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Multi-view 3D Face Reconstruction Based on Flame

Wenzhuo Zheng∗ · Junhao Zhao∗ · Xiaohong Liu† · Yongyang Pan ·
Zhenghao Gan · Haozhe Han · Ning Liu†

Abstract At present, face 3D reconstruction has broad

application prospects in various fields, but the research

on it is still in the development stage. In this paper, we

hope to achieve better face 3D reconstruction quality

by combining multi-view training framework with face

parametric model Flame, propose a multi-view train-

ing and testing model MFNet (Multi-view Flame Net-

work). We build a self-supervised training framework

and implement constraints such as multi-view optical

flow loss function and face landmark loss, and finally ob-

tain a complete MFNet. We propose innovative imple-

mentations of multi-view optical flow loss and the covis-

ible mask. We test our model on AFLW and facescape

datasets and also take pictures of our faces to recon-

struct 3D faces while simulating actual scenarios as

much as possible, which achieves good results. Our work

mainly addresses the problem of combining paramet-

ric models of faces with multi-view face 3D reconstruc-

tion and explores the implementation of a Flame based

multi-view training and testing framework for contribut-

ing to the field of face 3D reconstruction.

Keywords 3D reconstruction · Human face · Multi-

view · Parametric model

1 Introduction

3D reconstruction is a technology that uses 2D in-

formation such as images or videos to recover and re-
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construct specific 3D objects or scenes [13]. Among the

various 3D reconstruction techniques, human face 3D

reconstruction has been a very popular research topic.

Face 3D reconstruction mainly focuses on the recon-

struction of human facial regions, and broadly speaking,

also includes hair, ear, neck and other regions. The hu-

man face is a special 3D object that has not only more

complex shape and texture features, but also strong

prior constraints. This poses a great challenge to face

3D reconstruction on one hand, and on the other hand,

it also provides feasible technical approaches to recon-

struct the face 3D structure from 2D information, and

face parametric model is one of them. The face para-

metric model is a statistical model based on a large

number of faces, and its core idea is that faces can be

matched one-to-one in the 3D feature space and can be

obtained by weighted linear summation of orthogonal

bases for a large number of other faces. The most widely

used model is 3DMM [1,2], but it has two core prob-

lems: (1) 3DMM is in a low-dimensional space and thus

the face detail characterization is weak; and (2) 3DMM

only reconstruct the front face region without neck or

hindbrain. Therefore, we choose Flame [11], which has

better characterization of details and more complete

reconstruction. FLAME has three parameters: shape,

pose, and expression, which can more accurately clas-

sify faces into more dimensions. And The face recon-

structed by FLAME not only includes the lateral face,

the back of the head, but also the neck. However, there

is not much research work on Flame so far, and there

is a gap in the field of multi-view training using Flame.

Our work fills this gap and makes an exploratory con-

tribution to Flame-based multi-view training.

In the past decade, deep learning technologies based

on neural networks have become a dominant trend in

the field of computing and artificial intelligence. Their

end-to-end training method and simple and general learn-
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ing paradigm have brought breakthroughs in many do-

mains, and face 3D reconstruction is no exception. Some

works [7,15] use neural networks to regress end-to-end

to compute the inputs needed for face parameterization

models, but are limited to single-view, while our pro-

posed MFNet can utilize features from multiple views

and fuse them to obtain more complete face informa-

tion. In this paper, we use Flame as a powerful tool to

reconstruct fine-grained 3D face models with low cost

and only 2D RGB images.

Our main contributions are listed as follows:

– We innovatively combine multi-view training with

Flame, propose a multi-view self-supervised frame-

work and implement a complete multi-view training

and testing process. Our proposed model MFNet

achieve good results on both test datasets and ac-

tual captured images.

– We propose a multi-view optical flow loss for our

multi-view training framework and propose a novel

implementation of the technical details such as co-

visible mask.

2 Related Work

2.1 Parametric model

In 1999, Blanz and Vetter et al. [1,2] proposed the

3DMorphable Model (3DMM) for the human face, which

is the most widely used 3D face reconstruction model.

