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ABSTRACT
Low-Light Video Enhancement (LLVE) has received considerable
attention in recent years. One of the critical requirements of LLVE
is inter-frame brightness consistency, which is essential for main-
taining the temporal coherence of the enhanced video. However,
most existing single-image-based methods fail to address this is-
sue, resulting in flickering effect that degrades the overall quality
after enhancement. Moreover, 3D Convolution Neural Network
(CNN)-based methods, which are designed for video to maintain
inter-frame consistency, are computationally expensive, making
them impractical for real-time applications. To address these issues,
we propose an efficient pipeline named FastLLVE that leverages
the Look-Up-Table (LUT) technique to maintain inter-frame bright-
ness consistency effectively. Specifically, we design a learnable
Intensity-Aware LUT (IA-LUT) module for adaptive enhancement,
which addresses the low-dynamic problem in low-light scenarios.
This enables FastLLVE to perform low-latency and low-complexity
enhancement operations while maintaining high-quality results.
Experimental results on benchmark datasets demonstrate that our
method achieves the State-Of-The-Art (SOTA) performance in terms
of both image quality and inter-frame brightness consistency. More
importantly, our FastLLVE can process 1,080p videos at 50+ Frames
Per Second (FPS), which is 2× faster than SOTA CNN-based meth-
ods in inference time, making it a promising solution for real-time
applications. The code is available at https://github.com/Wenhao-Li-
777/FastLLVE.

CCS CONCEPTS
• Computing methodologies→ Reconstruction.
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1 INTRODUCTION
Low-Light Video Enhancement (LLVE) is a longstanding task aim-
ing at transforming low-light videos into normal-light videos with
better visibility, which has received considerable attention in recent
years. In low-light conditions, videos often suffer from deteriorated
texture and low contrast, leading to poor visibility and significant
degradation of high-level vision tasks. Unlike traditional methods
based on higher ISO and exposure that can cause noise and motion
blur [4], LLVE offers an effective solution to improve the visual
quality of videos captured in extremely low-light conditions. More-
over, it can serve as a fundamental enhancement module for a wide
range of applications, e.g., visual surveillance [46], autonomous
driving [18], and unmanned aerial vehicle [31].

Like other typical video tasks, such as Video Frame Interpo-
lation [33, 34, 42] and Video Super-Resolution [8, 19–21, 32, 48],
LLVE also demands temporal stability. Additionally, the inherently
ill-posed nature of LLVE makes it a more challenging task. As a
result, although Low-Light Image Enhancement (LLIE) have demon-
strated remarkable performance, recursively applying these image-
based methods to video frames isn’t feasible. Because it is time-
consuming and may result in flickering effect in the enhanced
video. As revealed in [10], the flickering problem is caused by the
inconsistency in brightness between adjacent frames. To address
this issue, recent LLVE methods have leveraged temporal align-
ment [38] and 3D Convolution (3D-Conv) [10, 23] to establish the
spatial-temporal relationship in video. They have also adopted the
self-consistency [2, 51] as an auxiliary loss to guide the network
in maintaining brightness consistency. However, alignment-based
methods, which aim to estimate the corresponding pixels between
adjacent frames, are prone to errors and can lead to object distortion
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Figure 1: Comparisons of effectiveness and efficiency. Our
method outperforms the current SOTA method (i.e., SDSD-
Net) by a large margin in terms of PSNR, and faster than the
most efficient method (i.e., StableLLVE). The average PSNR is
evaluated on SDSD test dataset [38], and runtime is evaluated
on 1,080p videos with a Nvidia RTX 3090 GPU.

in the enhanced video. In contrast, 3D-Conv is capable of captur-
ing comprehensive spatial-temporal information, but at the cost
of greater computational complexity. Therefore, previous methods
have found it challenging to strike a balance between efficiency
and performance. To sum up, a considerate LLVE method should
address the following challenging issues:
• Ill-posed problem. In low-light videos, the low dynamic range
of the color space can result in similar color inputs appearing for
different target colors. This phenomenon leads to the one-to-many
mapping problem which is challenging to solve in complex scenar-
ios. To address this problem, previous methods [10, 23, 38] have
leveraged global context information and local consistency to en-
hance different colors. Despite their respective efficacy, these meth-
ods are plagued by instability with respect to color handling due
to their heavy reliance on the precision and reliability of context
extraction.
• Brightness consistency. Maintaining brightness consistency in
the output video is crucial for achieving high perceptual quality in
LLVE. However, current alignment-based method [38] often fails
to achieve accurate alignment between adjacent frames, leading to
unstable output for LLVE. Otherwise, self-consistency loss func-
tions [2, 51] used to improve the stability of these methods are
also unable to address the fundamental instability problem. This
limitation hinders their ability to effectively improve their overall
visual quality.
• Efficiency. Although 3D-Conv methods have shown significant
improvement in video enhancement tasks by exploiting comprehen-
sive spatial-temporal information [10, 23], they are associated with
heavy computational complexity. This makes them impractical for
real-world applications that require real-time enhancement.

To address the above issues, we propose a novel framework
named FastLLVE. Our approach establishes a stable and adaptive
Look-Up-Table (LUT) to enable real-time LLVE. In particular, we

design an Intensity-Aware LUT (IA-LUT) to transform RGB colors
from one color space to another, which can handle the one-to-many
mapping issue that commonly arises in LLVE. Unlike traditional
LUTs where one-to-one mapping relationships for color values are
stored, our IA-LUT stores the one-to-many mapping relationships,
with respect to learnable enhancement intensities for every pixels.
To improve the generalization ability of our method, we follow the
parameterization approach [50] and combine a set of basis LUTs
with dynamic weights. Importantly, our approach maintains the
inter-frame brightness consistency by nature, as the pixel-wise LUT-
based transformation is consistent with all pixels having the same
RGB values and enhancement intensity. In addition, our method is
computationally efficient and suitable for real-time video enhance-
ment. To address the issue of noise that the LUT might fail to deal
with, particularly in extremely low-light conditions, we simplify
a common denoising method [3] to incorporate a plug-in refine-
ment module for denoising denoted as FastLLVE-dn, which further
improves the performance at the expense of some efficiency. It is
worth noting that other denoising methods can readily replace the
used one. As demonstrated in Figure 1, both of our two models
outperform existing methods by a significant margin in terms of
Peak Signal-to-Noise Ratio (PSNR), while the FastLLVE achieves
the real-time processing speed of over 50 Frames Per Second (FPS).

