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PSCC-Net: Progressive Spatio-Channel Correlation

Network for Image Manipulation

Detection and Localization
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Abstract— To defend against manipulation of image content,
such as splicing, copy-move, and removal, we develop a Pro-
gressive Spatio-Channel Correlation Network (PSCC-Net) to
detect and localize image manipulations. PSCC-Net processes
the image in a two-path procedure: a top-down path that
extracts local and global features and a bottom-up path that
detects whether the input image is manipulated, and estimates
its manipulation masks at multiple scales, where each mask is
conditioned on the previous one. Different from the conventional
encoder-decoder and no-pooling structures, PSCC-Net leverages
features at different scales with dense cross-connections to pro-
duce manipulation masks in a coarse-to-fine fashion. Moreover,
a Spatio-Channel Correlation Module (SCCM) captures both
spatial and channel-wise correlations in the bottom-up path,
which endows features with holistic cues, enabling the network
to cope with a wide range of manipulation attacks. Thanks to
the light-weight backbone and progressive mechanism, PSCC-Net
can process 1, 080P images at 50+ FPS. Extensive experiments
demonstrate the superiority of PSCC-Net over the state-of-the-art
methods on both detection and localization. Codes and models
are available at https://github.com/proteus1991/PSCC-Net.

Index Terms— Image manipulation detection and localization,
progressive mechanism, attention mechanism.

I. INTRODUCTION

SEEING is believing? Not anymore. Recent advances on

image manipulation techniques [1]–[4] enable easy editing

of raw images, such as removing unwanted objects [5]–[8],

face swapping [2], attribute changing [9], etc. Although such

techniques are neutral, malicious attackers may utilize them

to create deceitful content to propagate false information, e.g.,
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Fig. 1. Examples of image manipulation localization. Three examples are
splicing, copy-move, and removal manipulations respectively. With novel
designs of progressive mechanism and correlation module, our method demon-
strates robust and accurate estimation at different scales and types.

fake news [10], insurance fraud [11], and Deepfake [12]–[15].

Thus, concerns of the adverse impact on social media and even

real-world systems have been raised [16], [17]. To alleviate

the concerns, it is crucial to develop reliable models to expose

the manipulated images. While being used in machine and

systems, the model is required to, at a minimal, distinguish

manipulated images from pristine ones, where the objective is

to detect. While being used for human’s viewing, the model is

further required to estimate tampered areas in forged images,

where the objective is to localize.

Generally, image manipulation consists of the content-

dependent process and content-independent process. The for-

mer includes splicing, copy-move, and removal, as shown

in Fig. 1. Both splicing and copy-move are content-copying

forgeries, where the splicing content is from a different

donor image while the copy-move content is from the target

image per se. Removal takes out certain objects from the

target image and performs refilling via inpainting. Often, the

content-dependent process follows the semantic arrangement

in the target image, e.g., placing a car on the road and replacing

one face with another, which makes the resulting image

visually “authentic” and indistinguishable from the pristine

one. However, based on image/camera trace analysis [19],

[20], subtle patterns can still be revealed to indicate the manip-

ulation. On the other hand, the content-independent process

includes global modifications such as brightness/contrast

change, blurring, noising and image compression. They barely

create any disinformation, but their resultant noise may under-

mine the analysis of image/camera traces and potentially hide

the discrepancy between the manipulated and pristine areas.
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To defend against manipulations, many image manipulation

detection and localization (IMDL) methods have been pro-

posed in the past. In the early stages, methods are designed

to handle a single type of manipulation. In recent years,

works [11], [13], [18], [21]–[26] are proposed to build generic

IMDL models for multiple manipulation types. However, there

are still 3 major unsolved problems for IMDL:

A. Scale Variation

The forged area varies in sizes. Most prior works neglect the

importance of scale variations and encounter difficulty when

detecting forged areas of different sizes. Both the conventional

encoder-decoder [23], [24] and no-pooling [11], [18] structures

have difficulties in leveraging local and global features jointly,

thus can only handle a limited scale variation.

B. Image Correlation

Manipulated regions can best be determined when com-

pared to pristine regions, especially for splicing attacks.

A naive learning of mapping from the manipulated image to

manipulation mask may lead to an overfitting to the specific

attack type in training. In contrast, considering the image

spatial correlation can lead to a more generalized localization

solution. Yet, such correlation is mostly neglected in prior

works.

C. Detection

In principle, manipulation detection and localization are

highly relevant tasks, where the detection score can be

simply derived from the response of the predicted manip-

ulation mask, i.e., at least one part of the forged image

has high response while no part of the pristine one does.

However, most prior works assume the existence of manip-

ulation in all input images. As a result, this could cause

many false alarms on pristine images and make the detection

unreliable.

To address the above issues, we propose a novel Progressive

Spatio-Channel Correlation Network (PSCC-Net), as in Fig. 2.

PSCC-Net consists of a top-down path and a bottom-up path.