Subsequent studies related to 3DMM have been pub-

lished in the next decade, either by adding coefficients

to the original model, such as Pascal Paysan et al. [9]

updated the expression coefficients of the 3DMM model

for BFM (Basel Face Model) model in 2017, or build

larger datasets, such as James Booth et al. [4] built a

dataset of 9663 faces, or propose better ways to opti-

mize the solution coefficients, such as adding deep learn-

ing ideas to the coefficient solution in recent years to

achieve better results [3,19], or make nonlinear ad-

justments to the model, such as the nonlinear 3DMM

model proposed by Luan Tran et al. [18], but none

of them have departed from the original framework of

3DMM. This also leads to the fact that these changes do

not solve two core problems of 3DMM:(1) The 3DMM

model parameter space is a relatively low-dimensional

parameter space, the texture model is too simple, the

generated face model is too average, it is difficult to

reconstruct detailed features such as face wrinkles, and

the recovery of details such as occlusions and shadows

is poor; and (2) 3DMM only models the front human

face, but it does not include other parts of the human

head, while our work wants to reconstruct the whole

face region as complete as possible, including the ear,

neck and other regions. Therefore, we choose Flame[11]

as our face parametric model.

Flame was proposed by Li Tianye et al., referring to

the expression of the body model SMPL[12], combin-

ing linear blend skining (LBS) and the corresponding

corrected blendshape. Not many researches have been

done on Flame[7,15], and they are all limited to single-

view. We want to utilize the features and data from

multiple perspectives, so we propose a self-supervised

multi-view training framework and achieve better re-

construction results.

2.2 Multi-view reconstruction

There are many works based on face parametric

models, but very few of them[16,21] are trained using

multi-view data, and the only ones are based on 3DMM.

MVFNet[21] is the first work that proposed the idea of

multi-view parametric model training, but it is based

on 3DMM and the implementation is very rough, which

lead to poor results. MGCNet[16] makes some improve-

ments on its basis, proposing novel multi-view loss func-

tions, using multi-view training, but only using a single

image for testing. It does improve the quality of the

face reconstruction, but the reconstructed faces were

still rough and incomplete. The field of Flame based

multi-view training still remains a gap. Our work imple-

ments a multi-view training framework for face recon-

struction based on Flame to provide more information

with multi-view input. To the best of our knowledge,

MFNet is the first work on 3D face reconstruction us-

ing multi-view training and testing framework based

on the face parametric model Flame, and we find that

the combination of multi-view training framework and

parametric model Flame can lead to better quality of

face reconstruction.

3 Method

3.1 Overall architecture

MFNet learns to regress a parameterized face model

with geometric detail on Multi-PIE dataset with multi-

view images of one person. In order to establish multi-

view geometric constraints and correct optical estima-

tion for now we assume the facial images are taken at

the same time under the same lighting condition, and

this assumption can be satisfied by Multi-PIE dataset.

The overall architecture for our proposed is show

in Figure 1. Resnet is a highly mature technology that

has performed well in numerous image recognition and
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classification. So we extract features from each input

image by a shared weight Resnet50, and then concate-

nate the features together and put them into a fully

connected layer to regress a set of flame parameters for

the person. Because the input is a multi-view images,

we cannot directly obtain the pose parameters from the

fully connected layer. We separate a pose and texture

feature from Resnet50 for each perspective for subse-

quent reconstruction work.

Next, we will introduce Flame (Sec. 3.2), Feature

extraction (Sec. 3.3), Differentiable renderer (Sec. 3.4)

and Loss function (Sec. 3.5).

3.2 Flame

After extracting features from the multi view images

in the input batch through Resnet50 and converting

them into fully connected layers, we can obtain the de-

sired Flame model input vectors β⃗, pose θ⃗, expression

ψ⃗. Next, the Flame model acts as a decoder to con-

vert these hidden layer vectors into three-dimensional

facial information.These three-dimensional information

mainly consists of two parts, the first is the information

of each vertex, such as coordinate TP , Normal vector

Nuv and faces F , and the second is landmark coordi-

nates of the face. The equation of the Flame model is

as follows:

M(β⃗, θ⃗, ψ⃗) =W (TP (β⃗, θ⃗, ψ⃗),J(β⃗), θ⃗,W) (1)

3.3 Feature extraction

A pre-trained model is a model that was previously
trained on a large dataset, typically for a large-scale

task, and then saved for reuse. Pretrained models can

save time and improve performance by leveraging the

knowledge learned from previous tasks. Here we use

a pretrained model for better feature extractoin. In

order to obtain better feature information, we use a

fully connected layer to fuse the features extracted by

Resnet50 from three perspectives together for consider-

ation, thereby obtaining a more accurate model.

