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Abstract. In this paper, we propose a DNNs-based solution to jointly
remosaic and denoise the camera raw data in Quad Bayer pattern. The
traditional remosaic problem can be viewed as an interpolation process
that converts the Quad Bayer pattern to a normal CFA pattern, such as
the RGGB one. However, this process becomes more challenging when
the input Quad Bayer data is noisy. In addition, the limited amount of
data available for this task is not sufficient to train neural networks. To
address these issues, we view the remosaic problem as a bayer recon-
struction problem and use an image restoration model to remove noises
while remosaicing the Quad Bayer data implicitly. To make full use of
the color information, we propose a two-stage training strategy. The first
stage uses the ground-truth RGGB Bayer map to supervise the recon-
struction process, and the second stage leverages the provided Image
Signal Processor (ISP) to generate the RGB images from our recon-
structed bayers. With the use of color information in the second stage,
the quality of reconstructed bayers is further improved. Moreover, we
propose a data pre-processing method including data augmentation and
bayer rearrangement. The experimental results show it can significantly
benefit the network training. Our solution achieves the best KLD score
with one order of magnitude lead, and overall ranks the second in Quad
Joint Remosaic and Denoise @ MIPI-challenge.

Keywords: Quad Bayer · Remosaicing · Denoising · Data
augmentation

1 Introduction

In recent years, the increasing demand for the smartphone camera performance
has accelerated the high imaging quality of image sensors for smartphones. One
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Fig. 1. The overall pipeline of this paper. The input of our model is a Quad Bayer map
and the output is a RGGB Bayer map.

of the trends is the multi-pixel, which improves the image resolution by reducing
the size of each pixel and arranging more pixels. However, there is a trade-off rela-
tionship between pixel miniaturization and decrease in sensitivity. For example,
when capturing photos in low-illuminance environments, the weak sensitivities of
sensors may decrease the imaging quality. Under this background, a new Color
Filter Array (CFA) pattern called Quad Bayer is invented to achieve a good
trade-off between the pixel size and the sensitivities of sensors. The Quad Bayer
can minimize the decrease in the sensitivities of sensors even if the pixel size is
small, which can improve the imaging quality under low light.

Compared to the normal CFA patterns, such as the RGGB Bayer pattern,
the four adjacent pixels of a Quad Bayer are clustered with the same color fil-
ters. As shown in Fig. 1, the Quad Bayer data has three kinds of color filters and
the pixels within a 2 × 2 neighborhood have the same color filters. The Quad
Bayer has two modes for low and normal light. When capturing photos under
low light, the binning mode enhances the sensitivities of sensors by averaging
the four pixels within a 2 × 2 neighborhood, which can improve the imaging
quality. As a tradeoff, the spatial resolution is halved. When capturing pho-
tos under normal light, the output bayer is supposed to have the same spatial
resolution as the input Quad Bayer data. Thus, the original Quad Bayer data
needs to be converted to a normal CFA pattern and then fed to the Image
Signal Processor (ISP). This converting is an interpolation process called remo-
saic. The traditional remosaic algorithms are implemented based on hardware.
For example, Sony Semiconductor Solutions Corporation (SSS) handles remosaic
by installing an array conversion circuit on the image sensor chip1. Compared
to hardware-based algorithms, software-based remosaic algorithms can be more
flexibly applied to different devices. A good remosaic algorithm should be able
to get the normal bayer output from the Quad Bayer data with least artifacts,
such as moire pattern, false color, and so forth.

However, there are two challenges when designing a remosaic algorithm. The
first challenge is that the remosaic problem is difficult when the input Quad Bayer
data becomes noisy. Thus, the solution of jointly remosaicing and denoising is in
demand for real-world applications. However, denoising and remosaicing are two
separate tasks, which makes it difficult to combine them into one algorithm. To
address this challenge, we view this process as a reconstruction problem from the

1 https://www.sony-semicon.com/en/technology/mobile/quad-bayer-coding.html.

https://www.sony-semicon.com/en/technology/mobile/quad-bayer-coding.html
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noisy Quad Bayer map to the clean RGGB Bayer map. Inspired by the success of
deep neural networks (DNNs) in image reconstruction tasks, we propose to use a
DNNs-based model to remove noises while implicitly rearranging the Quad Bayer
map. We present the overall pipeline in real applications in Fig. 1. In addition, we
propose a two-stage training strategy to make full use of the color information in
both the bayer domain and the RGB domain. As shown in Fig. 2, the first stage uses
the ground-truth RGGB Bayer maps to supervise the training of the reconstruc-
tion process. After that, the second stage applies the ISP provided by organizers
to generate RGB images from the reconstructed bayers. This fine-tuning stage can
further improve the quality of our reconstruction.