The contributions of this paper can be summarized as follows:
⋄We propose a novel LUT-based framework, named FastLLVE,

for real-time low-light video enhancement.
⋄We design a novel and lightweight Intensity-Aware LUT, which

accounts for the one-to-many mapping problem in LLVE.
⋄ Extensive experiments show that the FastLLVE achieves the

SOTA results on benchmarks in most cases, with over 50 FPS infer-
ence speed.

2 RELATEDWORKS
2.1 Low-light Image Enhancement
Researches on low-light enhancement started with traditional LLIE
methods including Histogram Equalization [9, 27, 37] and Retinex
theory [5, 6, 16, 40]. Then deep-learning approaches [15, 23, 26,
28, 39, 47, 53] have shown the great superiority on effectiveness,
efficiency and generalization ability. Lv et al. [23] present a multi-
branch network, which extracts rich features from different levels,
to enhance low-light images via multiple subnets. Wang et al. [39]
introduce intermediate illumination rather than directly learn an
image-to-image mapping. Pan et al. [28] propose a new model
learning to estimate pixel-wise adjustment curves and recurrently
reconstruct the output. Zhou et al. [53] specially design a network
for joint low-light enhancement and deblurring.

2.2 Low-light Video Enhancement
LLVE, an extension of LLIE, imposes an additional requirement of
brightness consistency, as outlined in [15]. Existing LLVE methods
address this challenge through three common solutions, namely
3D Convolution, Feature Alignment, and Self-consistency. Lv et
al. [23] exchange all 2D-Conv layers of their proposed LLIE net-
work into 3D-Conv layers to achieve the processing of low-light
videos. Jiang et al. [10] train a LLVE network based on 3D U-Net.
Instead of 3D-Conv, Wang et al. [38] align adjacent frames into the
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Figure 2: The architecture of the proposed network based on the designed Intensity-Aware LUT (IA-LUT). The lightweight
encoder-decoder network extracts spatial and temporal features for building a video-adaptive IA-LUT and generates intensity
map related to the input video. Then weight predictor utilizes the feature vector 𝛾 from the encoder to predict weights that guide
the fusion of𝑇 basis IA-LUTs. Through IA-LUT transformation, the input video concatenated with intensity map transforms to
the enhanced normal-light video. Finally, an optional denoising module can help the IA-LUT deal with noise.

middle frame for lighting enhancement and noise reduction based
on Retinex theory [16]. In order to improve efficiency, some meth-
ods use 2D-Conv with self-consistency as an auxiliary loss. Chen et
al. [2] randomly select two frames from the same low-light video to
train a deep twin network, using self-consistency loss to make the
network robust to noise and small changes in the scene. Rather than
select similar frames, Zhang et al. [51] choose to simulate adjacent
frames and ground truths by warping the input image and its cor-
responding ground truth based on the predicted optical flow, so as
to artificially synthesize similar data pairs for self-consistency loss.
However, self-consistency is a weak and unstable constraint which
cannot solve the fundamental problem of brightness consistency.

2.3 LUT for Image Enhancement
A 3D-LUT is a 3-dimensional grid of values, which maps the input
color values to the corresponding output color values. By applying
such a transformation to an image or video, it is possible to achieve
a wide range of color and tonal effects, from subtle color grading
to dramatic color transformations. LUT has already been a classic
and commonly used pixel adjustment tool in ISP system [11] and
image editing software because of its high efficiency for modeling
color transforms. Recently, deep-learning methods based on LUT
are proposed in image enhancement tasks. Zeng et al. [50] first
leverage a lightweight CNN to predict the weights for integrating
multiple basis LUTs, and the constructed image-adaptive LUT is
utilized to achieve image enhancement. Wang et al. [41] further
propose a learnable spatial-aware LUT which considers the global
scene and local spatial information. Yang et al. [44] realize the
importance of the sampling strategy so that they design a non-
uniform sampling strategy based on learnable adaptive sampling

intervals to replace the sub-optimal uniform sampling strategy. At
the same time, Yang et al. [45] also try to combine 1D LUTs and
3D LUT to promote each other and achieve a more lightweight
3D LUT with better performance. To the best of our knowledge,
LUT has not been adopted in LLVE tasks. In this paper, we will
introduce how LUT is naturely suitable for LLVE and enables real-
time applications.

3 METHOD
This section provides an overview of the structural intricacies of
FastLLVE, as shown in Figure 2. Input video frames are first en-
coded into latent features through a lightweight encoder network.
Afterwards, the latent features are parallel fed into two modules,
namely LUT Generation Module and Video Transformation Mod-
ule. Specifically, a video-adaptive LUT is generated through the
LUT Generation Module, while an intensity map is generated for
video transformation. Then, each pixel is enhanced via the IA-LUT
transformation with its RGB values and enhancement intensity as
the index. Finally, the transformed video is feed into a denoising
module for further enhancement. Sections 3.1 and 3.2 will focus
on the LUT Generation Module and Video Transformation Mod-
ule, respectively. More structure details about the feature encoder
network and denoising module can be found in appendix.

3.1 LUT Generation Module
Definition. Although low-light pixels from various areas may ap-
pear similar in RGB, they correspond to distinct enhancement in-
tensities during the low-light enhancement process. In Figure 3, we
visualize several intensity maps where even pixels from extremely
low-light videos have different enhancement intensities. Traditional
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Figure 3: Visualization of the intensity map from extremely
low-light videos. The first line consists of input frames and
the second line consists of the corresponding intensity maps.

3-dimensional LUTs only save one-to-one mapping relationships
for color transformation, which fails on solving the ill-posed prob-
lem of low-light pixels with similar color. In order to address this
issue, we add a new dimension denoting the enhancement intensity,
and the corresponding LUT is denoted as Intensity-Aware LUT. It
can store several color spaces for one-to-many mapping relation-
ships and facilitates finer color transformation for LLVE. It is worth
noting that only a sampled sparse discrete input space is saved in
IA-LUT to avoid introducing massive parameters, which can result
in heavy memory burden and great training difficulty. And due to
the sparse discrete 4D input space, the LUT transformation of the
IA-LUT should be implemented using quadrilinear interpolation.