3.4 Differentiable renderer

After getting the 3D information of the face through

Flame model, we need to use 3D rendering to get the

2D image.Our shadow facial image B(alpha, l,NUV ) is

calculated based on the following equation:

B(α, l,Nuv)i,j = A(α)i,j ⊙
9∑

k=1

lkHk(Ni,j) (2)

In the equation 2, A(α) represents UV albedo map,

NUV is the normal vector of the face surface output by

Flame. Bi,j ∈ R3, Ai,j ∈ R3, Ni,j ∈ R3 represents the

various attributes of pixel (i, j) in the UV coordinate

system. ⊙ represents Hadamard product.

In addition, we also need to extract texture from the

original input image and obtain vertex coordinates TP
and faces F to calculate the correspondence between

points in the 3D mesh and the 2D texture map UV .

Then, the texture map I ′uv is obtained from the origi-

nal input image by using this correspondence UV , and

the missing part in the middle is supplemented by bi-

linear interpolation. We extract the texture of multi

views and perform simple fusion to obtain I ′uv, which

contains information from multi views. Finally, we use

facial mask Mface to get UV texture map Iuv:

Iuv =Mface ⊙ I ′uv (3)

Given the geometric parameters (β⃗, θ⃗, ψ⃗), albedo α,

lighting condition l, and camera parameter c of the

mesh, we can render different two-dimensional face im-

ages Ir from various perspectives:

Ir = R(M,B, c, Iuv) (4)

3.5 Loss function

3.5.1 Multiview optical loss

The multi-perspective projection loss function cal-

culates the photometric consistency loss with the in-

put image after projecting the 3D model from different

perspectives to each perspective, obtaining the 2D face
under different perspectives. This calculation method is

very common in other fields, but in fact it is difficult to

play a supervisory role in our model.

We find that the multi-perspective projection loss

function has two major drawbacks. On the one hand,

because the pixel gray value difference between adja-

cent regions of the face is very small, even if the model

estimation is slightly different, the loss function cannot

accurately estimate; on the other hand, suppose that a

reconstruction model has a slight deviation in the 3D

angle pose, even small, but rendering to 2D image will

cause large-scale misalignment, resulting in a very large

loss function. This reflects an essential problem: the

photometric consistency loss estimates the gray value

difference between each pixel in two 2D images, but op-

timizing in this direction will not make our 3D model

reconstruction better, because the model will mistak-

enly focus on the gray value difference and ignore a

more important measure, that is, whether the coordi-

nate prediction of each point of the 3D model model is
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Fig. 1 Architecture of MFNet.

accurate or not. We hope to calculate the reconstruc-

tion error of the 3D model, but it is not advisable to

calculate it directly because of the lack of true value

of the 3D model. Therefore, we need to estimate it

through the rendered 2D image, but the photometric

consistency loss obviously cannot provide accurate es-

timation. After analysis, we think that the correct mea-

sure should be that for the same vertex in the 3D model,

we find its corresponding point position in the rendered

image and the corresponding point position in the true

value image, and calculate the distance between their

coordinates as the reconstruction error. We hope that

these two points can coincide, so the distance should

be as close to zero as possible. But it is very difficult

to calculate this distance directly. The main difficulty

lies in that it is very difficult to find the pixel point

positions between two 2D images corresponding to the

same vertex in the 3D model. MGCNet[16] proposed a

method to estimate using camera parameters and depth

information, but our model does not have depth infor-

mation, and this estimation method is also difficult to

implement. After research, we choose to use optical flow

method to estimate this.

Optical flow[22] in computer vision mainly refers

to the movement of objects in the image, specifically

the change of pixel points corresponding to the same

object in two images, which is represented by a two-

dimensional vector. In our model, we use a dense op-

tical flow estimator to estimate the change distance of

two faces, and use the sum of squares of all changes as

the loss function for supervision. Here we show the ex-

traction effect of optical flow (Figure 2). The first two

images are the original and rendered images, and the

third image is the estimated optical flow. It can be seen

that the optical flow estimator can estimate the differ-

ence between face images well, and the effect basically

meets the expected goal.