In the top-down path, a backbone encoder first extracts the

local and global features from an input image. We adopt the

network structure of [27] as our encoder, whose dense connec-

tions among different scales facilitate information exchange.

In the bottom-up path, we leverage the learned features to

estimate 4 manipulation masks from small scales to large ones,

where each mask serves as a prior in the next-scale estimation.

Thanks to such a design, the final mask is estimated in a

coarse-to-fine fashion, harvesting both the local and global

information. This design enables a potential speed-up by

terminating the bottom-up mask estimation, if the intermediate

mask is satisfactory. Moreover, rather than investigating the

response of predicted manipulation masks, we feed the learned

features into a detection head to produce the score for binary

classification.

To exploit image correlation, we propose a Spatio-Channel

Correlation Module (SCCM) that grasps both spatial and

channel-wise correlations at each bottom-up step. The spatial

correlation aggregates the global context among local features.

As the response from different channels might be associ-

ated with the same class (e.g., manipulated or pristine), the

channel-wise correlation computes the similarity among fea-

ture maps to enhance the representation in interest areas. Given

the light-weight design of the encoder, PSCC-Net can process

1, 080P at 50+ FPS. Our proposed approach demonstrates

a superior manipulation localization on several benchmarks.

In addition, we show that the recent IMDL methods encounter

difficulty in distinguishing manipulated images from pristine

ones. By explicitly introducing a detection head, our method

achieves the state of the art (SOTA) on manipulation detection.

We summarize the contributions of this work as follows:

• A new PSCC-Net is proposed that performs favorably on

manipulation detection and enables progressive improve-

ment of manipulation localization in a coarse-to-fine

fashion;

• A novel SCCM module is designed to capture the spatial

and channel-wise correlations for better generalization.

SCCM avoids the use of massive annotated data to

pre-train our feature extractor;

• The SOTA results for both image manipulation detection

and localization are successively achieved.

II. RELATED WORK

A. Image Manipulation Detection

Image manipulation detection aims to distinguish manipu-

lated images from pristine ones via image-level binary clas-

sification. There are two major approaches for this detection:

the implicit manner [10], [28] and the explicit manner [29].

The former obtains the detection score by the statistics (e.g.,

average [10] or maximum [28] value) of the predicted manip-

ulation mask, and the latter explicitly outputs the score from a

dedicated classification module. Recent works [11], [18] focus

on pixel-level manipulation localization but neglect the impor-

tance of image-level detection. Instead, this work leverages

both manipulated and pristine images in training and jointly

considers detection and localization of image manipulation.

B. Image Manipulation Localization

Early works propose to localize the manipulation of one spe-

cific type, e.g., splicing [10], [19], [30]–[36], copy-move [28],

[29], [37]–[40], removal [41]–[44], and the content-preserved

process [24], [45]. Although most methods perform well on

detecting that specific forgery type, they fall short in handling

real-world cases, where usually the forgery type is unknown

in advance and various types of forgery might be utilized in

manipulation. In the related problem of face anti-spoofing,

researchers also study how to localize the facial pixels covered

with various spoof mediums [46].

Recent works attempt to tackle multiple forgeries in one

model. J-LSTM [21] and H-LSTM [24] integrate the LSTM

and CNN to capture the boundary-discriminative features.

However, due to the patch-based design, both methods are

time-consuming, and the size of detectable regions is limited

by the preset patch size. RGB-N [23] adopts the steganalysis

rich model [47] and Faster R-CNN [48], but it can only
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Fig. 2. The architecture of the proposed PSCC-Net. The detection score predicted by the detection head indicates if the input is manipulated or not. The
accuracy of manipulation localization from Mask 4 to Mask 1 is gradually improved, e.g., the prediction of Mask 4 confuses the pasted (forged) region with
the pristine (copied) one, while Mask 1 effectively fixes it.

provide bounding boxes instead of segmentation masks. Later,

ManTra-Net [11] learns features to distinguish 385 known

manipulation types and treats the problem as anomaly detec-

tion. To learn the distinguishable features, auxiliary labeled

data, such as camera sensors, are used. SPAN [18] extends

ManTra-Net to further model the spatial correlation via local

self-attention blocks and pyramid propagation. However, as the

correlation is only considered in the local region, ManTra-Net

and SPAN fail to take full advantage of the spatial correlation

and consequently have limited generalizability. In this work,

our PSCC-Net utilizes a progressive mechanism to improve

the multi-scale feature representation and SCCM modules to

better explore spatial and channel-wise correlations.

C. Progressive Mechanism

Progressive mechanism tackles a challenging task in a

coarse-to-fine fashion. It has been widely adopted in many

low-level and high-level vision tasks, such as denoising [5],

[49], inpainting [50], super-resolution [51], [52], and object

detection [53]–[56]. The pyramid structure is commonly uti-

lized to build multi-scale features. In this work, we propose a

densely connected pyramid structure that progressively refines

the manipulation mask from small scales to large ones, where

each predicted mask serves as a prior for the next-scale

estimation.

