outperforms the SOTA trimap-
free method, HAtt, on both Composition-1k and Dist-646
datasets, which again demonstrates the power of our network
design. 6) To measure the contribution of the frequency
input, we replace the wavelet components with the origi-
nal RGB image and feed it directly to the FGA module.
By comparing TD+TS+FGA g, +msloss+Ref+pretrain with
Ours, we see that frequency input contributes greatly to our
final design option. Table I, where the error is calculated on
the unknown area, shows that FGA with frequency input can
greatly improve gradient error. This meets our expectations
that frequency information is leveraged as prior knowledge
for improving model performance on fine image details.
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Fig. 9: Visualizations of the FGA module. The top row
demonstrates the high-frequency guided attention maps while
the bottom row shows the low-frequency guided ones.

® (& () ®

Fig. 10: TangleNet matting results on real-world images.

D. Attention map visualization

In Fig. 9, we visualize the learned FGA attention map in
both high-frequency and low-frequency branches. Here we
take the softmax output of the simplified non-local block as
shown in Fig. 5, as this is the last stage of modelling the pixel
spatial relationship in FGA. The visualization displays regions
to which FGA provides larger weights as brighter color. By
showing the enlarged details in yellow boxes from Fig. 9, we
see that high-frequency guided attention maps assign more
weights to high-frequency regions such as object edges or
contours. In contrast, low-frequency guided maps focus more
on the rough object silhouette and tend to highlight solid
foreground areas. These attentive features help the network to
adaptively treat different parts of the image and thus facilitate
the tasks of alpha prediction and image segmentation.
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(a) Orig

(b) Late Fusion (c) DIM* (d) Ours
Fig. 11: Qualitative comparison with other matting algorithms
on real-world images. DIM* means DIM with only RGB

images as input.

E. Real-world image matting

The present method performs very well on synthetic
datasets; to ensure this is not a consequence of overfit-
ting we conduct comprehensive experiments on real-world
data, including the well-known online benchmarking dataset,
alphamatting.com dataset, as well as some public internet
images.

Internet images. The performance of TangleNet on real-
world data is demonstrated in Fig. 10. We test TangleNet on
different real-world objects, including glass, nets, plants, ani-
mals, and human (full-body and half-body portraits). We reuse
the weights from previous experiments and test several real-
world images from the internet. We observe that TangleNet
produces accurate alpha mattes for complex foreground images
without user input.

Comparison with other matting methods on real-world
images. To further quantify robustness of the present method
on real-world images, we conduct a qualitative comparison
with other matting algorithms, such as Late Fusion [19]
and DIM [14], on real-world scenarios, using their official
implementations and weights. Fig. 11 shows that our method
outperforms Late Fusion and DIM on various foreground
objects by capturing more image details and extracting more
accurate foregrounds. In addition, with the aid of saliency
detection, our method excels at identifying the most salient
object in the given image and tends to detect the salient
foreground as an enclosed entity. Row 5 and Row 6 from
Fig. 11 illustrate such scenarios where our method detects
the true foreground object and produces a clear alpha matte
whereas other matting methods which do not explicitly use
foreground priors mistakenly recognize the foreground as
separated parts (Row 5) or pick up part of the background.

Comparison with trimap-free methods trained without
saliency prior. By explicitly exploiting saliency detection, our
method is more sensitive to the most salient object in the given
image and tends to detect the salient foreground as an enclosed
entity. Fig. 12 shows scenarios where our method detects the
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(a) Orig (b) Late Fusion (c) Ours
Fig. 12: Comparisons on real-world images with a trimap-free

matting algorithm that makes no use of explicit saliency prior.

true foreground object and produces an accurate alpha matte,
whereas Late Fusion, a trimap-free method which does not
explicitly use foreground priors, will recognize the foreground
as separated parts (Row 1) or pick up part of the background

DUTS-TE Composition-1k

(a) Top row shows images with multiple foreground objects from
DUTS-TE and Composition-1k datasets. Bottom row shows the
corresponding matting results.

(b) Images.

(c) w/o pretraining.  (d) w/ pretraining.
Fig. 13: Results when multiple foreground objects are pre-
sented.

(Row 2). Therefore, our experiment shows the benefit of using
saliency knowledge as prior for matting tasks.

alphamatting.com dataset. We show our results on the
alphamatting.com benchmark to make comparisons with other
SOTA trimap-based matting algorithms. Our qualitative results
can be viewed from Fig. 14. Since our results are independent
of different trimap settings given in the alphamatting.com, we
use the same matting result for all different settings. Some
numerical comparisons can be found in Table IV. Note that
by taking only RGB images, our method is already outper-
forms some SOTA trimap-based methods (e.g. AlphaGAN
[25], IndexNet, and DIM) in terms of MSE, Gradient, and
Connectivity errors.
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(b) AlphaGAN (d) GCA (e) Ours

Fig. 14: Qualitative results on the alphamatting.com testing dataset.