Fig. 2 Optical flow estimation.The first column is the input
of the original image, the second column is the rendered im-
age, and the last column is the forward optical flow.

Due to the occlusion of the face, the area of the right

face will not appear in the left perspective facial photo.

So when we calculate the optical flow loss between the

reconstructed left face and the front face of the original

image, we should mask the area of the right face and

only calculate the area where the two perspectives are

common. So here we propose a new implementation of

the covisible mask. For the input face image, we first

generate a projected two-dimensional face mask MF

according to the position of the three-dimensional face

model by some more complex mathematical operations

during the differentiable rendering. This face mask can

better extract the face part in the two-dimensional im-

age, but we still need to extract the covisible mask for

the common visible regions of different viewpoints. At

this time, we will use the extracted face keypoints. For a

three-dimensional face model, we take its eyebrow key-

points, nose keypoints, cheek keypoints and chin key-

points as the boundaries of the common visible region,

and obtain the upper, lower, left and right boundaries

of the bounding box MB, such as the left eyebrow, left
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cheek, left chin and left side of the nose. The bound-

ing box MB composed of keypoints and the face mask

MF can be combined to obtain a better covisible mask

MC. We formulate it as follows: given the common vis-

ible region MBa,b between viewpoint a and viewpoint

b, and the face mask MFb of viewpoint b, we can ob-

tain the covisible maskMCa,b between viewpoint b and

viewpoint a:

MCa,b =MBa,b ⊙MFb (5)

Here we show the effect of the covisible mask that we

re-implemented (Fig. 3). The first column is the origi-

nal image, the second column is the face with the face

maskMF added, and the third column is the face with

the covisible maskMC added. It can be seen that when

we calculate the face mask, in order to reduce the es-

timation error of the optical flow for the uninterested

region, we also mask the complex regions such as the

mouth, so that the covisible mask basically achieves our

expected goal.

Therefore, given the image Ib and the rendered im-

age Ia→b, the optical flow estimator F, the covisible

mask MCa,b, we can calculate the multi-view optical

flow loss function Lmultiop:

Lmultiop(Ib, Ia→b) = |F(MCa,b⊙Ib,MCa,b⊙Ia→b)| (6)

3.5.2 Single View Keypoint Loss

The original multiview keypoint loss was overly fo-

cused on achieving multi-view consistency, but neglected

the constraint of the face itself. Therefore, we aban-

doned excessive multi-view constraints and implemented

a single-view keypoint loss function. Similar to the multi-

view keypoint loss function, we also projected the 3D

face keypoints to the 2D image, but instead of pro-

jecting the keypoints from one view to another, we re-

projected them back to the original view and compared

them with the original image. We hope that this can

provide stronger constraints for the model and prevent

it from ignoring the constraints of the face itself.

We formalize it as follows: for view a, we compute

the error between the ground truth keypoints ka of view

a and the 2D projected keypoints ka→a obtained by re-

projecting the 3D keypoints of the modelMa generated

from view a back to view a:

Lsinglelmk(ka, ka→a) =
∑

i∈MFa

∥ka(i)− ka→a(i)∥1 (7)

3.5.3 Eye keypoint loss

Since the eye area of the face is relatively complex,

we implemented an eye keypoint loss function to achieve

better face reconstruction results. We compute the rel-

ative offset between the keypoints ka(i) and ka(j) of

the upper and lower eyelids on a certain view a, and

measure the difference between their offset and the off-

set between the corresponding re-projected keypoints

ka→a(i) and ka→a(j) of the 3D model, as the eye key-

point function:

Leye(ka, ka→a) =∑
(i,j)∈Ea

∥ka(i)− ka(j)− (ka→a(i)− ka→a(j))∥1

(8)

Where Ea denotes the set of upper and lower eyelid

keypoints of view a. The resulting Leye will focus more

on penalizing the error of the relative offset between

the eyelid keypoints, while Lsinglelmk is the error cal-

culation for the keypoints of the whole face. Compared

to equation 7, it is more robust to the misalignment

problem between the projected 2D face and the orig-

inal image, while if only absolute distance is used to

measure the loss function, the reconstructed face im-

age will show some abnormal facial shapes, which is

reflected in the ablation experiment.