D. Attention Mechanism

The pioneer work [57] proposes an attention mechanism

to improve the feature representation with relatively low cost,

which has been widely employed in various vision tasks [13],

[29], [58]–[62]. According to the applied domain, the attention

mechanism can be divided into two types: spatial attention [59]

and channel-wise attention [58]. Recent works [63]–[65] take

the benefit of both types to further improve the representation

capability of DNN. These methods adopt separate schemes

to explore the spatial and channel-wise attentions and thus

require additional efforts to fuse them. In addition, due to

memory limit, they can only apply to high-level features where

the spatial size is small. In this work, a unified SCCM jointly

explores the image correlation and discrepancy in both spatial

domain and feature channels on the same features. Besides,

owing to the dimensional reduction design, SCCM is able

to adapt both low-level and high-level features with arbitrary

sizes.

III. PSCC-NET

Our PSCC-Net enables the detection and localization of

various types of manipulations. As compared to the image-

level detection, the pixel-level localization is more difficult.

Therefore, PSCC-Net pays special attention to tackling the

localization problem. Indeed, since the features for detection

and localization are jointly learned, improving the localization

performance will naturally benefit detection.

A. Network Architecture

1) Top-Down Path: Most prior works use the conventional

encoder-decoder [23], [24] and no-pooling structures [11],

[18] to extract features. Since forged areas have various sizes,

it is important to fuse local and global features to handle the

scale variation. However, both structures extract features in a

sequential pipeline and neglect feature fusion among different

scales, and thus can only handle a limited scale variation.

To address this issue, we adopt a light-weight backbone

in [27], named HRNetV2p-W18. Following its default setting,

the stage down-scaling ratio s is set to 2, and there are totally

4 stages.

Compared to encoder-decoder and no-pooling structures, the

benefits of our backbone are two-fold. First, features from

different scales are computed in parallel. Hence, dense con-

nections among different scales enable effective information

exchange, which is beneficial for handling scale variations.

Second, since the local and global feature fusion is performed

for every scale, each feature contains sufficient information

to predict a manipulation mask at the corresponding scale.

Therefore, this backbone is in line with our progressive

mechanism, where the prediction of each mask should rely on

all local and global features to improve its accuracy. Indeed,

except the predicted mask on the last scale, the others serve as

a prior for the next-scale mask prediction. After the top-down

path, the manipulated features on 4 scales are extracted. Then,
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we use the bottom-up path to perform manipulation detection

and localization.

2) Bottom-Up Path: The bottom-up path in PSCC-Net

estimates the detection score and the manipulation mask.

Specifically, the detection score is predicted based on the

extracted features from the top-down-path via a detection

head [27], then the manipulation mask is generated through

a progressive mechanism with full supervision. In particular,

the coarse-to-fine progressive mechanism mimics how human

tackles complicated problems in daily life.

We denote the input image as I ∈ R
H×W×3. The extracted

features at 4 scales are F1 ∈ R
H×W×C , F2 ∈ R

H/s×W/s×sC ,

F3 ∈ R
H/s2×W/s2×s2C and F4 ∈ R

H/s3×W/s3×s3C , and their

corresponding masks are denoted as M1 ∈ R
H×W , M2 ∈

R
H/s×W/s , M3 ∈ R

H/s2×W/s2
and M4 ∈ R

H/s3×W/s3
. Here

H , W , and C are the height, width, and channel number of

the image/feature respectively. Formally, we have

Mn−1 = fn−1(τ (Mn) · Fn−1), n = 2, 3, 4, (1)

where fn denotes the SCCM on the nth scale, and τ is the

upsampling operation (e.g., the bilinear interpolation). Since

M4 is the mask on the last scale, it can be directly expressed

as M4 = f4(F4). For Scales 1-3, the feature on the current

scale is associated with the upsampled mask from the previous

scale for feature modulation. Then, the modulated feature is

fed into SCCM to produce a manipulation mask.

To reduce the prediction difficulty, the proposed progressive

mechanism avoids generating the mask at the finest scale

directly. Instead, the mask on the coarsest scale is first pre-

dicted to locate the regions that are potentially forged based

on current available information. The subsequent prediction on

the finer scale can leverage the previous mask and pay more

attention to those selected regions. This process continues until

the generation of the manipulation mask at the finest scale,

which serves as the final prediction. However, without explicit

supervision on each scale, the intermediate masks might not

follow the coarse-to-fine order. Therefore, full supervisions are

applied on all scales to guide the mask estimation.

B. Spatio-Channel Correlation Module

Attention mechanisms are commonly used to modulate

learned features according to their relative significance. As the

final manipulation mask is binary, the localization can be con-

sidered as a pixel-level binary classification. Ideally, we expect

the learned features on forged regions are similar to each

other but distinct from those in pristine regions. In this case,

a fundamental clustering method may suffice to produce an

effective mask. Therefore, to better tackle manipulation local-

ization, we propose a SCCM that employs the spatial attention

to aggregate the pixel-level features based on their contextual

correlations, and the channel-wise attention to consolidate the

feature maps based on their channel correlations.