Let V : [0, 1]4 → [0, 1]3 be a function defined by the IA-LUT,
we have

V(𝑟, 𝑔, 𝑏, 𝑒) = [𝑟 ′, 𝑔′, 𝑏′] (1)
where 𝑟, 𝑔, 𝑏, 𝑒 indicate the input red, green, blue colors and en-
hancement intensity, and 𝑟 ′, 𝑔′, 𝑏′ are the mapped color values. Let
𝐿 be the number of grid points in each dimension of the IA-LUT, and
Cx = [𝑟𝑖 , 𝑔 𝑗 , 𝑏𝑘 , 𝑒𝑚] stands for the index of grid point x = [𝑖, 𝑗, 𝑘,𝑚],
where 0 ≤ 𝑖, 𝑗, 𝑘,𝑚 ≤ 𝐿 − 1. For this grid point x, the stored values
in IA-LUT for color mapping are represented as C′

x = [𝑟x, 𝑔x, 𝑏x].
If the input indices [𝑟, 𝑔, 𝑏, 𝑒] can not be mapped to any grid point,
we will apply quadrilinear interpolation in the nearest unit lattice.
For brevity, we here let

Ωx = (𝑟𝑖 , 𝑟𝑖+1) × (𝑔 𝑗 , 𝑔 𝑗+1) × (𝑏𝑘 , 𝑏𝑘+1) × (𝑒𝑚, 𝑒𝑚+1) (2)

as the unit lattice at grid point x ∈ [0, 1, . . . , 𝐿 − 1]4, where we have

𝑟𝑖+1 > 𝑟𝑖 , 𝑔 𝑗+1 > 𝑔 𝑗 , 𝑏𝑘+1 > 𝑏𝑘 and 𝑒𝑚+1 > 𝑒𝑚 . (3)

Then, the quadrilinear interpolation process IΩx in the unit lattice
Ωx is formulated as:

IΩx (𝑟, 𝑔, 𝑏, 𝑒) =


24∑︁
𝑛=1

𝑂𝑛
x · 𝑟𝑛x ,

24∑︁
𝑛=1

𝑂𝑛
x · 𝑔𝑛x ,

24∑︁
𝑛=1

𝑂𝑛
x · 𝑏𝑛x

 , (4)

where coefficients 𝑂𝑛
x , 𝑛 ∈ [1, 2, . . . , 16] indicates the offsets of

the input index to the nearest 24 sampling grids of lattice Ωx. In
conclusion, the IA-LUTV can be formulated as:

V(𝑟, 𝑔, 𝑏, 𝑒) =


C′
x, if [𝑟, 𝑔, 𝑏, 𝑒] = [𝑟𝑖 , 𝑔 𝑗 , 𝑏𝑘 , 𝑒𝑚],

IΩx (𝑟, 𝑔, 𝑏, 𝑒), if [𝑟, 𝑔, 𝑏, 𝑒] ∈ Ωx,

[0, 0, 0], otherwise.
(5)

In Figure 4, we illustrate the quadrilinear interpolation process, and
the detailed formulation of coefficients can be found in appendix.
Generation. In order to automatically generate video-adaptive IA-
LUT, as shown in Figure 2, we learn 𝑇 learnable basis IA-LUTs and
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Figure 4: Illustration of the quadrilinear interpolation for
one input pixel.

fuse them based on𝑇 video-dependent weights, where𝑇 is the num-
ber of basis LUTs. Compared with directly generating all elements
of the video-adaptive IA-LUT via CNN, fusing several basis LUTs is
more efficient and computationally inexpensive. More specifically,
suppose the low-light video 𝑌 ∈ R𝑁×𝐻×𝑊 ×3 with 𝑁 frames of res-
olution𝑊 ×𝐻 is taken as the input, at the beginning, a lightweight
encoder with five 3D convolution layers, each with a 3×3×3 kernel
size, is used to capture the coarse understanding and some global
attributes of the input video 𝑌 . The output of the encoder is resized
to a compact feature vector 𝛾 ∈ R𝑃×𝑄 , which serves as a guide to
construct video content-dependent LUT parameters. The size of the
feature vector 𝛾 is due to the two hyper-parameters 𝑃 and𝑄 , which
denote the number of pixels and the number of channels before
the resizing, respectively. In this paper, we set 𝑃 to 16 and 𝑄 to 64
according to the structure of the encoder which can be found in the
appendix. After the shared encoder, the weight predictor based on
the fully-connected layer maps the compact feature vector 𝛾 into 𝑇
dynamic video-dependent weights, which can be formulated as:

ℎ0 : R𝑃×𝑄 → R𝑇 , (6)

where ℎ0 denotes the mapping from the feature vector 𝛾 to the
video-dependent weights for fusion. Subsequently, another fully-
connected layer is employed to map the video-dependent weights to
all elements of the video-adaptive IA-LUT. The learnable parameters
of this layer are encoded basis IA-LUTs. We refer to this mapping
as ℎ1 and describe it as:

ℎ1 : R𝑇 → R𝐿×𝐿×𝐿×𝐿×3 , (7)

where 𝐿 × 𝐿 × 𝐿 × 𝐿 × 3 = 3 × 𝐿4 is the total number of elements
of the generated video-adaptive IA-LUT, and the number 3 means
that the IA-LUT stores the mapped red, green and blue color values,
respectively. The elements of the basis IA-LUTs can be updated
during the end-to-end training since they serve as the parameters
of the fully-connected layer, which makes the basis LUTs learnable.