3.5.4 Lip keypoint loss

Since the lip area of the face is also complex, we

implemented a similar reconstruction error as the eye

keypoint loss function, computing the relative offset be-

tween the keypoints ka(i) and ka(j) of the upper and

lower lips on a certain view a, and measuring the differ-

ence between their offset and the offset between the cor-

responding re-projected keypoints ka→a(i) and ka→a(j)

of the 3D model, as the lip keypoint function:

Llip(ka, ka→a) =∑
(i,j)∈Pa

∥ka(i)− ka(j)− (ka→a(i)− ka→a(j))∥1 (9)

Where Pa denotes the set of upper and lower lip key-

points of view a. The resulting Llip will focus more on

penalizing the error of the relative offset between the

upper and lower lip keypoints.

3.5.5 Regularized loss

We need to regularize some vectors to prevent over-

fitting, including shape vector β⃗ regularization, expres-
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Fig. 3 Covisible mask.The last column is the rendering of our covisible masked images. The dark regions of last column are
excluded using 3D landmarks on nose tip and eyebrows

sion vector ψ⃗ regularization and albedo α regulariza-

tion:

Lreg = ∥β⃗∥2 + ∥ψ⃗∥2 + ∥α∥2 (10)

3.5.6 Total loss

The total loss function is shown below:

Ltotal = λ1Lmultiop + λ2Lsinglelmk + λ3Leye + λ4Llip + λ5Lreg

(11)

3.6 Testing

First, we found in the experiment that if we replace

the pose parameter θ⃗ of the Flame model during re-

construction, we can achieve the effect of projecting to

different views more easily, which is equivalent to the

pose parameter θ⃗ acting as the camera parameter, and

we can use the DECA pre-trained model to extract the

pose parameter for the input image, thus omitting the

process of camera calibration for the input image, which

is more suitable for daily scenarios and reduces the re-

construction cost, in line with our research purpose.

Second, we added three view information fusion func-

tions in the feature extraction module of MFNet, which

can provide more view information for the model.

4 Experiments

In this section, we first introduce our implementa-

tion details for conducting the experiments, including

the datasets and evaluation metrics(Sec. 4.1). Then we

make qualitative and quantitative comparisons to other

3D face reconstruction methods(Sec. 4.2 and Sec. 4.3).

Finally, we demonstrate the effectiveness of the pro-

posed method with extensive ablation studies in Sec.

4.4.

4.1 Implementation Details

Training Datasets Our training is performed on

Multi-PIE dataset, which contains over 750,000 images

recorded from 337 subjects using 15 cameras in differ-

ent directions 963 under various lighting conditions. We

take frontal-view, images as anchors with the number

05 and randomly select side-view images (left and right)

to form a three view triplet which is the input of our

model and also images for reconstruction. Note that

whether an image is in frontal, left, or right view can

be determined by the provided camera ID, so we can

easily select those images we want. In this way, we take

36k training triplets.

Evaluation Datasets We mainly perform quan-

titative and qualitative evaluations on the facescape

benchmark containing in-the-wild and in-the-lab data.

14 recent methods are evaluated on the dimensions of

camera pose and focal length, which provides a com-

prehensive evaluation.

The benchmark of FS-Wild consists of 400 face im-

ages of 400 synthesized subjects. The data are uni-

formly divided into 4 sets according to the angle be-

tween camera orientation and face orien tation (0◦ −
5◦,5◦ − 30◦,30◦ − 60◦,60◦ − 90◦),with a reference 3D

face model per subject. The images consist of indoor

and outdoor images, neutral expression and expressive

face images, and varying viewing angles ranging from

frontal view to side view

The benchmark of FS-Lab consists of the 20 detailed

3D face models, which are randomly selected from the

unpublished testing set of FaceScape. These subjects’

age ranges from 17 to 63, with an average age of 38.7.

Centering on the head and starting from the front, Ev-

eryone’s picture has 11 different camera locations. So

we can choose three views from FS-Lab as the input

for our nulti-view model.
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Pretrained Model After conducting a literature

review, we chose DECA (Detailed Expression Capture

and Animation)[7]. Its Ecoarse model is used as a pre-

trained model, and we import part of its parameters

into our Resnet50, and fine-tune it in the subsequent

training.

Optical flow extractor We use RAFT[17] to ex-

tract optical flow. The RAFT model extracts pixel-level

features and establishes multi-scale four dimensional

correlation information, and iteratively updates the es-

timated optical flow field through four dimensional in-

formation lookup.

