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Abstract— Adverse weather conditions such as haze can dete-
riorate the performance of autonomous driving and intelligent
transport systems. As a potential remedy, we propose an
enhanced multi-scale network, dubbed GridDehazeNet+, for sin-
gle image dehazing. The proposed dehazing method does not rely
on the Atmosphere Scattering Model (ASM), and an explanation
as to why it is not necessarily performing the dimension reduction
offered by this model is provided. GridDehazeNet+ consists of
three modules: pre-processing, backbone, and post-processing.
The trainable pre-processing module can generate learned inputs
with better diversity and more pertinent features as compared to
those derived inputs produced by hand-selected pre-processing
methods. The backbone module implements multi-scale estima-
tion with two major enhancements: 1) a novel grid structure that
effectively alleviates the bottleneck issue via dense connections
across different scales; 2) a spatial-channel attention block
that can facilitate adaptive fusion by consolidating dehazing-
relevant features. The post-processing module helps to reduce
the artifacts in the final output. Due to domain shift, the model
trained on synthetic data may not generalize well on real data.
To address this issue, we shape the distribution of synthetic
data to match that of real data, and use the resulting translated
data to finetune our network. We also propose a novel intra-task
knowledge transfer mechanism that can memorize and take
advantage of synthetic domain knowledge to assist the learning
process on the translated data. Experimental results demonstrate
that the proposed method outperforms the state-of-the-art on
several synthetic dehazing datasets, and achieves the superior
performance on real-world hazy images after finetuning.

Index Terms— Single image dehazing, attention-based feature
fusion, intra-task knowledge transfer.
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I. INTRODUCTION

A
UTONOMOUS driving systems leverage cameras and

sensors as their eyes to see the world. However,

in adverse weather conditions, the visibility of autonomous

driving systems is dramatically affected, leading to additional

difficulties in system control from the analysis of degraded

images. Motivated by the fact that haze is one of the leading

detrimental factors autonomous driving systems have to deal

with [1], [2], [3], and [4], we attempt to address the image

dehazing problem in this paper. By restoring clear counterparts

from hazy images, dehazing helps mitigate the performance

degradation on various down-stream visual tasks such as

instance segmentation [5], object detection [6] and object

tracking [7], [8], where clear images are generally required

as input.

The Atmosphere Scattering Model (ASM) [9] provides

a simple approximation of the haze effect. Specifically,

it assumes that

Ic(x) = Jc(x)t (x) + A(1 − t (x)), c = 1, 2, 3, (1)

where Ic(x) (Jc(x)) is the intensity of the cth color channel of

pixel x in the hazy (clear) image, t (x) is the transmission map,

and A is the global atmospheric light intensity. In addition,

we have t (x) = e−βd(x), where β and d(x) are the atmosphere

scattering parameter and the scene depth, respectively. This

model indicates that image dehazing is in general an under-

determined problem without the knowledge of A and t (x).

As a canonical example of image restoration, the dehazing

problem can be tackled using a variety of techniques that

are generic in nature. Moreover, many misconceptions and

difficulties encountered in image dehazing manifest in other

restoration problems as well. Therefore, it is instructive to

examine the relevant issues in a broader context, four of which

are highlighted below.

1) Role of Physical Model: Many data-driven restoration

approaches [13], [14], [15], [16] require synthetic data for

training. To produce such data, it is necessary to have a

physical model of the relevant image degradation process (e.g.,

the ASM for the haze effect). A natural question arises whether

the design of the image restoration algorithm itself should

rely on this physical model. Apparently a model-dependent

algorithm may suffer inherent performance loss on real images
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due to model mismatch. However, it is often taken for granted

that such an algorithm must have advantages on synthetic

images produced using the same physical model.

2) Selection of Pre-Processing Method: Pre-processing is

widely used in image preparation to facilitate follow-up oper-

ations [17]. It can also be used to generate several variants of

the given image, providing a certain form of diversity that can

be harnessed via proper fusion. However, the pre-processing

methods are often selected based on heuristics, thus are not

necessarily best suited to the problem under consideration.

3) Bottleneck of Multi-Scale Estimation: Image restoration

requires an explicit/implicit knowledge of the statistical rela-

tionship between the distorted image and the original clear

version. The statistical model needed to capture this relation-

ship often has a huge number of parameters, comparable or

even more than the available training data. As such, directly

estimating these parameters based on the training data is often

unreliable. Multi-scale estimation [18] tackles this problem by

i) approximating the high-dimensional statistical model with

a low-dimensional one, ii) estimating the parameters of the

low-dimensional model based on the training data, iii) para-

meterizing the neighborhood of the estimated low-dimensional

model, performing a refined estimation, and repeating this

procedure if needed. It is clear that the estimation accuracy on

one scale will affect that on the next scale. Since multi-scale

estimation is commonly done in a successive manner, its

performance is often limited by a certain bottleneck.

4) Effect of Domain Shift: The effectiveness of supervised

learning for image restoration has been widely observed.

However, building a large-scale real dataset of distorted images

paired with their ground-truth is very expensive and sometimes

not even possible [19]. Therefore, in practice one commonly

resorts to synthetic data for network training. However, due to

domain shift, there is no guarantee that a network trained on

synthetic data can generalize well to real data.

The present work can be viewed as a product of our

attempt to address the aforementioned generic issues in image

restoration. Its main contributions can be summarized as

follows:
1) The proposed GridDehazeNet+ (abbreviated as GDN+)

does not rely on the ASM for haze removal, yet is

capable of outperforming the existing model-dependent

dehazing methods even on synthetic images. We also

experimentally demonstrate that the dimension reduction

offered by the ASM is not necessarily beneficial to net-

work learning, owing to the introduction of undesirable

local minima.

2) In contrast to hand-selected pre-processing methods,

the pre-processing module in the GDN+ is fully train-

able, thus can offer more flexible and pertinent image

enhancement.

3) The implementation of attention-based multi-scale esti-

mation on a densely connected grid network allows

efficient information exchange across different scales

and alleviates the bottleneck issue.