In general, besides the shared encoder, two fully-connected lay-
ers achieve the main mapping ℎ from the feature vector 𝛾 to the
generated video-adaptive IA-LUT, as shown below:

ℎ : 𝛾
ℎ0→ 𝑤 ∈ R𝑇 ℎ1→ C′ ∈ R𝐿×𝐿×𝐿×𝐿×3, (8)

where C′ ∈ R𝐿×𝐿×𝐿×𝐿×3 denotes all the stored elements C′
x of the

target video-adaptive IA-LUT, and 𝑤 ∈ R𝑇 represents the video-
dependent weights obtained through the mapping ℎ0. As shown
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Table 1: Quantitative comparisons on SDSD and SMID test datasets. Top two numbers of each column are with the best in red
and the second best in blue. "FastLLVE+dn" denotes our method with a simple denoising module.

Format Method SDSD SMID Runtime (s)
PSNR SSIM AB (Var)↓ MABD↓ PSNR SSIM AB (Var)↓ MABD↓

Image MBLLEN [23] 21.79 0.65 \ \ 22.67 0.68 \ \ 0.336
Cheby [28] 23.65 0.81 0.079 0.297 25.24 0.76 1.486 1.891 0.175

Video

SALVE [1] 18.03 0.69 0.125 0.246 16.73 0.60 1.984 3.501 0.182
SMOID [10] 23.45 0.69 0.397 0.749 23.64 0.71 1.455 1.736 0.190
SMID [2] 24.09 0.69 0.784 1.592 24.78 0.72 0.405 0.794 0.125

SDSDNet [38] 24.92 0.73 0.181 0.193 26.03 0.75 0.737 0.944 0.407
StableLLVE [51] 23.09 0.81 1.366 2.814 26.22 0.78 0.745 0.897 0.038

Video FastLLVE 27.06 0.78 0.038 0.091 26.45 0.75 0.476 0.748 0.013
FastLLVE+dn 27.55 0.86 0.033 0.040 27.62 0.80 0.065 0.050 0.080

above, the mapping ℎ is actually a cascade of the mapping ℎ0 and
ℎ1. It’s worth emphasizing that dividing the main mapping ℎ into
two parts, each realized through a fully-connected layer, is crucial
to reduce the number of parameters, similar to the sampled input
space of LUT. Using only one fully-connected layer to directly
map the compact feature vector 𝛾 to the generated LUT would
lead to a significantly larger number of parameters, specifically
𝑃×𝑄×3×𝐿4, compared to𝑇 ×

(
𝑃 ×𝑄 + 3 × 𝐿4

)
. Therefore, dividing

the mapping ℎ by rank factorization and implementing it with
two fully-connected layers can reduce the parameters, making the
transformation easier to learn and optimize.

3.2 Video Transformation
As shown in Figure 2, we first estimate the intensity map, then
perform look-up according to the RGB video and corresponding
intensity map. In order to construct this map, a lightweight decoder
with five deconvolution layers [49] of size 3 × 3 × 3 is adopted to
utilize the latent features from the encoder, resulting in an intensity
map 𝐼 ∈ R𝑁×𝐻×𝑊 ×1. By concatenating the intensity map and the
input video, we can perform look-up and interpolation as intro-
duced in Section 3.1. We recursively apply the transformation on
each frame of a video sequence, resulting in the video output with
stable and consistent brightness.

In addition, as the LUT transformation is applied to each pixel
independently and quadrilinear interpolation can be parallel pro-
cessed, we implement the IA-LUT transformation via CUDA to
accelerate the transformation and achieve the convenient end-to-
end training. Specifically, we merge the lookup and interpolation
operations into a single CUDA kernel to maximize the parallelism.
Following Adaint [44], we also adopt binary search algorithm dur-
ing lookup operation, because the logarithmic time complexity can
make computational cost negligible, unless 𝐿 is set to an unexpected
large value. It is important to emphasize that the pixel-wise trans-
formation, which is indexed only by the red, green, blue colors and
enhancement intensity of each input pixel, is the key to the IA-LUT
naturally maintaining the inter-frame brightness consistency.

Although the FastLLVE framework can naturally maintain inter-
frame brightness consistency, and achieves the great performance
at the same time, it should be pointed out that LUT is susceptible
to noise. In the real world, images and videos captured in low-light

conditions inevitably contain noises. Therefore, we sacrifice some
efficiency to add a simple denosing module as the post-processing,
refining the enhanced normal-light video for better performance.
Specifically, in this paper, we choose to follow the practice in [3] to
design the additional denoising module. However, it is worth noting
that almost all existing denoising methods, such as [24, 30, 35, 52],
can be alternatives as the post-processing.

4 EXPERIMENTS
4.1 Implementation Details
We implement our method based on PyTorch [29] and train the
framework on a NVIDIA GeForce RTX 3090 GPU. The standard
Adam optimizer [12] is adopted to train the entire network, with
the batch size set to 8. The initial learning rate is set to 4× 10−4 and
gradually decayed according to the scheme of Cosine annealing [7]
with restart set to 10−7.

Regarding the loss function, since previous LUT-based meth-
ods [44, 45, 50] have proven the effectiveness of the smooth reg-
ularization and monotonicity regularization, we add 4D smooth
regularization and 4D monotonicity regularization adapted to the
IA-LUT into the loss function. If we add the additional denoising
module, a pairwise loss between the denoised result and ground
truth will be included in the loss function. As a result, the total loss
function is defined as:

𝑙𝑡𝑜𝑡𝑎𝑙 =

{
𝑙𝑟0 + 𝑙𝑟1 + 𝛼𝑠𝑙𝑠 + 𝛼𝑚𝑙𝑚, if denoising,
𝑙𝑟0 + 𝛼𝑠𝑙𝑠 + 𝛼𝑚𝑙𝑚, otherwise,

(9)

where 𝑙𝑟0 denotes the reconstruction loss between the transformed
normal-light video and ground truth, and 𝑙𝑟1 denotes the denoising
loss between the final denoised result and ground truth. Both of
them use Charbonnier Loss [13, 14]. The 4D smooth regularization
loss 𝑙𝑠 consists of two parts which correspond to the video-adaptive
IA-LUT and the video-dependent weights, respectively. It prevents
artifacts caused by extreme color changes in LUT, while the 4D
monotonicity regularization loss 𝑙𝑚 preserves the robustness during
the enhancement process. The detailed formulations of 𝑙𝑠 and 𝑙𝑚
can be found in appendix.