Evaluation Metrics In the single-view quantita-

tive evaluations on FS-Wild dataset, we follow the eval-

uation metrics on FS-Wild dataset, which compute Cham-

fer Distance(CD), Mean Normal Error(MNE), and Com-

plete Rate(CR). Among them, CD (Chanmfer Distance)

refers to the chamfer distance, which represents the dif-

ference between the model we reconstructed and the

real 3D facial model. MNE (Normal Mean Error) refers

to the average error, which is the sum of the distances

between the normalized predicted values of facial fea-

ture points and the true values. CR (Completeness Rate)

refers to the completeness of the predicted model, cal-

culated as the proportion of the number of points in

both the real and predicted models to the total number

of points in the real model. In the multi-view quan-

titative evaluations on FS-Lab dataset, we follow the

evaluation metrics on FS-Lab dataset, but take three

view of FS-Lab dataset as the input of our model.

Hyper-Parameters Setting In actual training,

we set the hyperparameters in equation (11) to λ1 = 1,

λ2 = 1, λ3 = 1, λ4 = 0.5, λ5 = 1e − 04. learning rate

= 1e− 3. Train epochs on multi-PIE are 10.

4.2 Qualitative Results

We first present our reconstruction results, as shown

in Figure 4.

We obtained the reconstructed model based on three

inputs, and then projected it to a certain perspective.

We can see that MFNet’s reconstructed facial model

performs well in various perspectives, achieving our ex-

pected goals. Next, we compared the reconstruction ef-

fects of DECA and MFNet. We used DECA and our

model to reconstruct 2000 images from AFLW2000-3D

respectively. Some of them are shown in Figure 5.

Through observation, it can be found that DECA

has problems in predicting facial edges in certain situ-

ations, which can cause the predicted 3D model of the

face to be narrow, such as in the first row of images;

When there is occlusion on the face, such as in the sec-

ond row of images, the reconstruction results of DECA

Fig. 4 MFNet reconstruction.The first and third columns
represent a certain perspective of the three input images,
while the second and fourth columns represent the MFNet
reconstruction effect.It can be seen that both the shape and
angle of the face have been well reconstructed in MFNet.

Fig. 5 Qualitative experiment of DECA and MFNet. The
first column represents a certain perspective of the input im-
age, the second column represents the DECA reconstruction
effect, and the third column represents the MFNet recon-
struction image.It can be seen that sometimes the lips recon-
structed by DECA cannot be closed, but MFNet can recon-
struct the lips very well. And DECA cannot reconstruct a
chubby face shape well, but MFNet does it well.

may have some deviation, while MFNet can model more

accurately due to the involvement of multiple perspec-

tives; When the face has a certain angle and there is

a visual deviation in the judgment of the face shape,

as shown in the third line of the left image, DECA also

makes a mistake in the judgment of the character’s face

shape; In addition, for the reconstruction of some fa-
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cial details such as eyes, eyebrows, lips, etc., MFNet is

more suitable for reconstruction compared to DECA, as

shown in the third line of the right image. Therefore,

through comparison, it can be found that due to the

training from multiple perspectives, MFNet performs

better than DECA in most cases.

Finally, we also set up three-viewed cameras on site

to take images of the people around us, obtaining multi-

view images that are close to the real environment. We

tested the reconstruction effect of MFNet on these im-

ages and added texture, as shown in the Figure 5.

Fig. 6 MFNet reconstruction of shot images.The first three
columns are facial photos from the three input perspectives.
The last column is the reconstructed face of MFNet after
texture rendering.

4.3 Quantitative Results

At present, the number of benchmarks suitable for

multi view Iterative reconstruction test of parametric

models is small, and basically only 3DMM type face

truth values are provided, so it is difficult to find a

benchmark suitable for Flame model comparison. There-

fore, in order to conduct a broader comparison, we test

our model on a single view Iterative reconstruction test

set and compare it with other algorithms. Since the

benchmark is a single view Iterative reconstruction of

face, and MFNet is designed to serve multiple views,

we will repeat the test image three times as the input

of MFNet’s left, middle and right views. Due to the

original intention of designing MFNet for multi view

input methods, this testing method inevitably reduces

the reconstruction effect of MFNet. However, compared

with the quantitative indicators of single view models,

it can also reflect the progress of MFNet in side face

reconstruction to some extent.

