
The Visual Computer (2023) 39:3811–3822
https://doi.org/10.1007/s00371-023-03031-5

ORIG INAL ART ICLE

PCTMF-Net: heart sound classification with parallel CNNs-transformer
and second-order spectral analysis

Rongsheng Wang1 · Yaofei Duan1 · Yukun Li1 · Dashun Zheng1 · Xiaohong Liu2 · Chan Tong Lam1 · Tao Tan1

Accepted: 6 July 2023 / Published online: 20 July 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Heart disease is a common condition worldwide and has become one of the leading causes of death worldwide. The electro-
cardiogram (PCG) is a safe, painless, and non-invasive test that captures bioacoustic information reflecting the function of the
heart by capturing the acoustic signal of the patient’s heart. Nowadays, based on biosignal processing and artificial intelligence
technologies, automated heart sound classification is playing an increasingly important role in clinical applications. In this
paper, we propose a new parallel CNNs-transformer network with multi-scale feature context aggregation (PCTMF-Net). It
combines the advantages of CNNs and transformer to achieve efficient heart sound classification. In PCTMF-Net, firstly, the
heart tone signal features are extracted using the second-order spectral analysis, and a transformer-basedMHTE-4 (multi-head
transformer encoder with four attention heads) is designed to encode and aggregate the contextual information, and then,
two CNNs feature extractors are designed in parallel with MHTE-4 to capture the hierarchical features. Finally, the feature
vectors obtained from CNNs and MHTE-4 through feature fusion in PCTMF-Net will be fed into the fully connected layer
for predicting the classification results of heart sounds. In addition, we perform validation based on two publicly available
mutually exclusive heart sound datasets and conduct extensive experiments and comparisons of existing algorithms under
different metrics. The experimental results show that our proposed method achieves 99.36% accuracy on the Yaseen dataset
and 93% accuracy on the PhysioNet dataset. It surpasses current algorithms in terms of accuracy, recall and F1-score metrics.
The aim of this study is to apply these new techniques and methods to improve the diagnostic accuracy and validity of heart
disease for clinical use.

Keywords Classification of heart sound · Heart sound signal · Higher-order spectrum · Parallel convolution and transformer

1 Introduction

The heart is a vital organ of the human body. Cardiovascular
disease (CVD) is characterized by burstiness and recidivism,
making it oneof the leading causes ofmorbidity andmortality
in the world population [1]. With an estimated 17.5 mil-
lion deaths from CVD-related disease in 2012, this accounts
for 31% of all deaths worldwide [2]. However, the burden
is particularly problematic in developed countries (LMICs),
where high-quality diagnostics are often difficult to access in
resource-limited areas. Engineering a mobile health tool to
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assess and manage cardiovascular disease risk is a promis-
ing endeavor. Although ultrasound and magnetic resonance
imaging have replaced auscultation in wealthier economies
[3], heart sound auscultation remains an important diagnostic
method for outpatient physicians. However, with the patient-
to-physician ratios as high as 50,000:1 in some parts of the
world, access to specialist diagnosis is often hampered [4].

Traditionally,medical professionals haveusedheart sounds
to detect heart disease through auscultation. Numerous dis-
ease disorders of the cardiovascular system are reflected in
several heart-related signals, such as heart electronic signals
(i.e., electrocardiographs or ECGs) and heart sound signals
(i.e., phonocardiograms or PCGs). Compared to the con-
ventional electrocardiogram (ECG), PCG is cost-effective,
reproducible, and informative. The heart sound signal carries
early pathological information about cardiovascular disease
and is beneficial for the early identification of underlying
cardiovascular disease [5]. Heart sounds generated by the
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mechanical activity of the myocardium can be heard in PCG
recordings, and in addition to the correct heart sounds such
as S1 and S2 [6], pathological murmurs can also be heard.
Depending on their localization, different pathologies and
structural defects can be diagnosed. PCG is a non-invasive
diagnosis, cost-effective, and requires minimal equipment
[7]. Therefore, PCG iswell suited for cardiac screening, espe-
cially in small primary care clinics.

However, traditional heart sound auscultation has some
drawbacks, and the results may be misdiagnosed or missed
due to subjective factors such as the doctor’s hearing and
experience. Statistically, the accuracy rate of auscultation
by cardiologists is about 80%, while that of primary care
physicians is about 20–40% [8]. Moreover, PCG record-
ings are limited by the audible frequency range, and ambient
noise and variations in the recording area are the biggest
challenges in auscultation. To address these shortcomings,
a cost-effective automated diagnostic system in ambulatory
monitoring is a practical and effective way to do so. Such
an approach could effectively reduce financial costs and
more efficiently utilize the vast potential of expert resources.
This screening method would also provide testing oppor-
tunities for a large population of potential CVDs, further
providing additional diagnostic tests for medical evalua-
tion. Consequently, there is an urgent need for an objective
and automated computer-aided tool for PCG signal analysis
aimed at an automatic classification of PCG signals. Today,
based on biosignal processing and artificial intelligence tech-
niques, automated heart sound classification has the potential
to screen for pathology in a variety of clinical applications,
thereby reducing costly and time-consuming manual exami-
nations, and automated analysis of heart sound signals using
computer technology is emerging as a promising area of
research.