TABLE IV: Our average ranking scores for four error metrics on the alphamatting.com benchmark together with other state-of-
the-art and closely related methods. S, L, U denote average rankings of three trimap types, small, large and user, as given in the
benchmark. Red, , and Blue indicate best, second best and third best performance. ‘{” indicates that the corresponding
method takes only RGB images as input.

Gradient], Connectivity. MSE| SAD/]

Methods Overall rank S L U Overall rank S L U Overall rank S L U Overall rank S L U
CA [2] 16.5 27.2 29.3 26.3 26.1 22.4 20 24.4 28.5 22.8 22
DIM [14] 24.8 21.6 21.5 31.3 21.7 21 23 20.2 19.1 22.8

IndexNet [13] 19.5 18.3 18.3 22.1 26.8 25.3 27.8 27.3 21.2 23.8 19.8 20 20.6 22.9 194 19.5
AlphaGAN [25] 24.8 23.8 22.8 27.8 38.3 43.3 37.3 35 25.4 25.8 26.8 23.6 22.1 22.9 22.6 20.8
GCA [12] 14.2 12.8 12.9 23.6 27 21.3 22.6 16.2 16.3 15 17.4 15.3 16.3 12.6 16.9
Ours’ 16.6 20.9 15 13.9 12.9 16.4 12.1 10 19.6 24.1 19.3 154 22.9 27.5 21.4 19.8

FE. Performance in the presence of multiple foreground objects

Trimap-free natural image matting inevitably faces certain
ambiguity with respect to the definition of foreground. To
address this issue, we assume that the foreground consists of
the “most salient object(s)”, and consequently prior knowledge
can be acquired via pretraining on salient object detection
tasks. As such, our network will extract at least one foreground
object from the given image if it is considered a salient object.
There are many examples in DUT-TE and Composition-1k
testing sets that have multiple foreground objects in one image.
We demonstrate some of them in Fig. 13a. We also show
the importance of pretraining on salient object detection by
making a qualitative comparison between the w/ pretraining
and w/o pretraining results. We conduct our experiment on

Fig. 15: Some failure cases of our method.

real-world images. Fig. 13a and Fig. 13c show that the network
may pick up some background objects from the scene (such as
the candle in Fig. 13b) if it is only trained on the matting task.
In contrast, the pretrained counterpart is able to successfully
distinguish foreground and background objects.

G. Limitations

Our method generalizes well on the real-world data, par-
ticularly for the cases where only one salient object exists in
the image or the levels of saliency across different foreground
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objects are evident. On the other hand, it has some difficulties
in the presence of multiple foreground objects that have similar
levels of saliency, as there is a higher chance for saliency
detection to misidentify the end user’s actual target. For ex-
ample, if two foreground objects (goal net and player) overlap
as shown in the first row of Fig. 15, our network extracts the
most salient foreground object (goal net) but also takes into
account part of the less salient object (number sign on the
player) that stands out due to its similar color. In the second
row, because the two objects (horse and lawn) are attached, our
method recognizes them as a single salient foreground which
is a failure case if the user only wants to extract the horse. As
such, our method is most suitable for images where the target
foreground object(s) can be unambiguously identified via
saliency detection. We leave the problem of addressing more
challenging scenarios (e.g., images with overlapping/attached
foreground objects) for future work.

H. Runtime comparison

Our naive implementation takes about 0.4s to predict one
image from the Adobe Composition-1k dataset on average. We
also evaluate the computational efficiency of 3 other SOTA
matting methods by running their official implementation on
the Composition-1k dataset and record their average runtimes
in Table V. It can be seen that the proposed TangleNet has
a good balance between performance and runtime efficiency.
Note that our method operates in a trimap-free manner which
is more difficult than the trimap-based matting, thus requires
more computing resources to handle. Moreover, though our
model has the most number of parameters, its inference time
is still comparable to other SOTA matting methods.

TABLE V: Runtime comparison with other SOTA methods.
The input images are resized to 800 x 800 and the implemen-
tation is carried out on a workstation with one NVIDIA RTX
2080Ti GPU. “t” indicates that the corresponding method
takes only RGB images as inputs.

Methods Parameters(10%)  Runtime(s)
Late Fusion [19] 37.9 0.37
GCA [12] 25.0 0.31
DIM [14] 28.2 0.22
Ours’ 53.9 0.40

VI. CONCLUSION

We have presented a novel learning framework that can
perform trimap-free natural image matting. Equipped with
task switchers (TS), the proposed network implements joint
learning to better utilize correlated and shared feature in-
formation of alpha prediction and binary segmentation. The
frequency-guided attention (FGA) module leverages frequency
domain features to guide alpha prediction. The network is
pretrained for salient object detection, and we introduce a
multi-scale hybrid loss to exploit the benefits of salient object
detection to trimap-free image matting. Extensive experiments
demonstrate that the proposed method outperforms all other
trimap-free matting algorithms and achieves comparable re-
sults against state-of-the-art trimap-based algorithms. We hope
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further progress can be made on trimap-free image matting
using the ideas and experience of the present work.
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