Fisrt, we used the FS-Wild test set to test the ef-

fectiveness of MFNet and compared it with other sin-

gle view reconstruction algorithms. Table 1 shows the

performance of various single view reconstruction al-

gorithms from small to large poses. The top row rep-

resents the head deflection angle, and each column is

best represented in bold.

Next, we use images in the FS-Lab dataset of the

same person from three different perspectives as the in-

put to MFNet, and randomly selected images from one

perspective as the input for other single-view models.

After obtaining the 3D model for facial reconstruction,

we followed the evaluation metrics on FS-Lab dataset

to calculate the three test metrics. The specific results

are shown in Table 2.

It can be seen that on the facescape lab dataset,

when MFNet was tested with a complete multi-view in-

put, its various indicators showed significant improve-

ment compared to DECA and also other single-view

models, indicating that our multi-view training gives

MFNet better reconstruction ability and achieves our

expected goals.

4.4 Ablation Study

In this section, we conduct an ablation study on the

mentioned loss function. In the ablation experiment,

we remove one Loss function, keep other Loss func-

tion unchanged, and train the same epochs on the same

training set. Testing is performed on the fasescape-wild

dataset.The results are shown in Table 3. Finally, we

reconstructed each ablation model on the alfw dataset.

The effectiveness of Loss function can be directly re-

flected by the reconstruction of ablation model.And the

reconstructions are shown in Figure 7 From Table 3, we

have some findings in our loss function:

• After removing the multi view optical flow loss, the

reconstruction effect of the front face or near the

front face decreases, while the reconstruction effect

of the side face is similar to MFNet, indicating that

multi view optical flow loss can better consider the

information of multiple views comprehensively.

• After the regularized Loss function is removed, the

model reconstruction effect is also greatly reduced,

indicating that the regularized Loss function has

achieved good results in preventing over fitting and

other functions.
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methods
0-5 5-30 30-60 60-90

CD MNE CR CD MNE CR CD MNE CR CD MNE CR

extreme3dface[20] 5.02 0.16 0.62 5.512 0.18 0.56 7.91 0.20 0.40 25.3 0.26 0.27
PRNet[8] 2.61 0.12 0.83 3.11 0.11 0.83 4.25 0.11 0.78 3.88 0.14 0.75

Deep3DFaceRec[6] 2.30 0.07 0.83 2.50 0.07 0.83 3.56 0.08 0.77 6.81 0.14 0.62
RingNet[15] 2.40 0.08 0.99 2.99 0.09 0.99 4.78 0.10 0.98 10.7 0.18 0.97
DFDN[24] 3.67 0.09 0.87 3.27 0.09 0.86 7.29 0.12 0.84 27.4 0.30 0.57
DF2Net[24] 2.92 0.12 0.57 4.21 0.13 0.56 6.54 0.15 0.46 19.7 0.30 0.30
UDL[5] 2.27 0.09 0.69 2.59 0.09 0.68 3.45 0.10 0.64 6.32 0.17 0.49

facescape opti[23] 2.81 0.09 0.84 3.17 0.09 0.82 4.08 0.10 0.78 6.57 0.16 0.67
facescape deep[23] 2.70 0.08 0.87 3.69 0.09 0.86 4.22 0.09 0.85 9.09 0.15 0.70

MGCNet[16] 2.97 0.07 0.84 2.94 0.07 0.85 2.78 0.07 0.81 4.20 0.09 0.74
3DDFA V2[10] 2.49 0.07 0.86 2.66 0.07 0.86 3.17 0.07 0.83 3.67 0.09 0.79
SADRNet[14] 6.60 0.11 0.90 6.87 0.11 0.89 6.39 0.10 0.84 8.62 0.16 0.82

LAP[25] 4.19 0.11 0.94 4.47 0.12 0.93 6.15 0.14 0.87 13.7 0.20 0.68
DECA[7] 2.88 0.08 0.99 2.64 0.07 0.99 2.88 0.08 0.99 4.83 0.11 0.99
MFNet 3.98 0.11 0.99 4.07 0.11 0.99 3.60 0.10 0.99 5.25 0.12 0.99

Table 1 Comparison with other single-view methods.Among them, CD (Chanmfer Distance) refers to the chamfer
distance, which represents the difference between the model we reconstructed and the real 3D facial model. MNE
(Normal Mean Error) refers to the average error, which is the sum of the distances between the normalized predicted
values of facial feature points and the true values. CR (Completeness Rate) refers to the completeness of the predicted
model, calculated as the proportion of the number of points in both the real and predicted models to the total number
of points in the real model.