We illustrate the detailed structure of SCCM in Fig. 3, where

the input feature X is of size H × W × C . Note that even

though X is small (256×256), the size of its spatial correlation

can be enormous (65, 536 × 65, 536), easily exceeding the

memory limit. Therefore, we use function h to reshape the

Fig. 3. The structure of SCCM. Here ⊗ represents the matrix multiplication
and ⊕ the element-wise addition; the red arrow shows the common feature
flows; the pink and green arrows show the feature flows of spatial and
channel-wise attentions respectively.

input X ∈ R
H×W×C to X′ ∈ R

H W/r2×Cr2
, where each

feature map is flattened to form a vector based on SCCM

down-scaling ratio r . For instance, with r = 4, the size of spa-

tial correlation is 4, 096 ×4, 096 instead of 65, 536 ×65, 536.

Therefore, this operation preserves all feature information and

avoids modeling the spatial correlation of potentially large size

H W × H W .

To build the spatial and channel-wise correlations, one may

directly leverage X′. However, additional flexibility could be

achieved by introducing the embedded Gaussian function [59].

Therefore, we use the 1 × 1 convolution to build different

functions g, θ , and φ to transform X′ into new linear embed-

dings as X′
g = g(X′), X′

θ = θ(X′), and X′
φ = φ(X′),

all with the same size as X′. Subsequently, the spatial and

channel-wise correlations (denoted as As ∈ R
H W/r2×H W/r2

and Ac ∈ R
Cr2×Cr2

) of embedded features X′
θ and X′

φ are

computed, and the Gaussian operation is implemented by

Softmax function. In the end, the spatial and channel-wise

attentions are realized by performing matrix multiplica-

tions AsX′
g and X′

gAc, respectively. Unlike prior methods

[63]–[65] that employ two attentions on different features,

we apply both to the same linear embedding for mutual accom-

modation. Indeed, applying attentions in this way reduces

the difficulty of subsequent fusion process, and also saves

computational operations in SCCM. Specifically, the spatial

attention can be formulated as:

Y′
s = AsX′

g = softmax(X′
θX′T

φ )X′
g, (2)

where Y′
s ∈ R

H W/r2×Cr2
is the feature resulting from

the application of spatial attention, and softmax(·) denotes

the Softmax function. The element (i, j ) in As indicates the

similarity between the feature vectors in the i th row of X′
θ

and j th row of X′
φ . The more similar they are, the higher
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correlation they have. This helps the network to learn feature

representations for distinguishing forged regions from pristine

ones and avoid overfitting to a specific attack type in training.

Similarly, the channel-wise attention is expressed as:

Y′
c = X′

gAc = X′
gsoftmax(X′T

θ X′
φ), (3)

where Y′
c ∈ R

H W/r2×Cr2
is the feature resulting from the

application of channel-wise attention. The element (i, j ) in Ac

measures the similarity between the channel maps in the i th

column of X′
θ and j th column of X′

φ . Since the response from

different channels might be associated with the same class,

e.g., manipulated or pristine, the channel-wise correlation

aggregates feature maps based on their similarities to enhance

the representation in forged regions.

We use h−1 to reshape Y′
s and Y′

c respectively back to

Ys and Yc of size H × W × C . Further, two functions

ωs and ωc are built by 1 × 1 convolution to improve their

feature representations. The output features from ωs and ωc

are complement to each other. As it is non-trivial to determine

their relative significance, two learnable parameters αs and αc,

both initialized as 1, are used for trade-off. The learned values

of αs and αc can be found in supplementary. We also adopt

the residual learning [66] to express the feature Z as:

Z = X + αs · ωs(Ys) + αc · ωc(Yc). (4)

The final output of SCCM is a predicted mask with only

one channel. To reduce the channel number in Z, we employ

a mask generation block with the sequential order of Conv-

ReLU-Conv-Sigmoid, where Conv is a 3 × 3 convolution.

C. Loss Function

To train the PSCC-Net, we adopt the binary cross-entropy

loss (Lbce) for both detection and localization tasks. The

predicted detection score (sd ) is supervised by the ground-truth

(GT) label (ld ) with 0 standing for pristine image and 1 for

forged image. Moreover, full supervisions are applied on each

predicted mask by downsampling the GT mask G1 to G2, G3,

and G4 according to their corresponding sizes, with 0 standing

for pristine pixel and 1 for forged pixel. The masks predicted

through the progressive mechanism at different scales are

considered to be of equal importance. Therefore, our final loss

function L̂ can be expressed as:

L̂ = Lbce(sd , ld) +
1

4

∑4

m=1
Lbce(Mm, Gm). (5)

D. Training Data Synthesis

Since there is no standard IMDL dataset for training,

a synthetic dataset is built to train and validate our PSCC-Net.