To train a robust DNNs-based model, we need sufficient training data. How-
ever, there is no public dataset that currently contains the paired noisy Quad
Bayer data and clean RGGB Bayer data. Thus, the limited amount of data avail-
able for this task is the second challenge. Although the organizers of Quad Joint
Remosaic and Denoise @MIPI-challenge provide a training set that includes
the 210 paired noisy Quad Bayer data and clean RGGB Bayer data, they are
not sufficient for training. To address this challenge, we propose a data pre-
processing method that employs data augmentation and bayer rearrangement
to expand and unify the training samples. The experimental results show this
pre-processing can significantly benefit the network training.

After developing and validating our solution, we submit the trained model
to Quad Joint Remosaic and Denoise @MIPI-challenge. Our solution is ranked
second in the final test phase and achieves the best KLD score. To summarize,
our contributions include:

– We propose a DNNs-based model with a two-stage training strategy to jointly
remosaic and denoise for Quad Bayer data. By leveraging the two-stage train-
ing strategy, the model can make full use of the color information in both the
bayer domain and the RGB domain, and the reconstruction quality can be
further improved.

– We propose a data pre-processing method including data augmentation and
bayer rearrangement. The experimental results show this pre-processing can
significantly benefit the network training.

– We submit our solution to Quad Joint Remosaic and Denoise @MIPI-
challenge. Our solution is ranked the second in the final test phase and
achieves the best KLD score. Codes: https://github.com/jj199603/MIPI2022-
QuadBayer

2 Related Works

2.1 Denoising

Image denoising has been greatly concerned in the past few decades. Currently,
the image denoising can be classified as two categories, i.e., traditional methods
and deep learning based methods.

https://github.com/jj199603/MIPI2022-QuadBayer
https://github.com/jj199603/MIPI2022-QuadBayer
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In traditional image denoising methods, image analysis and processing are
usually based on transcendental images. Common methods are 3D transform-
domain filtering (BM3D) [10], non-local means (NLM) [4], sparse coding [2], etc.
The non-local similarity approach [4] used a non-local algorithm with shared
similarity patterns, and the same strategy is applied to [15]. The application
of image denoising was implemented using weighted nuclear norm minimization
in [18], statistical properties of images were used to remove noise in [43], and
scale mixtures of Gaussians were used in the wavelet domain for denoising in
[41]. Dictionary learning methods [13] relied on sparse learning [33] from images
to obtain a complete dictionary. Traditional denoising methods have certain
denoising effectiveness based on reasonable use of image information but the
traditional image denoising method is limited because it cannot be extended to
all real scenes.

With the development and application of data-driven deep learning, image
denoising is given a new processing method. A growing number of researchers are
designing novel network architectures based on CNN and transformers, improv-
ing the accuracy and versatility of image denoising. [5] first introduced the multi-
layer perceptron (MLP) in image denoising and achieves the comparable perfor-
mance to BM3D. To mimic the real images, many synthetic noise methods are
proposed, such as Poissonian-Gaussian noise model [16], Gaussian mixture model
[54], camera process simulation [46], and genetic algorithm [8]. Since then, sev-
eral large physical noise datasets have been generated, such as DND [40] and
SIDD [1].

In addition, the real image denoising method is also considered. Researchers
first tried the methods previously applied to synthetic noisy datasets on real
datasets with model adaptation and tuning [53]. Among them, AINDNet [24]
adopted the transfer learning from comprehensive denoising to real denoising,
and achieved satisfactory results.

The VDN [48] network architecture based on U-Net [42] was proposed, which
assumed that the noise follows an inverse gamma distribution. However, the dis-
tribution of noise in the real world is often more complex, so this hypothesis
did not apply to many application scenarios. Subsequently, DANet [50] aban-
doned the hypothesis of noise distribution and used the GAN framework to train
the model. Two parallel branches were also used in the structure: one for noise
removal and the other for noise generation. A potential limitation was that the
training of the GAN-based model was unstable and thus took longer to converge
[3]. DANet also used the U-Net architecture in the parallel branch.