4) To cope with domain shift, certain translated data are

generated, by shaping the distribution of synthetic data

to match that of real-world hazy images, to finetune

Fig. 1. Dehazing results for a real hazy image from URHI dataset [12]:
(a) a real hazy image, (b) the result based on DADN [10], (c) the result based
on ACER-Net [11], and (d) our result. The GDN+ achieves the best visual
performance against the others in terms of haze removal and enhanced color
contrast.

our network. Moreover, a novel Intra-Task Knowledge

Transfer (ITKT) mechanism is proposed to help the

finetuning process on translated data.
Benefiting from the overall design, the proposed GDN+

outperforms the State-Of-The-Art (SOTA) methods on several

synthetic dehazing datasets and achieves superior performance

on real-world hazy images after finetuning. An example is

shown in Fig. 1, where our method delivers the most visually

appealing dehazing result for a real hazy image from URHI

dataset [12].

II. RELATED WORK

Early works on image dehazing either require multiple

images of the same scene taken under different conditions [20],

[21] or side information acquired from other sources [22],

[23]. Recent years have seen increasing interest in single image

dehazing without side information, which is considerably more

challenging. To place our work in a proper context, we give

a review of existing prior-based and learning-based methods

for single image dehazing as well as the recent developments

of knowledge distillation and transfer.

A. Prior-Based Single Image Dehazing

A conventional strategy for single image dehazing is to

estimate the transmission map t (x) and the global atmospheric

light intensity A (or their variants) based on certain assump-

tions or priors. Then, Eq. (1) is inverted to obtain the dehazed

image. Representative works along this line of research

include [24], [25], [26], [27], [28]. Specifically, [24] proposed

a local contrast maximization method for dehazing, motivated

by the observation that clear images tend to have higher

contrast as compared to their hazy counterparts. Reference [25]

realized haze removal via the analysis of albedo under the

assumption that the transmission map and surface shading

are locally uncorrelated. Reference [26] proposed the Dark
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Channel Prior (DCP), which asserted that pixels in non-haze

patches have low intensity in at least one color channel.

Reference [27] suggested a machine learning approach that

exploits four haze-related features using a random forest

regressor. Reference [28] proposed a color attenuation prior

that is beneficial to modeling the scene depth of hazy images.

Although these methods have enjoyed varying degrees of

success, their performances are inherently limited by the

accuracy of the adopted assumptions/priors with respect to the

target scenes.

B. Learning-Based Single Image Dehazing

With the advance in deep learning techniques and the

availability of large synthetic datasets [27], recent years have

witnessed the increasing popularity of data-driven methods for

image dehazing. These methods largely follow the conven-

tional strategy mentioned above but with reduced reliance on

hand-crafted priors. For example, [29] employed a Multi-Scale

CNN (MSCNN) that first predicted a holistic transmission

map, and refined it locally. Reference [30] proposed a

three-layer Convolutional Neural Network (CNN), named

DehazeNet, to directly estimate the transmission map from

the given hazy image. Reference [31] embedded the ASM

into a neural network for joint learning of the transmission

map, atmospheric light intensity, and dehazing result. Refer-

ence [32] explored the physical model in the feature space

(instead of the pixel space) to perform image dehazing.

The AOD-Net [33] represents a departure from the con-

ventional strategy. Specifically, a reformulation of Eq. (1) was

introduced in [33] to bypass the estimation of the transmission

map and atmospheric light intensity. A close inspection reveals

that this reformulation in fact renders the ASM completely

superfluous (though this point is not recognized in [33]).

In [17], the proposed Gated Fusion Network (GFN) went one

step further by explicitly abandoning the ASM in its design,

and leveraged several hand-selected pre-processing methods

(i.e., white balance, contrast enhancing, and gamma correc-

tion) to improve the dehazing results. Recent works mostly

followed this model-agnostic design principle and tackled

image dehazing with various techniques. By regarding image

dehazing as image-to-image translation, [34] constructed an

Enhanced Pix2pix Dehazing Network (EPDN) based on the

Generative Adversarial Network (GAN), which does not rely

on any physical model. Reference [35] capitalized on the

attention mechanism and put forward a feature fusion attention

network with the flexibility to regulate different types of infor-

mation. By leveraging the boosting strategy, [36] proposed

a boosted decoder that can progressively restore the haze-

free image. Reference [11] treated hazy and clear images as

negative and positive samples to train the proposed AECR-

Net jointly, and the adopted contrastive regularization can be

applied to other dehazing methods to further improve their

performance.

While there is increasing evidence that model-agnostic

image dehazing methods are able to outperform their

model-dependent counterparts even if only synthetic data

(produced using the physical model) are concerned, the reason

behind this puzzling phenomenon is still unclear. In this paper,

we attempt to lift the veil by providing a possible explanation

together with some supporting experiments.

In addition, owing to domain shift, learning-based methods

trained on synthetic data tend to generalize poorly over to

real data. To mitigate the detrimental effect caused by domain

shift, [37] proposed a hybrid approach, where a CNN is trained

on synthetic data in a supervised manner, and on real data in

an unsupervised manner. To support unsupervised learning,

physical priors (i.e., dark channel loss and total variation

loss) were employed. Reference [38] followed this line of

ideas and proposed a principled synthetic-to-real dehazing

framework to finetune a model trained on synthetic data,

aiming at improving the generalization performance on real

data. However, involving real data in training does not fully

address the domain-shift issue. In [10], a Domain Adaptation

Dehazing Network (DADN) was proposed by adopting the

CycleGAN [19] to deal with the discrepancies between the

synthetic domain and real domain.

In view of the fact that unsupervised finetuning guided by

physical priors may cause significant artifacts, the GDN+

proposed in the present paper exploits supervised finetuning

on translated data to improve the dehazing performance on

real data.