This dataset includes four categories 1) splicing, 2) copy-

move, 3) removal, and 4) pristine classes. For splicing, follow-

ing [34], [67], we use the MS COCO [68] to generate spliced

images, where one annotated region is randomly selected

per image, and pasted into a different image after several

transformations. We adopt the same transformation as [34]

including the scale, rotation, shift and luminance changes.

Since the spliced region is not necessarily an object, we use

Fig. 4. Examples from our synthetic dataset. The generated images of
different manipulation types and their ground-truth masks are demonstrated.

TABLE I

SUMMARY OF TEST DATASETS FOR OUR PRE-TRAINED AND FINE-TUNED

MODELS (# STANDS FOR THE NUMBER OF IMAGES. ✔ AND ✗ INDICATE

WHETHER OR NOT THE MANIPULATION TYPE IS INVOLVED)

the Bezier curve [69] to generate random contours, then

fill them to produce splicing masks. We follow the same

processes above but randomly select donor and target images

in KCMI [70], VISION [71], and Dresden [72] that are

commonly used to identify camera source [20], to generate

additional spliced images as supplementary. For copy-move,

the dataset from [28] is adopted. For removal, inspired by [34],

[67], we adopt the SOTA inpainting method [6] to fill one

annotated region that is randomly removed from each chosen

MS COCO image. As to the pristine class, we simply select

images from the MS COCO dataset.

In summary, we have 116, 583 images in splicing class,

100, 000 images in copy-move class, 78, 246 images in

removal class, and 81, 910 images in pristine class, thus

∼0.38M in total. Examples of different manipulation types

in our synthetic dataset are demonstrated in Fig 4. It should

be emphasized that our training dataset is much smaller than

that of MantraNet and SPAN, where massive annotated data

(1.25M) is used to train their feature extractor, not to mention

the large number of synthesized manipulations for training the

rest of their networks.

As it is inefficient to train all manipulated images in one

epoch, we uniformly sample 0.025M images per class to

form a 0.1M dataset on-the-fly for training in each epoch.

In addition, we also build a validation set that contains

4 × 100 images. The size of synthetic images are all set to

256 × 256.

IV. EXPERIMENTS

A. Experimental Setup

1) Test Data: We evaluate the manipulation localization on

four standard test datasets: Columbia [73], Coverage [38],
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CASIA [74] and NIST16 [75], and one real-world dataset:

IMD20 [76]. To finetune PSCC-Net, we follow the same train-

ing/testing split on Coverage, CASIA, and NIST16 as in [18],

[23] for fair comparisons. Specifically, Columbia [73] is a

splicing dataset of 180 images. Coverage [38] is a copy-move

dataset of 100 images; for fine-tuning, it is split into 75/25 for

training and testing. CASIA [74] (v1.0 + v2.0) includes

both splicing and copy-move; for fine-tuning, 5, 123 images

from v2.0 is adopted for training, and 921 images from

v1.0 is for testing. NIST16 [75] has 564 images, involving

all three manipulations; for fine-tuning, 404 images are used

for training and 160 for testing. IMD20 [76] consists of

2, 010 real-life manipulated images collected from Internet,

and involves all three manipulations as well. We summarize

the manipulation types for each test dataset and the number of

images for evaluating our pre-trained and fine-tuned models in

Tab. I.

As the manipulation detection is not considered by recent

works, there is no standard dataset for benchmarking. Since

CASIA is the only test dataset in here that corresponds each

manipulated image to its pristine image, we use both forged

and pristine images and define an evaluation protocol for

detection. This dataset is named CASIA-D and consists of

1, 842 images with 50% forged and 50% pristine.

2) Metrics: To quantify the localization performance, fol-

lowing previous works [11], [18], we use pixel-level Area

Under Curve (AUC) and F1 score on manipulation masks.

To evaluate the detection performance, we use image-level

AUC and F1 score, Equal Error Rate (EER), and True Positive

Rate at 1% false positive rate (TPR1%). Since binary masks

and detection scores are required to compute F1 scores,

we adopt the EER threshold to binarize them.

3) Implementation Details: PSCC-Net is end-to-end train-

able and light-weighted. Its top-down path and bottom-up path

have 2.0 and 1.6 Million (M) parameters. In the bottom-

up path, the detection head has 0.9 M and the rest part

(for localization) has only 0.7 M parameters. In comparison,

the ManTra-Net [11] and SPAN [18] have 3.8 and 3.7 M

parameters, respectively. Implemented by PyTorch, our model

is trained with GeForce GTX 1080Ti. We initialize our back-

bone with ImageNet pre-trained weights, and optimize the

whole model by Adam [77] with a batch size of 10 and an

initial learning rate of 2e-4. The learning rate is halved every

5 epochs and the total training period is 25 epochs.

Our network can take arbitrary-size images as input.

To avoid performance degradation caused by size mismatch

between training (e.g., 256 × 256) and testing data (e.g.,

4, 000×3, 000), at the end of top-down path, we resample the

extracted features from the first to the last scales respectively

into fixed sizes 256 × 256, 128 × 128, 64 × 64, and 32 × 32,

where the ratio r in SCCM is set to 4, 2, 2, and 1 respectively

to reduce the computational burden. The produced masks

are resampled back to the same size as the input image for

localization evaluation.