Zhang et al. [53] recently proposed FFDNet, a denoising network using super-
vised learning, which connected noise levels as a mapping of noisy images and
demonstrated the spatially invariant denoising of real noise with oversmoothed
details. MIRNet [51] proposed a general network architecture for image enhance-
ment, such as denoising and super-resolution, with many new building blocks
that extracted, exchanged, and exploited multi-scale feature information. InvDN
[31] transformed noisy inputs into low-resolution clean images and implicit
representations containing noise. To remove noise and restore a clear image,
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InvDN replaced noise implicit representation with another implicit representa-
tion extracted from previous distribution during noise reduction.

2.2 ISP and Demosaicing

A typical camera ISP assembly line uses a large number of image processing
blocks to reconstruct sRGB images from raw sensor data. In another study [27],
a two-stage depth network was proposed to replace the camera ISP. The entire
ISP of the Huawei P20 smartphone was proposed to be replaced by a combination
of deep mode and extensive global functional operations [21]. In [44], the authors
proposed a CNN model to suppress image noise and exposure correction to the
images captured by smartphone cameras.

Image demosaicing is considered as a low-level ISP task aimed at recreating
the CFA pattern of RGB images. However, in practical applications, the image
sensors can be affected by noises, which can also lead to the corruption of the
final image reconstruction results during demosaicing [29]. In recent work, there-
fore, the focus has been on the need for a combination of demagnetization and
denoising, rather than traditional sequential operations.

In the last four decades, signal processing methods have been widely used
for the demosaicing problem [37,47] or resort to the frequency information to
improve zipper effect [11,34]. Early methods used frequency method to design
the aliasing-free filters [12]. In order to improve near-edge performance, a median
chromatic aberration filter [20] was performed and a gradient based approach
[39] was widely used. While many methods used chromatic aberrations, Monno
recommends using color residuals, starting with a bilinear interpolation of the
G channel and then improving the red and blue residuals [38].

However, traditional image processing method can not produce good image
quality, easy to produce visual artifacts. More and more demosaicing methods
exploit the technology of machine learning; see Energy-based Minimization in
[25] or Heide’s Complete ISP Modeling [19].

In the last five years, deep learning has become more and more important in
low-level visual tasks [23,30,45] than human cognitive abilities. The work related
to image demosaicing is summarized below.

Garbi et al. presented Bayer with the first end-to-end solution that com-
bined noise reduction and demosaicing [17]. After receiving Bayer images, they
extracted four RGGB channels and linked them to a estimated noise channel.
The five channels were used as the low-resolution inputs for CNN. They then
used a simple network structure similar to VDSR with stacked convolution and
global residual paths. Before the final convolution, they also connected the orig-
inal spliced Bayer plane to the feature mapping of the previous sample. Their
main contribution is a data-driven approach to demosaicing the data and pub-
lishing a new training dataset by hard patch mining using HDR-VDP2 and moiré
detection metric to detect artifact-prone patches [35].

Liu et al. [29] proposed an approach based on deep learning, supplemented
by density maps and green channel guidance. In [26], the majority-minimization
method were merged into a residual denoising network. A deep network was
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trained using thousands of images to achieve state-of-the-art results [17]. In
addition to these supervised learning methods, [14] attempted to address JDD
through the unsupervised learning of large numbers of images.

The planar codec structure with symmetric skip connections (RED-Net) was
proposed by Mao et al. in [36]. RED-Net used skip connections to connect
encoder and counter encoder components, but their network is simple and not
multi-resolution. They tried different depths of the network, including deeper
ones.

Long et al. [32] proposed an image segmentation for a full convolutional
networks, and the improved version had multi-scale features that captured the
background of U-Net [42] at different resolutions. It is demonstrated that the
U-Net architecture performed better than the DnCNN [22] network.

3 Proposed Method

In this Section, we first describe the details of the Quad Bayer pre-processing
method including data augmentation and bayer rearrangement in Sect. 3.1.
Then, the architecture of the model is presented in Sect. 3.2. Finally, we describe
the proposed effective two-stage training strategy in Sect. 3.3.