C. Knowledge Distillation and Transfer

One popular application of knowledge distillation [39] is for

network compression, where the learned logits from a large

network (i.e., teacher network) is transferred to a small net-

work (i.e., student network). Compared to the teacher network,

the student network is much easier to deploy, possibly at the

cost of a potential performance drop. Reference [40] suggested

that the intermediate representations from the teacher network

can be leveraged to further improve the training process of

the student network. In recent years, knowledge distillation

has been proved useful not only for network compression,

but also for various computer vision tasks, including object

detection [41], semantic segmentation [42], image synthe-

sis [43], style transfer [44], etc. Knowledge distillation found

its first application to single image dehazing in [45], where the

teacher and student networks share the same architecture but

are responsible for image reconstruction and image dehazing

tasks, respectively. In contrast, for the Knowledge Distilling

Dehazing Network (KDDN) proposed in [46], the architectures

of teacher and student networks are tailored to the designated

tasks; besides, multiple features, rather than only one inter-

mediate feature, are distilled to improve the effectiveness of

knowledge transfer.

Different from [45] and [46], where knowledge transfer

is carried out among heterogeneous tasks, we perform ITKT

with teacher and student networks working on the same task

(i.e, dehazing) but taking different data as inputs. Intuitively,

the synthetic domain knowledge yields useful insights into

translated data, where the haze effect does not admit a simple

mathematical characterization. Therefore, the characteristics of

intermediate features distilled from the teacher network can

greatly benefit the learning process of the student network,
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Fig. 2. On the potential detrimental effect of using the ASM for image
dehazing. For illustration purposes, we focus on two color channels of a
single pixel and denote the respective transmission maps by t1 and t2. Fig. 2
(a) plots the loss surface as a function of t1 and t2. It can be seen that the
global minimum is attained at a point (see the green dot) satisfying t1 = t2 ,
which agrees with the ASM. With the black dot as the starting point, one can
readily find this global minimum using gradient descent (see the yellow path).
However, a restricted search based on the ASM along the t1 = t2 direction
(see the red path) will get stuck at a point indicated by the purple dot (see
Fig. 2 (b)). Note that this point is a local minimum in the constrained space
but not in the original space, and it becomes an obstruction simply due to the
adoption of the ASM.

enabling it to deliver satisfactory dehazing results on

real-world hazy images.

III. METHOD

A. Overview

Here we highlight the following aspects of the proposed

GDN+.

1) No Reliance on Atmosphere Scattering Model: Although

the model-agnostic approach to single image dehazing has

become increasingly popular, no convincing reason has been

provided why there is any advantage in ignoring the ASM,

as far as the dehazing performance on synthetic images is

concerned. The argument put forward in [17] is that estimating

t (x) from a hazy image is an ill-posed problem. Nevertheless,

this is puzzling since estimating t (x) (which is color-channel-

independent) is presumably easier than Jc(x), c = 1, 2, 3.

In Fig. 2, we offer a possible explanation why it could be

problematic if one blindly uses the constraint that t (x) is

color-channel-independent to narrow down the search space

and why it might be potentially advantageous to relax this

constraint in the search of the optimal t (x). However, with

this relaxation, the ASM offers no dimension reduction in the

estimation procedure. More fundamentally, it is known that the

loss surface of a CNN is generally well-behaved in the sense

that the local minima are often almost as good as the global

minimum [47], [48], [49]. On the other hand, by incorporating

the ASM into a CNN, one basically introduces a nonlinear

component that is heterogeneous in nature from the rest of

the network, which may create an undesirable loss surface.

To support this explanation, we provide some experimental

results in Section V-E.

2) Trainable Pre-Processing Module: The pre-processing

module effectively converts the single image dehazing problem

to a multi-image dehazing problem by generating several

variants of the given hazy image, each highlighting a dif-

ferent aspect of this image and making the relevant feature

information more evidently exposed. In contrast to those

hand-selected pre-processing methods adopted in the exist-

ing works (e.g., [17]), the proposed pre-processing module

is made fully trainable, which is in line with the general

preference of data-driven methods over prior-based methods as

shown by recent developments in image dehazing. Note that

hand-selected processing methods typically aim to enhance

certain concrete features that are visually recognizable. How-

ever, the exclusion of abstract features is not justifiable.

Indeed, there might exist abstract transform domains that

better suit the follow-up operations than the image domain.

A trainable pre-processing module has the freedom to identify

transform domains over which more diversity gain can be

harnessed.

3) Enhanced Multi-Scale Estimation: Here the meaning of

word enhanced is two-fold. First, inspired by [50], we enhance

the conventional multi-scale network using a novel grid

structure. This grid structure has clear advantages over the

encoder-decoder structure and the conventional multi-scale

structure extensively used in image restoration [17], [51], [52],

[53]. In particular, the information flow in the encoder-decoder

structure or the conventional multi-scale structure often suffers

from the bottleneck effect due to the hierarchical architecture

whereas the grid structure circumvents this issue via dense

connections across different scales using up-sampling/down-

sampling blocks. Second, we further enhance the network with

Spatial-Channel Attention Blocks (SCABs) that are placed at

the junctions where features are exchanged and aggregated.

These SCABs enable the network to better exploit the diversity

created by the pre-processing module and the information most

relevant to the dehazing task.

4) Intra-Task Knowledge Transfer: ITKT refers to lever-

aging the knowledge acquired from a certain task on one

dataset to facilitate the learning process of the same task on

another dataset. In the current context, it is observed that

the synthetic domain knowledge is beneficial for handling

translated data. Rather than directly finetuning the network on

translated data, a teacher-student structure is used to memorize

and take advantage of synthetic domain knowledge. To the

best of our knowledge, this is the first work that leverages

ITKT to improve the dehazing performance on real-world hazy

images.

In comparison to the preliminary work GDN [54], the

GDN+ is improved in two aspects. First, the GDN only adopts

channel-wise attention with the learned weights independent

of the target features [54]. In contrast, the GDN+ employs the

self-attention mechanism [55], [56], encapsulated in SCABs,

to generate feature-adaptive weights. Second, the GDN tends

to suffer significant performance drop on real-world hazy

images, possibly due to the domain shift between synthetic

data in training and real data in testing. To address this issue,

we shape the distribution of synthetic data to match that of

real data, and use the resulting translated data to finetune

the network. In order to memorize and take advantage of

synthetic domain knowledge, we propose an ITKT mechanism

to assist the learning process on translated data. In addition,

more comprehensive performance evaluations are conducted

as compared to those in [54]. Specifically, We test more

benchmarks with full comparisons to SOTAs, perform the task-

driven evaluation, conduct thorough ablation studies, and show

the failure cases of our method.
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Fig. 3. Architecture of the proposed GridDehazeNet+ (GDN+). Here Conv@KnSm indicates a n × n convolution with stride m.