As for hyper-parameters, in the loss function, we set 𝛼𝑠 and
𝛼𝑚 to 0.0001 and 10, respectively. In terms of 𝐿 and 𝑇 , although
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Figure 5: The Mean Differences of Average Brightness (MD-
AB) between adjacent frames of SDSD test dataset. [Key: 1-2:
difference between the 1st frame and the 2nd frame, 2-3 to
6-7 are indicated similarly]

higher values contribute to the precision of color transformation
modeled by LUT, they can significantly increase the parameters of
all LUTs used in the entire framework. Therefore, we follow the
most widely-used setting [44, 45, 50] of the two numbers, which is
proposed to balance the accuracy and the size of parameters. Thus,
the number of sampling grid points on each dimension is set to 33
and the number of basis IA-LUTs is set to 3.

4.2 Experiment Setup
We present a comprehensive comparison of our proposed method
with eight SOTA low-light enhancement methods, including both
image-based and video-based approaches. The image-based meth-
ods we evaluate are MBLLEN [23], Cheby [28] and LEDNet [53],
while SMID [2], SMOID [10], StableLLVE [51], SALVE [1] and
SDSDNet [38] are completely video-based methods. We use their
released codes and follow the same training strategies to train
these networks on two real-world low-light video datasets, namely
SDSD [38] dataset and SMID [2] dataset. The SDSD dataset is split
into the SDSD training and test datasets with 23, 542 and 750 video
frames respectively, while the SMID training and test datasets con-
tain 18, 278 and 1, 470 video frames. Then, we evaluate the perfor-
mance of FastLLVE and the compared methods on the SDSD and
SMID test datasets, to demonstrate the superiority of our method.
It’s worth noting that the SMID dataset used in our experiments
has been pre-processed to transform the RAW data into sRGB data
via its own pre-processing method proposed in SMID.

We use the common evaluation metrics of Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity (SSIM) to assess the quality
of the enhanced videos. In addition, drawing on previous works [10,
23, 51], we consider the variance of Average Brightness (AB (Var))
and Mean Absolute Brightness Difference (MABD) to evaluate the
ability to maintain inter-frame brightness consistency, where lower
values stand for better consistency. Furthermore, we also record the
average processing time of a 1,080p low-light frame on a NVIDIA
GeForce RTX 3090 GPU for each method.

4.3 Comparisons of Brightness Consistency
As presented in Table 1, the AB (Var) and MABD are employed
to assess the maintenance of inter-frame brightness consistency.
FastLLVE+dn outperforms the compared methods on the two test

SDSDNet SDSDNet SDSDNet SDSDNet SDSDNet

FastLLVE+dn FastLLVE+dn FastLLVE+dn FastLLVE+dn FastLLVE+dn

GT t=1 t=2 t=3 t=4 t=5

Figure 6: The local inter-frame brightness inconsistency on
SDSD test dataset.

datasets, including the SDSDNet that is the current SOTA in terms of
brightness consistency. It is worth noting that SDSDNet also contains
a denoising module based on the Retinex theory [16]. Moreover, we
also compute the Mean Differences of Average Brightness (MD-AB)
between adjacent frames of SDSD test dataset shown in Figure 5. It
is evident that the FastLLVE+dn achieves the best performance in
brightness consistency and behaves most similar to ground truth.

In addition to quantitative comparisons, we also provide the
qualitative comparisons in Figure 6. SDSDNet generates an incor-
rect light spot that varies among adjacent frames, which manifests
its limitation when dealing with local brightness inconsistencies. In
comparison, FastLLVE+dn has better ability to suppress the inter-
frame brightness inconsistency in local areas, benefiting from the
elaborete design of IA-LUT.

4.4 Comparisons of Enhanced Performance
In Table 1, we present the performance comparisons in terms of
PSNR and SSIM on both SDSD and SMID test datasets. Compared
with the StableLLVE, our FastLLVE achieves almost 3× inference
speed and outperforms it in terms of PSNR. Meanwhile, the FastL-
LVE+dn achieves the SOTA performance in PSNR and SSIM on
both datasets, and outperforms the StableLLVE by a large margin.
Notably, the generally higher values of PSNR on SDSD test dataset
indicate the difficulty of color restoration from the color space with
an extremely low dynamic range since most videos in SDSD test
dataset are taken in extremely low-light scenarios.

We further conduct qualitative comparisons on the two datasets
in Figure 7-8. In Figure 7, we present the results of extremely low-
light video in SDSD test dataset. Except for SMOID and SDSDNet,
previous methods suffer from incorrect color restoration evidently.
SMOID produces blurry results and lack of texture details. SDS-
DNet produces certain degree of noise owing to the deviation of
noise map estimation. Besides, the darker area and the colorful
border of the bright area appear in the results of other methods,
which indicates the incorrect enhancement in brightness. Com-
pared with these methods, our FastLLVE+dn solves the difficulties
of color restoration, enhancement in brightness, as well as noise
suppression, achieving visually great performance. In Figure 8, it
is challenging to restore low-light videos with severe color biases.
For instance, the enhanced low-light videos from SDSDNet present
much darker than the ground truth, and the results of StableLLVE
suffer from color distortions. The reason behind might be the in-
accurate estimation of color transformation. In comparison, both
FastLLVE and FastLLVE+dn can enhance the low-light videos well
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Input SMOID SMID SDSDNet StableLLVE FastLLVE FastLLVE+dn GT

Input SMOID SMID SDSDNet StableLLVE FastLLVE FastLLVE+dn GT

Figure 7: Qualitative comparisons on SDSD test dataset. Our method achieves correct enhancement and the best performance.

Input SMOID SMID SDSDNet StableLLVE FastLLVE FastLLVE+dn GT

Input SMOID SMID SDSDNet StableLLVE FastLLVE FastLLVE+dn GT

Figure 8: Qualitative comparisons on SMID test dataset. Compared to other methods, only our method restores color correctly.

with a similar color space to ground truth, even though the color
biases exist.