B. Comparisons on Localization

The compared IMDL methods include J-LSTM [21],

H-LSTM [24], RGB-N [23], ManTra-Net [11], and SPAN [18]

TABLE II

LOCALIZATION AUC (%) OF PRE-TRAINED MODELS

TABLE III

EVALUATION OF THE FINE-TUNED MODELS. LOCALIZATION AUC/F1S

ARE REPORTED (IN %). MANTRA-NET IS NOT SHOWN HERE AS IT

HAS ONLY DEVELOPED THE PRE-TRAINED MODEL

where SPAN has reported the SOTA performance on localiza-

tion. Following the evaluation protocol defined in SPAN [18],

we compare the localization performance using two models:

1) the pre-trained model is trained on the synthetic dataset and

evaluated on the full test datasets, and 2) the fine-tuned model

is the pre-trained model further fine-tuned on the training

split of test datasets and evaluated on their test split. The

pre-trained model is to show the generalization ability of

each method, and the fine-tuned model is to manifest their

localization performance while the domain discrepancy has

been greatly alleviated. Note that the reported results of all

compared methods are either from their original papers or by

running their public codes.

1) Pre-Trained Model: We choose the best pre-trained

model based on the performance on our validation set. Tab. II

shows the localization performance of pre-trained models for

different methods on four standard datasets and one real-world

dataset under pixel-level AUC. The pre-trained PSCC-Net

achieves the best localization performance on Columbia,

CASIA, NIST16, and IMD20, and ranks the second on Cover-

age. The most significant performance gain is achieved while

tackling real-life manipulated images (5.6% ↑). This validates

that the PSCC-Net has the best generalization ability as com-

pared to the others. We fail to achieve the best performance on

Coverage, despite surpassing ManTra-Net 2.8% under AUC.

The reason might be the imperfection of our training data

for the case, where the copied object is intentionally moved

to cover a pristine object with similar appearance. Indeed,

by fine-tuning the pre-trained model on Coverage, PSCC-Net

achieves the 0.4% gain over SPAN under AUC (Tab. III).

2) Fine-Tuned Model: The network weights of the

pre-trained model are used to initiate the fine-tuned models

that will be trained on the training split of Coverage, CASIA,

and NIST16 datasets, respectively. The training strategy for

fine-tuned models is the same as the one for pre-trained model,

except setting the initial learning rate to 1e-4. We evaluate the

fine-tuned models of different methods in Tab. III. For AUC,

PSCC-Net surpasses baselines in all cases (over 2.4% to SPAN

on average). As for F1 score, our model outperforms them
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Fig. 5. Qualitative localization evaluations on four standard test datasets.
From top to bottom, our PSCC-Net is compared to SOTAs on Columbia,
Coverage, CASIA, and NIST16 datasets respectively, each with two images.

Fig. 6. Qualitative localization evaluations on the IMD20 real-life dataset.

with a large margin (over 16.6% to SPAN on average). This

validates the effectiveness of our overall network design.

3) Qualitative Comparisons: We provide qualitative eval-

uations of manipulation localization on four standard test

datasets and one real-life dataset shown in Fig. 5 and Fig. 6,

respectively, where the best available model for each method

is used to produce manipulation masks. Compared to ManTra-

Net [11] and SPAN [18], the predicted masks from our

PSCC-Net achieve the best performance in terms of higher

prediction accuracy (e.g., the 1st row in Fig. 5) and fewer

false alarms (e.g., the 6th row in Fig. 5). In addition, the

proposed method is less sensitive to the scale variation. Both

TABLE IV

DETECTION EVALUATION ON CASIA-D, ALL REPORTED IN %

Fig. 7. ROC of different methods for detection. Our detection head
successfully alleviates the influence of false alarms in pristine images, thus
achieves the best result.

large (e.g., the 5th row in Fig. 5) and small (e.g., the 7th row

in Fig. 5) manipulations can be localized effectively. On the

real-life dataset, PSCC-Net still performs much better than the

other two (e.g., the 2th row in Fig. 6), which demonstrates its

good generalization ability.

C. Comparisons on Detection

Since ManTra-Net and SPAN are the best performing base-

lines in the localization evaluation, and ManTra-Net does not

develop the fine-tuned model, we choose to use the pre-trained

model for detection evaluation, in order to make comparisons

to both of them. Although these two baselines make no direct

attempt to perform detection, their estimated manipulation

masks can be leveraged for this purpose. As such, we simply

regard the average of the mask as their scores. For fair

comparisons, we build a variant that adopts the same aver-

aging strategy to calculate this score, denoted as PSCC-Net†.