Fig. 4. Illustration of the dashed box in Fig. 3. Here Conv(DeConv)@KnSm

indicates a n × n convolution (deconvolution) with stride m.

B. Network Architecture

The GDN+ consists of three modules, i.e, the pre-

processing module, the backbone module and the post-

processing module. Fig. 3 shows the overall architecture of

the proposed network.

The pre-processing module consists of a 3 × 3 convolution

with stride 1 (denoted as Conv@K3S1) and a Residual Dense

Block (RDB) [52]. It generates 16 feature maps, which will be

referred to as the learned inputs, from the given hazy image.

The backbone module is an improved version of Grid-

Net [50] originally proposed for semantic segmentation. It per-

forms enhanced multi-scale estimation based on the learned

inputs. We choose a grid structure with three rows and

six columns. Each row corresponds to a different scale and

consists of five RDBs with the number of feature maps

unaltered. Each column can be regarded as a bridge that

connects different scales via Upsampling Blocks (UBs) or

Downsampling Blocks (DBs). In each UB (DB), the size of

feature maps is increased (decreased) by a factor of 2 while the

number of feature maps is decreased (increased) by the same

factor. Here upsampling/downsampling is implemented using

convolution instead of traditional methods such as bilinear or

bicubic interpolation. Fig. 4 provides a detailed illustration

of the RDB, UB, and DB in the dash box in Fig. 3. Each

RDB consists of five convolutions: the first four are used to

increase the number of feature maps while the last one fuses

these feature maps. The output is then combined with the input

of this RDB via channel-wise addition. Following [52], the

growth rate in RDB is set to 16. The UB and DB are struc-

turally the same except that they respectively use Convolution

(Conv) and DeConvolution (DeConv)) to adjust the size of

feature maps. In GDN+, except for the first convolution in

the pre-processing module and the 1 × 1 convolution in each

RDB, all other convolutions are activated by ReLU. To strike

a balance between the output size and the computational

complexity, we set the number of feature maps at three

different scales to 16, 32, and 64, respectively.

Since dehazed images constructed directly from the output

of the backbone module tend to contain artifacts, we introduce

a post-processing module to further improve the quality. The

structure of the post-processing module is symmetrical to that

of the pre-processing module.

It is worth noting that the GDN+ subsumes some existing

networks as special cases. For example, the red path in

Fig. 3 shows an encoder-decoder network that can be obtained

by pruning the GDN+. As another example, removing the

exchange branches (i.e., the middle four columns in the

backbone module) from GDN+ leads to a conventional multi-

scale network.

C. Feature Fusion With Spatial-Channel Attention Blocks

Since the appearance of haze in real world is usually

nonhomogeneous and different channels of learned features

may not be of the same importance for the dehazing process,

we embed certain judiciously constructed SCABs into the

network to enable adaptive feature fusion. The SCAB employs

spatial and channel-wise attentions [56], realized respectively

by the Spatial Attention Block (SAB) to deal with distinct

haze effects at different positions of an image, and the

Channel Attention Block (CAB) to perform importance-aware

exploitation of feature maps. The SAB applies the average and

max poolings along the channel axis to aggregate the local

information on different feature maps, and the two pooled

results are concatenated and fed into a convolution to generate
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Fig. 5. Illustration of the spatial-channel attention block (SCAB).

the spatial attention map. The CAB applies the average and

max poolings along the spatial axis instead; the pooled features

are adjusted by a shared multi-layer perceptron which explores

the inter-channel relationship to consolidate the important

information; the adjusted versions are then added together and

passed through a Sigmoid function to produce the channel

attention coefficients. Finally, the spatial attention map and

channel attention coefficients act back on the corresponding

input features to enable self-adaptation.

As illustrated in Fig. 5, each SCAB consists of two CABs

and one SAB. The features from horizontal and vertical

streams are first accommodated by two distinct CABs to

strengthen the relevant characteristics via channel-wise atten-

tion. The outputs of the two CABs are added together and

then fed into a SAB for spatial adaptation. Let Fh
i, j and

Fv
i, j denote respectively the features from the horizontal

stream and vertical stream at the fusion position (i, j) in the

backbone module, where i = 0, 1, 2 and j = 0, 1, . . . , 5. Let

f h
i, j (F | 2h

i, j ) and f v
i, j (F | 2v

i, j ) denote respectively the CAB

operations for the horizontal stream and vertical stream at the

fusion position (i, j), where F represents an arbitrary input

feature, and 2h
i, j , 2v

i, j are the trainable weights. Similarly, let

gi, j (F | 8i, j ) denote the SAB operation at the fusion position

(i, j), where 8i, j is the trainable weight. The proposed SCAB

can be expressed as

F̃i, j = gi, j ( f c
i, j (Fc

i, j | 2c
i, j ) + f r

i, j (Fr
i, j | 2r

i, j ) | 8i, j ), (2)

where F̃i, j is the output feature of the SCAB. Note that SCABs

endow the GDN+ with the ability to fuse features from

different scales adaptively. Quite remarkably, our experimental

results indicate that it suffices to use SCABs with a small

number of trainable weights to substantially boost the overall

performance.

D. Intra-Task Knowledge Transfer

We use the CycleGAN [19] to convert ASM-based synthetic

data to more realistic-looking translated data, which can be

regarded as samples from the distribution of real-world hazy

images. As the real haze effect captured by translated data does

not admit a simple mathematical characterization, the learning

process on translated data is more difficult than that on

synthetic data. Therefore, to memorize and take advantage of

Fig. 6. Flowchart of the proposed ITKT mechanism.

Fig. 7. Visualization of the haze effect before (shown in the 1st row) and
after (shown in the 2rd row) the translation.

synthetic domain knowledge, we propose an ITKT mechanism

to reduce the finetuning difficulty on translated data. The over-

all flowchart of the proposed ITKT mechanism is demonstrated

in Fig. 6. The teacher GDN+ is pre-trained on synthetic data,

and its learned weights are utilized to initialize the student

GDN+. During the finetuning process, the teacher GDN+

is responsible for memorizing and providing the synthetic

domain knowledge to the student GDN+, thus its weights

are fixed. The student GDN+, equipped with this knowledge,

is finetuned on translated data in a supervised manner to

improve the dehazing performance on real-world hazy images.