4.5 Ablation Study
In order to evaluate the effectiveness of the IA-LUT and explore
better use of the denoising module, we perform the ablation study
and show the results in Figure 9 and Table 5.
Structure of LUT:We change IA-LUT into the common 3D LUT
and remove the decoder, so as to construct the low-light video en-
hancement network based on 3D LUT in comparison to the FastL-
LVE with IA-LUT. As shown in Table 5, FastLLVE completely out-
performs the 3D LUT-based network, which demonstrates that the
additional dimension of enhancement intensity greatly improves
the ability of common 3D LUT to model color transformation under
low-light conditions.

In addition to quantitative comparisons, we also visualize the
common 3D LUT and our IA-LUT in Figure 9. Since 4-dimension
IA-LUT is difficult to illustrate succinctly, we select out three repre-
sentative enhancement intensities 𝑒 and fix them to draw the 3D
remainder in IA-LUT. From the visualization, it can be seen that
the remainder of IA-LUT models the color transformation more
smoothly and correctly than 3D LUT. More importantly, with 𝑒

increasing, the 3D remainder of IA-LUT that stores the mapping
relationships of colors is inclined to be brighter. This observation
validates the influence of enhancement intensities on determining

the relatively optimal color transformation, which is in line with
our overall design.
Denoising: As we pointed out, LUT is susceptible to noise. How-
ever, the real-world videos captured in low-light conditions are
often degraded by noises. To this end, it is expected to improve the
network performance by adding a denoising module to suppress the
noises. In the comparisons between FastLLVE and FastLLVE+dn,
a simple denoising module is able to complement the LUT in per-
formance with the evident improvement on all metrics. Note that
the denoising module also benefits the evaluation of brightness
consistency. One possible reason is that the AB (Var) and MABD
are sensitive to noise as well.
Locations of denoising module: Except for setting a denoising
module as the post-processing, it is also feasible to construct a
denoising module at the begining of the whole framework as the
pre-processing. Neglect to the possibility of enhancing noise, the
pre-processing denoising module seems to be more reasonable.
However, it is worth noting that there is no feasible way to collect
clean low-light videos in real world, which leads to the lack of
ground truths for the supervised training of the denoising module
as the pre-processing. As a consequence, the denoising module
without supervision can affect the video-adaptive IA-LUT to learn
incorrect mapping through the end-to-end training of the entire
framework. In addition, even though the training principles [17, 25]
are specifically designed for supervised training with unpaired
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Table 2: The results of ablation study. The best is in red. [Key: 3D LUT: baseline based on 3D LUT, FastLLVE: our framework
without denoising module, dn+FastLLVE: our framework with denoising module as the pre-processing, FastLLVE+dn: our
framework with denoising module as the post-processing]

Method SDSD SMID Runtime(s)
PSNR SSIM AB (Var)↓ MABD↓ PSNR SSIM AB (Var)↓ MABD↓

3D LUT 22.76 0.69 0.107 0.265 25.08 0.73 1.024 1.227 0.007
FastLLVE 27.06 0.78 0.038 0.091 26.45 0.75 0.476 0.748 0.013

dn+FastLLVE 24.02 0.81 0.146 0.368 23.85 0.72 1.657 2.872 0.080
FastLLVE+dn 27.55 0.86 0.033 0.040 27.62 0.80 0.065 0.050 0.080

(a) Input (b) 3D LUT (c) IA-LUT (d) GT

(e) 3D LUT (f) IA-LUT (𝑒 = 0) (g) IA-LUT (𝑒 = 0.5) (h) IA-LUT (𝑒 = 1)

Figure 9: Visualization of the common 3D LUT and the remainder of IA-LUT while the enhancement intensities 𝑒 are fixed.

noisy data, they may still not be able to completely solve this prob-
lem since it is too difficult to find a reliable noise model that enables
the simulation in various low-light conditions.

For comparison, we follow the training principle Noiser2Noise
[25] to self-supervise the denoising module as the pre-processing,
with the low-light noise model from [22] simulating the noise in
low-light conditions. As shown in Table 5, FastLLVE+dn performs
much better than dn+FastLLVE on all metrics, which supports the
denoising module as the post-processing. Otherwise, due to the
unreliable low-light noise model, the training of dn+FastLLVE based
on Noiser2Noise is unstable and easy to fail as expected. Therefore,
we use the denosing module as the post-processing in our method.

5 LIMITATIONS AND BROADER IMPACT
In this paper, we propose a Intensity-Aware LUT for LLVE and
validate its advantages of high efficiency and natural maintenance
of inter-frame brightness consistency. However, since the LUT-
based methods is commonly susceptible to noise, a from-the-shelf
denoising module is leveraged to further improve the visual quality
of enhanced normal-light videos, affecting the efficiency of the
whole framework. Therefore, a novel denoising strategy suitable
for LUT is promising, and we leave it as future work.

Real-time LLVE has potential to bring a significant impact in
many ways. On the one hand, it can by applied on camera monitor

system to improve the public safety by increasing the visibility of
critical areas, such as streets, parking lots, and transportation, par-
ticularly during night-time hours. On the other hand, it can enhance
the quality of visual media produced in low-light conditions, such
as documentary footage and home videos. This would improve the
overall quality of such visual media, making them more engaging
and informative.

6 CONCLUSION
We firstly introduce the LUT in LLVE tasks, and propose a novel
LUT-based framework, named FastLLVE, for real-time low-light
video enhancement. In order to bring the LUT to LLVE, we design
the Intensity-Aware LUT (IA-LUT) with a new dimension of en-
hancement intensity to solve the one-to-many mapping problem.
In terms of the flickering effect in the enhanced video, we point
out that IA-LUT can naturally maintain the brightness consistency
among video frames. Extensive experiments have validated the
superiority of the proposed method as compared to the LLVE SO-
TAs. We envision that this work could facilitate the development
of LLVE in practical applications.
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A IMPLEMENTATION DETAILS
Network Structure. As illustrated in Table 3, the lightweight en-
coder is comprised of five convolutional blocks that perform down-
sampling on each frame of the input video, thereby reducing the
resolution to 1/32. Each convolutional block consists of a 3D convo-
lution layer, a leaky ReLU [43] activation function, and an instance
normalization [36] layer. Besides, the corresponding lightweight
decoder consists of five deconvolutional blocks that restore each
frame of the encoder output to the original resolution through up-
sampling. The deconvolutional block has the same structure as the
convolutional block, with the exception that the convolution layer
is replaced by a deconvolution [49] layer. It is worth noting that all
instance normalization layers used in the network have learnable
parameters, and the last deconvolutional block that directly outputs
the intensity map is devoid of the leaky ReLU activation function
and instance normalization layer.