3.1 Quad Bayer Pre-processing

Bayer Rearrangement. As shown in Fig. 2, a raw image in the Quad Bayer
pattern consists of multiple 4 × 4 Quad Bayer units, and each Quad Bayer unit
consists of 4 red units, 8 green units, and 4 blue units. Inspired by the success
of the raw image processing methods [7,28], a Quad Bayer map is supposed to
be decomposed into four channels: R channel, G1 channel, G2 channel, and B
channel. For the convenience of channel decomposition, we first swap the second
column and the third column in each 4× 4 Quad Bayer unit and then swap the
second row and the third row of each unit. After that, the Quad Bayer map is
converted to a RGGB-alike bayer map and we decompose the RGGB-alike map
into four channel maps that are the R channel, the G1 channel, the G2 channel,
and the B channel, respectively. This process is presented in the first row of
Fig. 2.

The above swapping process only includes simple spatial swapping of Quad
Bayer units. Thus, the converted RGGB-alike maps still contain noises. Since the
provided official ISP does not support a raw image in the Quad Bayer pattern
as the input, we also apply this swapping process to the original Quad Bayer
data containing noises for visualization in the remaining sections of this paper.

Data Augmentation. We use data augmentation to expand the training sam-
ples. The data augmentation processing is applied to the RGGB-alike map after
the spatial swapping other than the original Quad Bayer map. In training, the
horizontal flip, the vertical flip, and the transposition (permutation of rows and
columns) are randomly applied to the RGGB-alike map. To maintain the RGGB
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Fig. 2. The solution pipeline of this paper. In the data pre-processing stage, we use
data augmentation to expand training samples and convert a Quad Bayer map to four
channel RGGB maps. In the first stage, the ground-truth RGGB Bayer maps are used
for supervision. In the second stage, the ground-truth RGB image generated by the
ISP system is used for supervision. (Color figure online)

pattern after applying augmentations, a cropping-based post-processing method
inspired by [28] is used to unify the CFA pattern after these augmentations.

– vertical flip: after vertically flipping, a RGGB-alike map is converted to a
GBRG-alike map. If we directly decompose the GBRG-alike map into four
channels, the channel order will be changed. Thus, we remove the first and
last rows of the flipped GBRG-alike map to convert it to a new RGGB-alike
map. The details of this process are presented in Fig. 3(a).
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– horizontal flip: after horizontally flipping, a RGGB-alike map is converted
to a GRBG-alike map. To unify the pattern for channel decomposition, we
remove the first and last columns of the flipped GRBG-alike map to convert
it to a new RGGB-alike map. The details of this process are presented in
Fig. 3(b).

– transposition: the rows and the columns of the original RGGB-alike map
are permuted after transposition, but the pattern is still RGGB. The tradi-
tional data augmentation methods also include rotations of 90◦, 180◦, 270◦.
However, rotations of 90◦, 180◦, and 270◦ can be obtained by a combination
of flip and transposition. For instance, the clockwise rotation of 90◦ is equiv-
alent to transposing and then flipping horizontally. Thus, transposition can
be viewed as the elemental operation of rotation. The details of transposition
are shown in Fig. 3(c).

In addition, to improve the training efficiency, we randomly crop the augmented
RGGB-alike map to h × w. The starting coordinates of the cropping need to be
even numbers to maintain the RGGB pattern.

Fig. 3. The details of the data augmentations used in this paper.
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3.2 Network for Jointly Remosaicing and Denoising

In this paper, we view the remosaicing problem as a reconstruction process from
a Quad Bayer map to a RGGB Bayer map. Inspired by the success of image
restoration methods based on deep neural networks [9,49,51,52], we use a DNNs-
based neural network to remove noises while remosaicing the Quad pattern to
the RGGB pattern implicitly.

We select MIRNet [51] to remove noises and reconstruct RGGB Bayer maps.
MIRNet [51] consists of multi-scale feature extraction paths. Feature fusion is
carried out among feature maps of different scales to fully learn the multi-scale
features of the image. Compared to the models based on auto-encoder [9], MIR-
Net contains a high-resolution feature path where the feature maps are not down-
sampled, thus more detailed information is preserved. Through the feature fusion
among the path of different scales, the high-level semantic features extracted
with small resolutions and the low-level features extracted with large resolutions
are fully fused and learned. MIRNet exploits multiple attention mechanisms to
fuse the multi-scale features, such as spatial attention and channel attention. We
present the overall architecture of this model in Fig. 2, omitting the details such
as the attention modules.

The input of MIRNet is a h
2 × w

2 × 4 map generated from data augmentation
and bayer rearrangement. The output of MIRNet is also a h

2 × w
2 × 4 map. We

apply PixelShuffle operation to the output to generate a h × w × 1 RGGB map
which represents the reconstructed RGGB Bayer data.