Note that the teacher and student networks have the freedom to

adopt their own architectures as long as the synthetic domain

knowledge is properly transferred.

As shown in Fig. 6 and Fig. 7, the haze effect of synthetic

images is noticeably different from that of translated ones,

which is a clear indicator of domain shift. Benefiting from

ITKT, the performance drop on real-world hazy images is

significantly alleviated. In Sec. V-H, we also evaluate the

effectiveness of ITKT by directly finetuning the GDN+

on translated data. Our experimental results show that the

dehazing performance deteriorates as a consequence of this

change.

E. Loss Function

In total, three different loss functions are employed to train

the proposed network: 1) the fidelity loss L F , 2) the perceptual

loss L P , and 3) the intra-task knowledge transfer loss L K T .

Their definitions and the underlying rationale are detailed

below.

1) Fidelity Loss: The commonly used fidelity losses include

L1 and MSE. The MSE loss is very sensitive to outliers,
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thus might suffer from gradient explosion [57]. Although the

L1 loss does not have this issue, it is not differentiable at

zero. The smooth L1 loss can be regarded as an integration

of these two losses, thus inherits their merits and avoids

their drawbacks. Therefore, we use it as our fidelity loss to

quantitatively measure the difference between the dehazed

image and the ground-truth.

Let Ĵc(x) denote the intensity of the cth color channel of the

pixel x in the dehazed image, and N denote the total number

of pixels in one channel. Our fidelity loss can be expressed as

L F =
1

3N

3
∑

c=1

N
∑

x=1

h( Ĵc(x) − Jc(x)), (3)

where

h(e) =

{

0.5e2, if |e| < 1,

|e| − 0.5, otherwise.
(4)

2) Perceptual Loss: As a complement to the pixel-level

fidelity loss, the perceptual loss [58] leverages multi-scale

features extracted from a pre-trained deep neural network

to quantify the overall perceptual difference between the

dehazed image and the ground-truth. In this work, we use

the VGG16 [59] pre-trained on ImageNet [60] as our loss

network and extract the features from the last layer of each

of the first three stages (i.e., Conv1-2, Conv2-2 and Conv3-3).

The perceptual loss can be defined as

L P =
1

3

3
∑

l=1

1

Cl HlWl

||φl( Ĵ) − φl(J )||22, (5)

where φl( Ĵ) (φl(J )), l = 1, 2, 3, denote the aforementioned

three VGG16 feature maps associated with the dehazed image

Ĵ (the ground truth J ), and Cl , Hl , and Wl specify the

dimension of φl( Ĵ ) (φl(J )).

3) Intra-Task Knowledge Transfer Loss: To effectively

transfer the synthetic domain knowledge, we design an ITKT

loss that guides the features from the student network to

mimic the ones from the teacher network by reducing their

L1 distance. Three intermediate features from the first scale

of the backbone module after the SCAB-based fusion are

selected. According to our experiments, this selection induces

the best dehazing performance among the candidates that

have been considered. Following the notation in Sec. III-C,

we denote these features by F̃0,3, F̃0,4, F̃0,5, and use the

superscripts t and s to indicate whether they come from the

teacher or student network. Our ITKT loss can be expressed

as

L K T =
1

3

5
∑

j=3

||F̃s
0, j − F̃ t

0, j ||1. (6)

4) The Overall Loss: The overall loss LS of our GDN+ is

a linear combination of fidelity loss L F , perceptual loss L P ,

and ITKT loss L K L , which can be formulated as

LS = L F + λP L P + λK L L K L, (7)

where λP and λK L are used to balance the loss components.

According to our experiments, they are set to 0.04 and

0.01 respectively.

TABLE I

STATISTICAL DISTANCES OF SYNTHETIC AND TRANSLATED

IMAGES TO REAL-WORLD HAZY IMAGES IN TERMS

OF KULLBACK–LEIBLER DIVERGENCE

F. Training Dataset

The RESIDE [12] is a large-scale dataset that contains an

Indoor Training Set (ITS), an Outdoor Training Set (OTS),

a Synthetic Object Testing Set (SOTS), a set of Unannotated

real Hazy Images (URHI), and a real Task-driven Testing

Set (RTTS). The ITS and OTS are generated from clear

images based on the ASM via proper choices of the scattering

coefficient β and the atmospheric light intensity A. Following

DADN [10], we use the exactly same dataset that consists

of 6, 000 images with 3, 000 from ITS and 3, 000 from OTS

to train our GDN+. Since different dehazing methods may

originally adopt different training datasets (e.g., AOD-Net [33]

was trained using 27, 256 synthetic hazy images while ACER-

Net [11] was trained on ITS that only has 13, 990 images), for

fair comparisons, we laboriously retrain all the methods under

consideration on the aforementioned dataset by following their

respective training strategies.

To finetune the GDN+, we select 1, 000 real-world hazy

images from RTTS, and utilize the CycleGAN to convert

6, 000 synthetic images to translated ones with the distrib-

ution matched to that of real-world hazy images. Note that

these 6, 000 translated images should not be considered as

additionally introduced data since they are generated from

the training data per se. Fig. 7 visualizes the haze effect

before and after this translation. In addition, we adopt the

Kullback–Leibler Divergence (KLD) to measure the statisti-

cal distance between translated and real-world hazy images

(denoted as Tran↔Real), as well as that between synthetic and

real-world ones (denoted as Syn↔Real), where the real-world

hazy images are from URHI. The corresponding results are

shown in Tab. I. Since the lower KLD value stands for

the higher similarity between two distributions, it is clear

that the distribution of synthetic images has been shaped to

better approximate that of real-world hazy images after this

translation, resulting in a more realistic appearance.

IV. DATA PREPARATION

A. Testing Dataset

For testing, in total 6 dehazing datasets are used. Four of

them are synthetic datasets and the rest two are real datasets.