In addition, before the two fully-connected layers, which achieve
the mapping h from the compact feature vector 𝛾 to the video-
adaptive IA-LUT, the latent features extracted from the encoder
are first subjected to an average pooling operation, followed by a
dropout operation with the dropout rate set to 0.5. Subsequently,
the features are reshaped to obtain the feature vector 𝛾 . In terms
of these operations as the pre-processing before weight predictor,
the average pooling operation serves to reduce the parameters of
the first fully-connected layer, and the dropout operation aims at
enhancing training data, instead of just avoiding over-fitting that
is the common role of dropout operation.

As for the denoising module, in this paper, we follow the practice
in [3] to design the additional denoising module. Compared with
the original DDFN approach, we decrease the number of feature
integration blocks to one, thereby reducing the size of the denois-
ing module. Moreover, in order to effectively process the enhanced
videos, we leverage 3D convolution layers to implement the de-
noising module. However, notably, it is also feasible to process

each frame recursively with a denoising method of single image
processing.

Quadrilinear Interpolation. Although we have presented a
detailed definition of IA-LUT and its corresponding quadrilinear
interpolation in this paper, the calculation formula for the offset𝑂x
is omitted due to the space limitation. Therefore, we supplement
the calculation formula here, which can be expressed as:

𝑂x = 𝑂𝑟 ·𝑂𝑔 ·𝑂𝑏 ·𝑂𝑒 , (10)

where we have the four terms

𝑂𝑟 =

{
𝑟 − 𝑟𝑖

𝑟𝑖+1 − 𝑟𝑖
,
𝑟𝑖+1 − 𝑟

𝑟𝑖+1 − 𝑟𝑖

}
, 𝑂𝑔 =

{
𝑔 − 𝑔𝑖

𝑔𝑖+1 − 𝑔𝑖
,
𝑔𝑖+1 − 𝑔

𝑔𝑖+1 − 𝑔𝑖

}
,

𝑂𝑏 =

{
𝑏 − 𝑏𝑖

𝑏𝑖+1 − 𝑏𝑖
,
𝑏𝑖+1 − 𝑏

𝑏𝑖+1 − 𝑏𝑖

}
, 𝑂𝑒 =

{
𝑒 − 𝑒𝑖

𝑒𝑖+1 − 𝑒𝑖
,
𝑒𝑖+1 − 𝑒

𝑒𝑖+1 − 𝑒𝑖

}
,

(11)

where (𝑟, 𝑔, 𝑏, 𝑒) denotes the input index, and Cx = [𝑟𝑖 , 𝑔 𝑗 , 𝑏𝑘 , 𝑒𝑚]
stands for the index of grid point x = [𝑖, 𝑗, 𝑘,𝑚]. All the terms
appeared above have been defined in the paper. By utilizing this
calculation formula, we are able to compute the 16 offsets required
during the quadrilinear interpolation, respectively.

Loss Function. In addition to the loss between the output of
our method and the ground truth, we also introduce 4D smooth
regularization and 4D monotonicity regularization adapted to the
IA-LUT into the loss function. The 4D smooth regularization is
designed to ensure the stability of the conversion from the input
space to the mapped color space, which helps avoid artifacts caused
by extreme color changes in the IA-LUT. It consists of two parts
which correspond to the video-adaptive IA-LUT and the video-
dependent weights, respectively. Firstly, we have the 4D smooth
regularization

𝑙𝑠 = 𝑙𝑙𝑢𝑡 + 𝑙𝑤 , (12)

where 𝑙𝑙𝑢𝑡 denotes the part related to the video-adaptive IA-LUT,
and 𝑙𝑤 indicates the other part related to the video-dependent
weights. For brevity, we here let

x𝑖 = [𝑖 + 1, 𝑗, 𝑘,𝑚] , x𝑗 = [𝑖, 𝑗 + 1, 𝑘,𝑚] ,
x𝑘 = [𝑖, 𝑗, 𝑘 + 1,𝑚] , x𝑚 = [𝑖, 𝑗, 𝑘,𝑚 + 1] , (13)

as the four grid points obtained by increasing the index of grid point
x = [𝑖, 𝑗, 𝑘,𝑚] by one unit length along each of the four dimensions.
Then, we define the function F as:

F (𝑖, 𝑗, 𝑘,𝑚) =
𝐶 ′

x𝑖 −𝐶
′
x

2 + 𝐶 ′
x𝑗 −𝐶

′
x

2
+
𝐶 ′

x𝑘 −𝐶
′
x

2 + 𝐶 ′
x𝑚 −𝐶

′
x

2 , (14)

where C′
x = [𝑟x, 𝑔x, 𝑏x] denotes the stored values in IA-LUT for

grid point x. Thus, we have

𝑙𝑠 =
∑︁

𝑖, 𝑗,𝑘,𝑚

F (𝑖, 𝑗, 𝑘,𝑚) +
𝑇∑︁
𝑛=1

∥𝑤𝑛 ∥2, (15)

where𝑤𝑛 , 𝑛 ∈ [1, 2, ...,𝑇 ] denotes the 𝑇 video-dependent weights.



FastLLVE: Real-Time Low-Light Video Enhancement with Intensity-Aware Lookup Table MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

Table 3: Architecture of the encoder-decoder network, where "𝑛𝑓 " is a hyper-parameter that serves as a channel multiplier
controlling the width of each convolution layer. In this paper, the "𝑛𝑓 " is set to 8.