Table 2 comparison of MFNet and other single-view mod-
els. Through the table, we can find that MFNet outperforms
many single-view models in various indicators, indicating that
the information provided by multiple views has helped in fa-
cial reconstruction

method
facescape-lab

CD MNE CR

DECA[7] 5.25 0.16 0.97
LAP[25] 9.76 0.20 0.85

SADRNet[14] 7.21 0.18 0.89
DFDN[24] 14.10 0.32 0.93

Deep3DFaceRec[6] 5.28 0.15 0.80
extreme3dface[20] 15.38 0.26 0.66

PRNet[8] 4.97 0.15 0.85
facescape opti[23] 5.14 0.16 0.76

DF2Net[24] 7.39 0.17 0.67
MFNet 4.89 0.14 0.99

Fig. 7 Ablation study of loss function.From left to right are
the images with reg, lip, lmk, eye, multiop removed respec-
tively, and the last column is the reconstruction of MNFet.

• After removing the Loss function of single view face

key points, the Loss function of eye key points, and

the Loss function of lip key points, the reconstruc-

tion performance of the model has declined signifi-

cantly, especially the Loss function of eye key points,

which shows that the eye and lip areas are complex,

and it is necessary to provide a good Loss function

for supervision, and the Loss function of key points

of complete face is also very useful, It can provide

the model with correct facial prior knowledge. We

can see that after removing constraints such as eyes

and lips, the reconstruction effect of the front face

decreases the most significantly, which is also in line

with our analysis, because the structure of the eyes

and nose in the front face is the most complete,

accounting for a large proportion, and the perfor-

mance degradation is most significant after the lack

of constraints.

In general, the ablation experiment of Loss function

shows that the performance of the model has declined to

varying degrees after the removal of some Loss function,

which shows that the Loss function we designed and the

implementation method are reasonable.

5 Conclusion

Our main contribution is to innovatively combine

the face parametric model Flame with a multi-view

training and testing framework, and propose a multi-

view face 3D reconstruction model MFNet based on

Flame. We firstly analyzes the research significance and
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Table 3 Ablation study of loss function.

methods
0-5 5-30 30-60 60-90

CD MNE CR CD MNE CR CD MNE CR CD MNE CR

- multiop 4.29 0.12 0.98 4.43 0.12 0.99 3.62 0.09 0.99 5.12 0.12 0.99
- singlelmk 6.54 0.14 0.99 5.85 0.13 0.99 12.2 0.18 0.97 38.6 0.25 0.93

- eye 140 0.33 0.99 423 0.38 0.98 61.8 0.24 0.96 5.91 0.14 0.99
- lip 6.95 0.13 0.99 11.2 0.15 0.98 13.7 0.17 0.94 13.6 0.18 0.95
- reg 23.3 0.19 0.99 32.3 0.19 0.99 7.39 0.12 0.99 8.75 0.16 0.99

MFNet 3.98 0.11 0.98 4.06 0.11 0.98 3.60 0.10 0.99 5.25 0.12 0.99

research status of face 3D reconstruction. However, the

face 3D reconstruction technology at home and abroad

is still in the development stage, and there are problems

such as hardware cost and product quality are difficult

to be satisfied. We propose our model MFNet, which

is implemented in a multi-view training and testing

framework and achieves excellent face 3D reconstruc-

tion results by using multiple RGB images with simple

acquisition difficulty.

Although our model MFNet achieves the expected

results on multi-view 3D reconstruction, our work still

has many problems, such as our quantitative experi-

ments are not sufficient, our results are not very good

when performing quantitative analysis on single-view

datasets, and the reconstruction results have many flaws,

these shortcomings give us room for improvement. We

believe that a broader comparison of MFNet on multi-

view test sets is needed to validate our performance,

while using larger training datasets, more complex deep

neural networks, and more diverse loss functions can

bring better results to MFNet.
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