These testing datasets differ in size and haze distribution.

We elaborate them as follows:

• SOTS [12] is an ASM-based dataset that comprises 500

indoor hazy images and 500 outdoor hazy images roughly

of size 620 × 460.

• Middlebury [61] is an ASM-based dataset that consists

of 23 indoor hazy images roughly of size 2, 880×1, 988.
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TABLE II

QUANTITATIVE EVALUATIONS ON FOUR DEHAZING BENCHMARKS. FOR EACH METHOD, AVERAGE PSNR/SSIM VALUES ARE REPORTED. RED AND

BLUE INDICATE THE BEST AND THE SECOND BEST PERFORMANCE. THE NUMBER OF PARAMETERS AND RUNTIME ARE ALSO PROVIDED

• HazeRD [62] is an ASM-based dataset that contains

75 outdoor hazy images roughly of size 3, 873 × 2, 516.

• O-HAZE [63] has 45 outdoor hazy images roughly of

size 5, 456 × 3, 632. Instead of relying on ASM for

synthesizing the haze effect, hazy images are produced

by a professional haze machine and consequently more

realistic. Since the haze distribution of this dataset is

different from that of ASM-based datasets, following the

testing protocol of previous dehazing works, we adopt the

training/testing splits in [64] to train and test the GDN+

and other methods chosen for comparison.

• 37Real [65] collects 37 real-world hazy images roughly

of size 768 × 512. This is a commonly used benchmark

for testing the performance of dehazing methods in the

real world.

• URHI [12] contains 4, 809 real-world hazy images of

various sizes (ranging from 400 × 350 to 2, 000 ×

1, 000).
Unless otherwise specified, the pre-trained GDN+ is tested

on synthetic datasets to demonstrate the superiority of our

network design while the finetuned GDN+ is tested on real

datasets to verify the mitigation of domain gap attributed to

ITKT. For simplicity, we do not explicitly differentiate them

since it is easy to tell the difference based on the testing

datasets.

V. EXPERIMENTAL RESULTS

We conduct extensive experiments to demonstrate that the

proposed GDN+ outperforms the SOTA methods on synthetic

datasets and delivers visually more satisfactory results on

real datasets after finetuning. The experiments also provide

useful insights into the constituent modules of the GDN+ and

solid justifications for the effectiveness of the proposed ITKT

mechanism.

A. Experimental Setup

The GDN+ is first trained on synthetic data for 100 epochs

and then finetuned on translated data for another 100 epochs.

We randomly crop a patch of size 240 × 240 from each image.

For training, the Adam optimizer is adopted, where β1 and

β2 take the default values of 0.9 and 0.999, respectively. The

batch size is set to 16 with the initial learning rate 1e-3 that

will be reduced by half every 20 epochs. The training is carried

out on a PC with two NVIDIA GeForce GTX 2080Ti, but only

one GPU is used for testing.

We compare the proposed GDN+ with 10 methods includ-

ing DCP [26], MSCNN [29], DehazeNet [30], AOD-Net [33],

GFN [17], EPDN [34], KDDN [46], DADN [10], ACER-

Net [11], and GDN [54], where the DCP is the only non-

learning-based method. Although ACER-Net is the current

SOTA, DADN achieves better visual quality on real-world

hazy images. Therefore, we consider both of them as the

representatives of existing dehazing methods. For quantitative

comparisons, we leverage the Peak Signal to Noise Ratio

(PSNR) and Structure Similarity Index Measure (SSIM) to

evaluate the dehazing results of different methods on synthetic

datasets. Since the ground-truth of real-world hazy images are

not available in real datasets, the Fog Aware Density Evaluator

(FADE) [66], a no-reference image quality assessment tool

specifically designed for image dehazing task, is used as an

alternative to support quantitative evaluations.

B. Evaluation on Synthetic Data

We conduct evaluations on the 4 synthetic datasets, i.e.,

SOTS, Middlebury, HazeRD, and O-HAZE. Comparisons

in terms of average PSNR/SSIM values can be found in

Tab II. It is evident that the proposed GDN+ outperforms all

other methods chosen for comparison, and has a significant

improvement over its preliminary version GDN (e.g., 4.4 dB

on SOTS). Besides, for each method, we also demonstrate

the number of trainable parameters in million (M), and the

runtime in second (s) on a 1, 080P fake dataset, where all

pixel values are set to 1. Except for DCP that only works on

CPU, the runtime of all other methods are tested on GPU. The

proposed GDN+ has much fewer parameters than ACER-Net

and DADN, and our un-optimized code takes about 0.3s to

process one 1, 080P image, faster than DADN and ACER-

Net. The comparison between GDN+ and GDN reveals that
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Fig. 8. Visual comparisons on SOTS (the first two rows) and Middlebury (the last two rows). Zoom in for details.

Fig. 9. Visual comparisons on HazeRD (the first two rows) and O-HAZE (the last two rows). Zoom in for details.

the adoption of self-attentions greatly improves the dehazing

performance with a negligible impact on the model size

(i.e., +0.003M) and runtime (i.e., +0.02s).

We demonstrate the visual comparisons on SOTS and

Middlebury in Fig. 8, and HazeRD and O-Haze in Fig. 9. GFN

and EPDN exhibit limited performance on dense haze removal

(e.g., the 3rd row in Figs. 9 (b-c)). KDDN, ACER-Net, and

GDN still retain a non-negligible amount of haze in some cases

(e.g., the 4th row in Figs. 8 (d, f, g)). DADN tends to cause

color distortions (e.g., the 1st row in Fig. 9 (e)). In comparison,

the dehazing results of GDN+ are visually most similar to the

ground-truth as they are free of color distortion and contain

very little residual haze.

C. Evaluation on Real Data

In Fig. 10, we perform visual comparisons between GDN+

and other methods on 2 real datasets, i.e., 37Real and URHI.

Except for DADN, the dehazing performance of other methods

under comparison deteriorates significantly due to domain

shift. The performance drop of DADN is the least among them.