Id Encoder Decoder

Layer Output Shape Layer Output Shape

0 Conv 3 × 3 × 3, Leaky ReLU 𝑛𝑓 × 𝐻/2 ×𝑊 /2 Deconv 3 × 3 × 3, Leaky ReLU 8𝑛𝑓 × 𝐻/32 ×𝑊 /32
1 InstanceNorm 𝑛𝑓 × 𝐻/2 ×𝑊 /2 InstanceNorm 8𝑛𝑓 × 𝐻/32 ×𝑊 /32
2 Conv 3 × 3 × 3, Leaky ReLU 2𝑛𝑓 × 𝐻/4 ×𝑊 /4 Deconv 3 × 3 × 3, Leaky ReLU 4𝑛𝑓 × 𝐻/8 ×𝑊 /8
3 InstanceNorm 2𝑛𝑓 × 𝐻/4 ×𝑊 /4 InstanceNorm 4𝑛𝑓 × 𝐻/8 ×𝑊 /8
4 Conv 3 × 3 × 3, Leaky ReLU 4𝑛𝑓 × 𝐻/8 ×𝑊 /8 Deconv 3 × 3 × 3, Leaky ReLU 2𝑛𝑓 × 𝐻/4 ×𝑊 /4
5 InstanceNorm 4𝑛𝑓 × 𝐻/8 ×𝑊 /8 InstanceNorm 2𝑛𝑓 × 𝐻/4 ×𝑊 /4
6 Conv 3 × 3 × 3, Leaky ReLU 8𝑛𝑓 × 𝐻/16 ×𝑊 /16 Deconv 3 × 3 × 3, Leaky ReLU 𝑛𝑓 × 𝐻/2 ×𝑊 /2
7 InstanceNorm 8𝑛𝑓 × 𝐻/16 ×𝑊 /16 InstanceNorm 𝑛𝑓 × 𝐻/2 ×𝑊 /2
8 Conv 3 × 3 × 3, Leaky ReLU 8𝑛𝑓 × 𝐻/32 ×𝑊 /32 Deconv 3 × 3 × 3, Leaky ReLU 1 × 𝐻 ×𝑊

9 InstanceNorm 8𝑛𝑓 × 𝐻/32 ×𝑊 /32 \ \

Table 4: Quantitative results of FastLLVE with different num-
bers of 𝐿 on SDSD test dataset. The best is in red.

L 9 17 33 64

PSNR 25.10 26.42 27.06 24.52

SSIM 0.7717 0.7736 0.7769 0.7358

As for the other regularization loss 𝑙𝑚 , we letM(𝑎) =𝑚𝑎𝑥 (𝑎, 0)
and define the function G as:
G (𝑖, 𝑗, 𝑘,𝑚) = M

(
𝑟𝑥𝑖 − 𝑟𝑥

)
+M

(
𝑔𝑥𝑖 − 𝑔𝑥

)
+M

(
𝑏𝑥𝑖 − 𝑏𝑥

)
+M

(
𝑟𝑥 𝑗

− 𝑟𝑥

)
+M

(
𝑔𝑥 𝑗

− 𝑔𝑥

)
+M

(
𝑏𝑥 𝑗

− 𝑏𝑥

)
+M

(
𝑟𝑥𝑘 − 𝑟𝑥

)
+M

(
𝑔𝑥𝑘 − 𝑔𝑥

)
+M

(
𝑏𝑥𝑘 − 𝑏𝑥

)
+M

(
𝑟𝑥𝑚 − 𝑟𝑥

)
+M

(
𝑔𝑥𝑚 − 𝑔𝑥

)
+M

(
𝑏𝑥𝑚 − 𝑏𝑥

)
.

(16)

So we can express the calculation of 𝑙𝑚 as:

𝑙𝑚 =
∑︁

𝑖, 𝑗,𝑘,𝑚

G(𝑖, 𝑗, 𝑘,𝑚). (17)

B EXPLORATION OF HYPER-PARAMETERS
In terms of the number of grid points and the number of basis IA-
LUTs, which determine the precision of the color transformation
modeled by the generated LUT, their values cannot be increased
indiscriminately due to the size limitation of IA-LUT. Although in
this paper, we follow the most widely-used setting [44, 45, 50] of
the two hyper-parameters 𝐿 and𝑇 , further experiments are needed
to confirm the validity of this selected setting.

To explore the influence of the number of grid points on the
enhancement effect, as shown in Table 4, we divide the IA-LUT into
different numbers of unit lattices (i.e., different numbers of grid
points). As expected, increasing 𝐿 from 9 to 33 improves the perfor-
mance of our method. However, note that degraded performance is
observed with the value of 𝐿 more than 33. One possible reason is
that too high precision may result in over-fitting. Additionally, a
large number of grid points also leads to heavy memory burden and
great training difficulty which we should avoid. Therefore, with
the consideration of avoiding over-fitting and reducing the size of

Table 5: Quantitative results of FastLLVE with different num-
bers of 𝑇 on SDSD test dataset. The best is in red.

T 1 2 3 4

PSNR 26.40 26.58 27.06 25.23

SSIM 0.7539 0.7648 0.7769 0.7641

Table 6: Quantitative results of FastLLVE+dn with different
numbers of 𝑁 on SDSD test dataset. The best is in red.

T 5 7 9

PSNR 26.51 27.55 26.12

SSIM 0.851 0.855 0.849

AB (Var)↓ 0.032 0.033 0.052

MABD↓ 0.049 0.040 0.055

IA-LUT, setting the number of grid points to 33 is indeed the one
of the optimal choices.

Similarly, to explore the influence of the number of basis IA-
LUTs on the enhancement effect, as shown in Table 5, we use
different numbers of basis IA-LUTs to fuse the video-adaptive IA-
LUTs. It can be observed that the performance of our method is
positively correlated with the value of𝑇 . Then, similar to the above
experiment, degraded performance appears when 𝑇 = 4, possibly
due to the over-fitting. Besides, there is also a need for reducing
the parameters of the fully connected layers. As a consequence, it
may not be a good choice to further increase the number of basis
IA-LUTs, compared with setting the value of 𝑇 to 3.

Finally, we consider the influence of the number of input frames
on the enhancement effect. Therefore, we conduct an experiment,
using different numbers of input frames, to investigate its effect on
performance of the model. According to the Table 6, our method
achieves its optimal performance when 𝑁 is set to 7. Notably, in-
creasing 𝑁 beyond this value leads to performance degradation,
possibly attributable to challenges encountered by the model in
achieving convergence. As a result, the experimental result suggests
7 input frames.
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