3.3 Two-Stage Training Strategy

We propose an effective two-stage training strategy to improve the reconstruction
quality. As shown in Fig. 2, in the first stage, the model described in Sect. 3.2
is used to jointly remosaic the Quad Bayer data to the RGGB Bayer data and
denoise it. The ground-truth RGGB Bayer map is used for supervision.

After the training in the first stage, we concatenate the ISP provided by the
challenge organizers to the jointly remosaicing and denoising network. The pro-
vided ISP applies normalization, demosaicing, white balance correction, color
correction, and gamma correction to a raw image. The output of our network
and the ground-truth RGGB Bayer map are processed to generate the corre-
sponding RGB images. Then, the generated ground-truth RGB image is used as
a color supervision to finetune our network. In this stage, we freeze the param-
eters of ISP. Compared to the bayer data, the RGB image contains more color
information, which can further improve the quality of the reconstructed raw
data.

Loss Functions. In the first training stage, we use Charbonnier loss [6] to
optimize the parameters of our model, which is defined as:

LCharbon =
√

||Rrec − Rgt||2 + ε2 (1)
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where Rrec represents the reconstructed raw data in the RGGB Bayer pattern,
Rgt represents the ground-truth RGGB Bayer map, and ε is hyper-parameter
which is set to 10−3. In the second training stage, we compute the L1 loss
between the RGB images generated from the reconstructed raw data and the
ground-truth raw data.

4 Experimental Results

4.1 Dataset

The dataset used in experiments is provided by the organizers of the MIPI2022
challenge. The dataset in the development phase is divided into a training set
and a validation set. Both the training set and the validation set include samples
of three noise levels: 0 dB, 24 dB, and 42 dB. The training set of each noise level
includes 70 Quad Bayer files and the corresponding ground-truth files in the
RGGB pattern. The validation set of each noise level only includes 15 Quad
Bayer files without the corresponding ground-truth files. Thus, the training set
includes 270 Quad Bayer samples and the validation set includes 45 Quad Bayer
samples. The resolutions of these samples are 1200×1800. The RGB thumbnails
of these 85 raw images are also provided for the convenience of visualization.

In experiments, we use all the 270 training samples to train our model and
evaluate our model on the 45 validation samples. Because the distribution of the
noise model is unknown, no additional datasets are used for training to prevent
overfitting.

4.2 Implementation Details

We trained three models for three noise levels (0 dB, 24 dB, and 42 dB), respec-
tively. The training sample is the cropped raw data with a size of 256×256. The
hyper-parameter ε of Charbonnier loss is set to 10−3. We use Adam to optimize
the network. The initial learning rate is 2×10−4, decaying by 1/10 every 235,200
iterations. The batch size of training is 2 and the average training time of one
model is about 36 h in one NVIDIA-2080 Ti. When validating and testing, orig-
inal Quad Bayer data without any cropping and the output of the model is the
corresponding RGGB Bayer map that has the same resolution as the input.

4.3 Evaluation Metrics

The official metrics used by Quad Joint Remosaic and Denoise @MIPI-challenge
are Peak Signal To Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM), Learned perceptual image patch similarity (LIPIS), and KL divergence
(KLD). The final results and rankings are evaluated by the M4 score:

M4 = PSNR × SSIM × 21−LPIPS−KLD (2)

In the development and validation phase, we evaluate our model on the vali-
dation set. Since the ground-truth RGGB Bayer maps of the validation set are
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not provided, we can only compute the accurate M4 scores through the official
website. However, the submission number is limited, we cannot compute the
accurate M4 for all experimental results. For the convenience of development
and validation, we use PSNR to evaluate some of the experiments.

4.4 Ablation Study

In this section, we analyze the effects of the data augmentation methods and
the proposed two-stage training strategy.

Ablation Study of Data Augmentations. To analyze the importances of
the data augmentation methods, we first train three models without data aug-
mentations for three noise levels and then train three models with the data
augmentations described in Sect. 3.1. During training, we randomly select one
augmentation from vertical flips, horizontal flips, and transpositions with a 25%
probability, and do not apply any augmentations with a 25% probability. The
ablation results on validation set are presented in Table 1. Table 1 shows that
using data augmentations can improve the scores of PSNR, SSIM, and LPIPS.