TABLE III

QUANTITATIVE EVALUATIONS ON TWO REAL DATASETS

USING THE FADE METRIC. THE LOWER VALUE INDICATES

THE BETTER DEHAZING PERFORMANCE

However, similar to the situation on synthetic data, severe color

distortion may occur, which seriously compromises the visual

quality of its dehazed images. In comparison, the proposed

GDN+ removes haze more thoroughly and is free of color

distortion. Moreover, the objective assessment is conducted

by leveraging FADE metric, where we quantitatively compare

the GDN+ with the SOTAs and our precedent work GDN.
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Fig. 10. Visual comparisons of different methods on real-world hazy images: the ones in the first 2 rows are from 37Real, and the rest are from URHI.
Zoom in for details.

The results are shown in Tab. III, where the lower FADE

value indicates the better dehazing performance. Unless oth-

erwise specified, the best results for all tables in this paper

are highlighted in bold. It is evident that GDN+ surpasses

the SOTAs on FADE, and the dehazing performance on

real data is significantly improved as compared to GDN.

This improvement can be attributed to the proposed ITKT

mechanism that successfully alleviates domain shift between

synthetic data and real data.

D. Task-Driven Evaluation

Since image dehazing methods can be utilized as a

pre-processing step to alleviate the performance degradation of

high-level tasks such as object detection or recognition in the

presence of adverse weather conditions, the improvement of

detection accuracy resulted from dehazing has been regraded

as an indicator to evaluate the dehazing methods [33], [67].

We leverage YOLOv3 [68] to detect image objects. For the test

dataset, although RTTS provides hazy images with annotated

object classes and relevant bounding boxes, annotation defects

occur in this dataset where plenty of objects that should have

been annotated are left out. This flaw results in a severe

consequence that true-positive detections are considered as

false-positive ones when the ground-truth label is missing.

To address this issue, we select 100 real-world hazy images

that have full annotations from RTTS for task-driven evalu-

ation, and these images do not overlap with the ones used

TABLE IV

TASK-DRIVEN EVALUATION. THE mAP
SCORES ARE REPORTED IN %

to generate translated data. It should be mentioned that we

do not finetune image dehazing and YOLOv3 jointly. Instead,

image dehazing methods only serve as a pre-processing step

to remove haze in input images.

Tab. IV shows mean Average Precision (mAP) scores on the

dehazed images for different methods. Although DADN visu-

ally performs better than ACER-Net and GDN on real-world

hazy images, it surprisingly reports the lowest mAP, even

worse than direct detection on hazy images. One possible

reason is that DADN introduces noise during dehazing, which

is the culprit for detection degradation. For ACER-Net, the

detection gain on its dehazed images is marginal. In compari-

son, the dehazed images from our GDN+ are most beneficial

to YOLOv3 with a gain of 2.9%. Besides, owing to the novel

SCAB and domain shift mitigation, GDN+ surpasses our
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Fig. 11. Task-Driven Evaluation. YOLOv3 is leveraged to detect objects on real-world hazy images and the dehazing results from different methods.

TABLE V

QUANTITATIVE COMPARISONS OF DIFFERENT ESTIMATION STRATEGIES

precedent work GDN by 2.1%. We also demonstrate two sets

of object detection results in Fig. 11. It can be seen that the

dehazed image from DADN does suffer from the noise that is

not originally present, which matches our analysis above. Due

to the superior dehazing performance of GDN+, YOLOv3

can now detect the objects that are not detectable from hazy

images (see the 2nd row in Fig. 11).

E. Necessity of Atmosphere Scattering Model

To gain a better understanding of the difference between

the adopted direct estimation strategy where the ASM is

completely bypassed (denoted as Direct), and the indirect

estimation strategy where the transmission map and the

atmospheric light intensity are first estimated in order to

calculate the dehazing result (denoted as Indirect), we adjust

the GDN+ to make it follow the indirect estimation strategy

instead. Specifically, we modify the convolution at the output

end (i.e., the rightmost Conv@K3S1 in Fig. 3) so that it

outputs two feature maps rather than three. The first feature

map is used as the estimated transmission map while the

mean of the second one serves as the estimated atmospheric

light intensity. These two estimates are then substituted into

Eq. (1) to calculate the dehazing result. This variant of GDN+

is trained in the same way as detailed in Sec. V-A, and

evaluated on SOTS and HazeRD. It is worth noting that both

SOTS and HazeRD are synthetic datasets based on ASM.

Therefore, as far as this kind of testing datasets are concerned,

the indirect estimation strategy essentially takes advantage of

the ASM as a perfect prior. However, as shown in Tab. V,

although adopting the ASM leads to a significant reduction

in the number of parameters to be estimated, it in fact incurs

performance degradation. This indicates that incorporating the

TABLE VI

QUANTITATIVE COMPARISONS OF DIFFERENT INPUT TYPES

ASM into GDN+ does have a detrimental effect on the loss

surface.

F. Utility of Learned Inputs

The pre-processing module of GDN+ produces 16 learned

inputs in total. Here we build two variants of GDN+ to

demonstrate the diversity gain offered by these learned inputs.

For the first variant (denoted as Original), we remove the

pre-processing module and replace the first 3 learned inputs

by the RGB channels of the given RGB hazy image and the

rest by all-zero feature maps. For the second variant (denoted

as Derived), the learned inputs are substituted with the same

number of derived inputs generated by hand-selected pre-

processing methods. More specifically, we generate 16 derived

inputs, 3 from the given hazy image, 3 from the White

Balanced (WB) image, 3 from the Contrast Enhanced (CE)

image, 6 from two Gamma Corrected (GC) images with γ set

to 1.5 and 2.5 respectively, and 1 from the Gray-Scaled (GS)

image. Fig. 12 shows the derived and learned inputs of a hazy

image.

Although the hand-selected pre-processing methods can

create diversified inputs, our pre-processing module is con-

siderably more flexible and adaptive in finetuning the given

image to better suit the follow-up process (e.g., the learned

inputs #3 and #5 enhance different aspects of the given hazy

image and are complement to each other). More interestingly,

the learned input #1 resembles a GS image, even though this

is not prescribed. This shows that our pre-processing module

is capable of mimicking hand-selected pre-processing methods

when it is beneficial to do so.