In Tab. IV, owing to our well-predicted manipulation masks,

the PSCC-Net† achieves the best detection performance on all

used metrics. Moreover, we depict the corresponding Receiver

Operating Characteristic (ROC) curve in Fig. 7. It is evident

that the detection performance can be dramatically improved

by introducing a tailored head. With a favorable detection, the

IMDL methods can be more efficient. That is, detection is

performed before localization, and only the detected forgery

is passed for localization. Our network design is compatible

with this efficiency consideration as the detection head is

placed at the beginning of the bottom-up path. The qualitative

evaluations of manipulation detection are demonstrated in

Fig. 8, where the predicted masks from SPAN [18] and

our PSCC-Net on both pristine and manipulation images are
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Fig. 8. Qualitative detection evaluations on CASIA-D. Since GT pristine masks are blank, they are not shown here for clarity.

compared. Without the existence-of-manipulation assumption,

for pristine images, the corresponding predicted masks from

our PSCC-Net are nearly blank. However, the ones from SPAN

suffer severe false alarms in most cases. As for the relevant

manipulated images, the proposed method localizes the forged

regions more accurately.

D. Visualization of SCCM

To provide insights into SCCM, we visualize the spatial

response map for forged and pristine pixels in M3, by exam-

ining its spatial correlation represented in As . After interpo-

lation, each row of As is associated with one pixel (e.g., P1)

in the test image, and its grayscale spatial response map can

be obtained by reshaping this row vector from 1 × H W to

H ×W (e.g., P1 response). In Fig. 9 (a), spliced, copy-moved,

inpainted, and authentic images are shown from top to bottom

respectively, each with one example. We select 3 representative

pixels for each image and annotate as P1, P2, and P3. For

manipulated images, P1 and P2 are from forged regions, and

P3 is from pristine regions; as for the authentic image, all

pixels are pristine. We project their grayscale spatial response

maps into Jet color map and overlay them on the manipulated

image as in Figs. 9 (c-e). It can be seen that for manipulated

images, the spatial response maps of P1 and P2 have high

values in forged regions and low values in pristine regions

at most cases, but the map of P3 retains low values in all

regions including the one providing the copied content (e.g.,

the P3 response in the 2nd row of Fig. 9 (e)). As for the

authentic image, the spatial response maps of all selected pix-

els retain low values consistently. This visualization indicates

that the features in forged regions are successfully clustered

together, thus justifies the effectiveness of spatial attention in

SCCM.

For channel-wise correlation Ac, it is hard to provide a

comprehensible visualization. Instead, we choose to visualize

one channel of Yc and compare it to the same channel of X to

see if any region is enhanced. We visualize the 1st channel of

X and Yc in Figs. 9 (f,g). Indeed, the forged region in Yc is

consolidated compared to the one in X, and if the forged region

does not exist (i.e., in the case of authentic images), no region
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Fig. 9. Visualization of spatial and channel-wise attentions in SCCM. From top to bottom, we show the spliced, copy-moved, inpainted, and authentic images
respectively. For each test image, we show its GT manipulation mask, 3 spatial response maps (one for each selected pixel), and the 1st channel map in X

and Yc. Zoom in for details.

Fig. 10. Visualization of predicted manipulation masks from Scale 4 to Scale 1. From top to bottom, manipulated images are from Columbia, Coverage,
CASIA, NIST16, and IMD20 respectively. All predicted masks are from our pre-trained model.

is enhanced. This proves the effectiveness of channel-wise

attention in SCCM.

E. Visualization of Predicted Manipulation Masks on

Different Scales

The proposed PSCC-Net utilizes a progressive mechanism

to reduce the prediction difficulty by avoiding generating the

mask from the finest scale directly. Instead, the mask on the

coarsest scale is first predicted to locate the regions that are

potentially forged based on the current available information.

The subsequent prediction on the finer scale can leverage

the previous mask and pay more attention to those selected

regions. This process repeatedly performs until generating the

manipulation mask at the finest scale as our final prediction.

Here, we visualize the performance improvement of manip-

ulation localization from the Scale 4 to Scale 1. In Fig. 10,

Mask 4, Mask 3, and Mask 2 are the variants that truncate

the original model after generating manipulation masks on

the 4th, 3rd, and 2nd scales, and Mask 1 is the output of
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TABLE V

ABLATION STUDY OF PSCC-NET (AUC/F1 IN %). THE RUNTIME IS REPORTED IN PROPORTION TO THAT OF ORIGINAL PSCC-NET

TABLE VI

ROBUSTNESS ANALYSIS OF LOCALIZATION WITH RESPECT TO VARIOUS DISTORTIONS. PIXEL-LEVEL AUCS ARE REPORTED (IN %)

the original model. It can be seen that benefiting to the

proposed progressive mechanism, the localization performance

is gradually improved from Mask 4 to Mask 1 in terms of lower

false alarms and clearer boundaries. More discussions about

quantitative comparisons and terminating PSCC-Net earlier for

runtime saving can be found in Sec. IV-F.

F. Runtime Analysis and Ablation Study

In Tab. V, we test several variants of PSCC-Net to justify

the network design, where all variants are pre-trained on our

synthetic dataset. Average AUC/F1s are reported (in %), and

the runtime (in proportion) is relative to that of PSCC-Net. Our

full model takes 0.019s to process one 1, 080P image, whereas

ManTra-Net and SPAN take 0.208s and 0.161s, respectively.