Table 1. The ablation results of data augmentations

Model PSNR SSIM LPIPS KLD M4

Without aug 36.24 0.954 0.127 0.00496 64.18

With aug 36.65 0.956 0.121 0.00628 65.15

Ablation Study of Two-Stage Training Strategy. To analyze the impor-
tance of the data augmentation methods, we first train three models for the
three noise levels without the second fine-tuning stage. When the PSNR values
converge on the validation set, we fine tune these three models on base of the
first stage. We use PSNR to evaluate the improvement of the second stage. For
0 dB, the PSNR value increases from 40.91 to 41.17. For 24 dB, the PSNR value
increases from 36.22 to 36.43. For 42 dB, the PSNR value increases from 32.27
to 32.36. These results show that fine-tuning the model with RGB images can
further improve the visual quality of the reconstructed images. Compared to the
raw data, RGB images contain richer color information since the channel number
is three times that of raw images.

4.5 Model Complexity and Runtime

The total number of trainable parameters is 31,788,571. When validating and
testing, the resolution of the input is 1200 × 1800 and the average test time in
one NVIDIA-2080 Ti is about 0.7 s. Although we use a single model for jointly
remosaicing and denoising, our model is not light-weighted, but can be further
optimized to adapt real-time application.



186 J. Jia et al.

Table 2. The results and rankings of Quad Joint Remosaic and Denoise @MIPI-
challenge

Rank Team PSNR SSIM LPIPS KLD M4

1 op-summer-po 37.93 0.965 0.104 0.019 68.03

2 JHC-SJTU (ours) 37.64 0.96 0.1 0.0068 67.99

3 IMEC-IPI & NPU 37.76 0.96 0.1 0.014 67.95

4 BITSpectral 37.2 0.96 0.11 0.03 66

5 HITZST01 37.2 0.96 0.11 0.06 64.82

6 MegNR 36.08 0.95 0.095 0.023 64.1

Fig. 4. The qualitative results of normal brightness images on Quad Joint Remosaic
and Denoise @MIPI-challenge validation set.

Fig. 5. The qualitative results of low brightness images on Quad Joint Remosaic and
Denoise @MIPI-challenge validation set.

4.6 Challenge Submission

After validating the proposed solution, we submit the trained model in Quad
Joint Remosaic and Denoise @MIPI-challenge. The dataset in the final test phase
includes 15 Quad Bayer files and the resolution of each test sample is 1200×1800.
The ranking of our solution is the second as shown in Table 2. Table 2 shows that
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Fig. 6. The qualitative results of text region reconstruction on Quad Joint Remosaic
and Denoise @MIPI-challenge validation set.

Fig. 7. The qualitative results of text region reconstruction on Quad Joint Remosaic
and Denoise @MIPI-challenge test set.

our solution achieves the best KLD score. We present some qualitative results
in Fig. 4, Fig. 5, Fig. 6, and Fig. 7. Figure 4 shows the representative reconstruc-
tion results of normal brightness images on Quad Joint Remosaic and Denoise
@MIPI-challenge validation set, Fig. 5 shows the representative results of low
brightness images, Fig. 6 shows the representative results of text regions, and
Fig. 7 shows the results on the test set. The noise level of these presented exam-
ples is 42 dB.

4.7 Limitations

In experiments, we find that our model has limitations in two scenes. The first
scene is the low brightness image as shown in Fig. 8(a)–(c). The second scene is
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the texture region containing the high noise level as shown in Fig. 8(d), which
suffers color errors in the reconstruction result.

Fig. 8. The failure examples on Quad Joint Remosaic and Denoise @MIPI-challenge
validation set.

5 Conclusions

The paper proposes a novel solution of jointly remosaicing and denoising for the
camera raw data in the Quad Bayer pattern. We use a DNNs-based multi-scale
model to remove noises while remosaicing the Quad Bayer map to the RGGB
Bayer map. An effective data pre-processing method is proposed to augment
and rearrange the original Quad Bayer data. To make full use of the color infor-
mation, we propose a two-stage training strategy to fine-tune the model with
the corresponding RGB images. The experimental results show that the data
pre-processing method and the two-stage training strategy can significantly ben-
efit the network training. We submit our solution to Quad Joint Remosaic and
Denoise @MIPI-challenge, and achieve the second rank and the best KLD scores
on the final test set. Our solution still has three limitations at this stage: (1) the
reconstruction quality of low brightness images needs to be improved, (2) the
reconstruction quality is not good enough for high-level noises, and (3) our model
has a slightly large number of parameters, which needs to be further optimized
for real-time applications. We will solve these problems in the future.
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