To further validate the effectiveness of learned inputs,

we follow the same experimental setup to train both variants,
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Fig. 12. Visualization of the derived and learned inputs for a hazy image from SOTS.

Fig. 13. Dehazing results of attention variants on a hazy image from SOTS.

and quantitatively evaluate their dehazing performance on

the SOTS and HazeRD. Tab. VI shows that the GDN+

with learned inputs (denoted as Learned) outperforms the

Original and Derived versions in terms of PSNR and SSIM

metrics. Note that the Derived version performs worse than

the Original version on SOTS. A possible explanation is that

the generated derived inputs may fail to compensate the given

hazy image, but rather hinder the haze removal in some cases.

G. Validation of Overall Design

The proposed GDN+ is a multi-scale network that is

enhanced in two aspects: 1) a grid structure with dense

connections across different scales to facilitate the information

exchange, and 2) a novel SCAB that is capable of fusing

features based on their relative importance. To demonstrate

the effectiveness of the adopted grid structure, we consider

the following two variants: 1) the Encoder-Decoder Network

(EDNet) obtained by pruning the GDN+ (see the red path in

Fig. 3), and 2) the conventional multi-scale network (MSNet)

that removes all exchange branches except for the first and

the last ones in order to maintain the minimum connection.

To validate the proposed SCAB, we consider the following

three variants: 1) the GDN+ without SCABs (w/o SCAB),

2) the GDN+ with CAB-absent SCABs (w/o CAB), and 3)

the GDN+ with SAB-absent SCABs (w/o SAB). Moreover,

Fig. 14. Qualitative comparisons of ITKT-related variants on real hazy images
from URHI.

TABLE VII

QUANTITATIVE COMPARISONS OF DIFFERENT VARIANTS OF GDN+

to validate the efficacy of our post-processing module and

the adopted perceptual loss, we build two other variants, one

without the post-processing module (w/o post-processing) and

the other without using the perceptual loss (w/o perceptual

loss). All these variants are trained in the same way as before

and are tested on the SOTS and HazeRD.

The quantitative comparisons are shown in Table VII. Com-

pared to EDNet and MSNet, the proposed GDN+ achieves

favorable dehazing results owing to the superiority of the grid

structure. Besides, it can be seen that the variants w/o SAB and

w/o CAB both outperform the baseline w/o SCAB though the

performance gain from CAB appears to be more significant
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Fig. 15. Limitations. Our GDN+ may fail while dealing with extremely dense haze in distant scenes. Besides, the GDN+ might amplify the shot noise in
the hazy images.

TABLE VIII

QUANTITATIVE COMPARISONS OF ITKT-RELATED

VARIANTS ON SOTS-T

than that from SAB. Benefiting from the contributions of both

CAB and SAB, the GDN+ with SCABs delivers further ele-

vated performance. We also visualize the respective advantages

of spatial and channel-wise attentions in Fig. 13. As compared

to GDN+, the variant w/o post-processing is inferior owing to

the potential residual artifacts from the backbone module, and

the variant w/o perceptual loss has a degraded performance

that validates the benefit of supervising perceptual difference.

The above results provide a fairly comprehensive justification

for the overall design of GDN+.

H. Effectiveness of Intra-Task Knowledge Transfer

To convincingly demonstrate the effectiveness of the pro-

posed ITKT mechanism (denoted as w/ ITKT ), we consider

a variant that trains the GDN+ directly on translated data

(denoted as w/o ITKT ). We also convert the original SOTS

to a translated version, named SOTS-T, for quantitative com-

parisons. Besides, the GDN+ pre-trained on synthetic data is

also tested on SOTS-T (denoted as pre-trained).

As shown in Tab. VIII, higher PSNR and SSIM val-

ues are achieved while the ITKT mechanism is adopted.

This validates the synthetic domain knowledge can bene-

fit the learning process of translated data. Moreover, from

Figs. 14(c-d), w/ ITKT removes haze more thoroughly than

w/o ITKT, and produces more appealing dehazing results.

As for pre-trained, although it works well on synthetic data,

the dehazing performance on real data is rather limited as

shown in Fig. 14 (b). This dramatic performance drop is

owing to the domain shift between training and testing data.

Therefore, it is necessary to conduct training on real data

or those with (approximately) the same distribution. This is

exactly the rationale of creating and utilizing the translated

data to finetune the GDN+.

It is worth emphasizing that the proposed ITKT is generic

in nature and can be easily employed in other learning-based

dehazing methods to improve their performance on real-world

hazy images.

I. Limitations

Fig. 15 demonstrates the limitations of the proposed GDN+.

In the first row, we show a real-world hazy image that suffers

from extreme dense haze. Our GDN+ performs favorably

against SOTAs in the nearby areas where the haze is relatively

light, but it cannot fully remove the haze in distant scenes

(e.g., see the buildings in this image). Besides, the dehazing

task could become more intractable when the image is not

only severely degraded by extremely dense haze but also

contaminated by shot noise. For instance, as shown in the

second row of Fig. 15, after employing GDN+, the shot noise

is greatly amplified and more perceptible. This problem is not

only encountered in the proposed method, but also exists in

the dehazing results of DADN. The problem of joint dehazing

and denoising is beyond the scope of the present paper and

will be treated in our future work.

VI. CONCLUSION

We have proposed an enhanced multi-scale network and

demonstrated its competitive performance for single image

dehazing. The design of this network involves several ideas.

We adopt a densely connected grid structure to facilitate the

information exchange across different scales. A Novel SCAB,

constructed based on the idea of self-attentions, is placed at the

junctions of the grid structure to enable adaptive feature fusion.

The issue of domain shift is addressed by converting synthetic

data to translated data with the distribution matched to that of

real-world hazy images. We further propose a novel ITKT

mechanism that leverages the synthetic domain knowledge to

assist the learning process on translated data.

Due to the generic nature of its building components, the

proposed network is expected to be applicable to a wide range

of image restoration problems. Investigating such applications

is an endeavor well worth undertaking.
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Our work also sheds some light on the puzzling phenom-

enon regarding the use of the ASM in image dehazing, and

suggests the need to rethink the role of physical models in the

design of image restoration algorithms.
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