Moreover, as shown in Fig. 2, terminating the PSCC-Net

earlier on Mask 4, Mask 3 or Mask 2 in inference time is

feasible and will not interfere the prediction of manipulation

mask at that scale. From our experiments, terminating the

prediction on Mask 4 can shorten the runtime to 0.012s, i.e.,

∼ 37% additional saving. Though nonessential for research

datasets, this time-saving is significant and economical in

practical applications, e.g., 14.6 million photos are uploaded

to Facebook per hour.1

The comparisons of Mask 4, Mask 3, Mask 2, and the

original PSCC-Net demonstrate the gradual improvement in

performance, which is a clear manifestation of our progres-

sive mechanism. Since Mask 3 already performs well under

1https://www.pingdom.com/blog/social-media-in-2017/

AUC and F1 scores, it is a good stopping point for mask

prediction.

We also build several variants for SCCM, including the

ones without spatial and channel-wise attentions (w/o SA+CA),

without spatial attention (w/o SA), without channel-wise atten-

tion (w/o CA), and without feature sharing (w/o FS), which

obtains embeddings from different θ and φ functions to com-

pute spatial and channel-wise similarities. The comparisons

illustrate that both SA and CA outperform the baseline (w/o

SA+CA), and the performance gain acquired from SA is

more than that from CA. In addition, feature sharing not

only slightly reduces the runtime, but also enables mutual

accommodation between these two attentions to help SCCM

achieve better results than the one employing different features

(i.e., w/o FS).

G. Robustness Analysis

To analyze the robustness of PSCC-Net for localiza-

tion, we follow the distortion settings in [18] to degrade

the raw manipulated images from Columbia and NIST16.

These distortions include resizing images to a different scale

(Resize), applying Gaussian blur with kernel size k (GSBlur),

adding Gaussian noise with standard deviation σ (GSNoise),

and performing JPEG compression with quality factor q

(JPEGComp). In addition, we introduce a mixed version of the

aforementioned distortions (Mixed), where the resizing scale,

kernel size k, standard deviation σ , quality factor q are ran-

domly selected from the intervals [0.25, 0.78], [3, 15], [3, 15],

and [50, 100], respectively. Tab. VI shows the robustness
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TABLE VII

ROBUSTNESS ANALYSIS OF DETECTION FOR PSCC-NET WITH RESPECT

TO VARIOUS DISTORTIONS ON CASIA-D. IMAGE-LEVEL AUCS AND

F1 SCORES ARE REPORTED (IN %)

Fig. 11. Failure cases. Zoom in for details.

analysis of localization under pixel-level AUC with pre-trained

models. The PSCC-Net is more robust than ManTra-Net and

SPAN under all distortions. It is worth noting that resizing

is commonly performed when uploading images to social

media. Indeed, benefiting from the operation that resamples

the manipulation features into the fixed sizes, the impact of

resizing to PSCC-Net is the least as compared to the others.

We also analyze the detection robustness of PSCC-Net with

respect to various distortions on CASIA-D. In Tab. VII, it can

be seen that our PSCC-Net is quite robust for detection, espe-

cially in the case where the JPEG compression is performed.

H. Limitations

PSCC-Net enables us to detect and localize various types

of manipulations. As compared to image-level detection, the

pixel-level localization is more challenging, especially while

dealing with real-life manipulated images. Here we demon-

strate some failure cases on IMD20 [76].

In Fig. 11, it is clear that for real-life manipulated images,

the forged regions may have diverse sizes and shapes. In the

first row, we show a specific case where the same pattern

is copied several times but with different scales. Despite our

method fails to localize all forged regions, it is less sensi-

tive to scale variation as compared to ManTra-Net [11] and

SPAN [18], owing to our tailored network design. In addition,

our method may fail to localize the whole forged regions or

only localize part of them in some cases (e.g., the last two

rows). One possible reason is that some manipulation traces

are elaborately removed by fabricators. Indeed, the compared

IMDL methods also have difficulty to tackle these manipulated

images. Note that even in theses cases, our PSCC-Net still

performs relatively better than the SOTAs [11], [18] for image

manipulation localization (e.g., see the 2rd row).

V. CONCLUSION

In this work, a novel PSCC-Net is proposed to meet

the challenge of advanced image manipulation techniques.

We employ a progressive mechanism to predict the manipula-

tion mask on all backbone scales, where each mask serves as a

prior to help predict the next-scale mask. Moreover, a SCCM

is designed to perform spatial and channel-wise attentions on

extracted features, which provides holistic information to make

our model more generalized to manipulation attacks. Extensive

experiments demonstrate that our PSCC-Net outperforms the

SOTA methods on both detection and localization. For future

work, we will develop techniques for estimating the uncer-

tainty of predicted manipulation masks to further improve the

IMDL performance.
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