Early heart disease detection is important for patients to
take preventivemeasures to reduce the harmcaused by poten-
tial diseases. Improving the accuracy of automated heart
sound auscultation is an important matter. In this paper,
we propose classifying heart sound using parallel CNNs-
transformer networks with second-order spectral analysis.

Our main contributions are highlighted as follows:

(1) A second-order spectral analysis is used in heart sound
feature extraction. The second-order spectral analysis can
be well applied to non-smooth medical signals, such as
EEG, ECG, and PCG, which can effectively retain the
useful features in the signal and reduce the noise.

(2) APCTMF-Net parallel architecturewithCNNs-transformer
is proposed for heart sound classification, where MHTE-
4 is designed to encode and aggregate contextual infor-
mation, and a two-way CNNs structure in parallel with
MHTE-4 is used to capture hierarchical features.

(3) We conducted experimental evaluations on two pub-
licly available datasets. Our proposed method achieved
the best performance in comparison with four state-
of-the-art heart sound classification models on both
datasets. Specifically, our method achieved the highest
classification accuracy compared to other methods and
demonstrated excellent advantages in evaluation metrics
such as precision and recall. These results fully demon-
strate that our proposed method has high accuracy and
stability in heart sound classification tasks.

2 Related work

The standard process for the computer-based heart sound
analysis can be summarized into the following steps: (1) pre-
processing; (2) feature extraction; (3) classifier design.

In the past decades, fruitful methods have been reported
for each step of the aforementioned heart sound analysis
process. Oliveira et al. [9] proposed the need for a heart-
beat alignment step, and evaluated differentmachine learning
algorithms. Fatmawati et al. [10] compared the Empirical
Mode Decomposition (EMD) and Double-Density Discrete
Wavelet Transform (DD-DWT) method as a denoising sys-
tem to minimize the noise effect in the PCG signal.

Zabihi et al. [11] extracted 40 time-frequency features
from unsegmented heart sound signals and performed heart
sound abnormality detection. Schmidt et al. [12] extracted
different kinds of spectral features, including spectral param-
eter models, instantaneous frequency and amplitude (IFA),
and octave power, to describe time-frequency properties.
Kumar et al. [13] used fast wavelet decomposition to extract
high-frequency heart sound features. Cristhian et al. [14]
proposed to use MFCC (mel-frequency cepstral coefficient)
cepstrum coefficients to convert one-dimensional PCG audio
signal extraction into a two-dimensional time-frequency
representation for heat map visualization and CNNs clas-
sification. Nilanon et al. [15] proposed to use spectrograms
for feature extraction of heart sounds, and spectrograms can
effectively capture the frequency, amplitude, and time infor-
mation of heart sound signals.

As for heart sound classification, Stasis et al. [16] used a
decision tree algorithm for the diagnostic task. Hadrina et al.
[17] constructed a hiddenMarkovmodel for heart sound clas-
sification and achieved good experimental results.Wang et al.
[18] used a combination of hidden Markov model (HMM)
and MFCC features to classify abnormal heart sound sig-
nals. Ali et al. [19] used three integration techniques, namely
Bagging, AdboostM1, and random subspace to improve the
recognition rate of low performance-based classifiers.

In the course of rapid development of artificial intelli-
gence algorithms, deep learning neural networks (DNN)have
been explored for human heart sound classification in recent
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years. Unlike conventional heart sound classification algo-
rithms, the particular advantage of deep learning algorithms
lies in their feature extraction capabilities fromcomplex heart
sound signals. Bozkurt et al [20] extracted three different
types of heart sound features, including Mel spectral map,
MFCC, and subband envelope and compared with different
feature fusion and segmentation strategies based on feed-
forward CNN. A robust heart sound classification method
combining a deepCNN feature extractor and a support vector
machine (SVM) was presented and evaluated in Tschannen
et al. [21], but no comparison with other models. Thomae
et al. [22] proposed to develop deep end-to-end neural net-
works in which an RNN was constructed as a convolutional
front end, but the model’s structure is relatively simple and
may not fully explore the important features in the heart
sound signal. Latif et al. [23] proposed an RNN for abnor-
mal heartbeat detection. They investigated the performance
and computational complexity of four RNN models, namely
Long Short-Term Memory (LSTM), Gated Recurrent Units
(GRU), Bidirectional Long Short-Term Memory (BLSTM),
and Bidirectional Gated Recurrent Units (BGRU). Qaisar
et al. [24] proposed a cardiovascular disease classification
network using spectral feature maps obtained from continu-
ous wavelet transforms and a self-aware transformer, but the
dataset of this work includes only 250 samples, so the results
have limited generalizability.

Although extensive work has been presented on cardiac
tone classification, most of them suffered from degraded
performance [25] because of the complicated and variable
acoustic environment of the heart. The main reason for this is
thatmany earlyworks in the field of heart sound classification
were based on low-order feature extraction methods, such as
power spectral feature extraction based on Fourier transform,
wavelet transform, etc. However, these methods are difficult
to handle complex time-frequency information and are easily
affected by interference factors such as signal noise, limiting
their application in the field of heart sound classification. In
addition, the single CNN network is not conducive to global
modeling, and it is easy to segment the input heart sound sig-
nal into blocks for processing, which cannot retain the time
series information well. Although CNNs-LSTM networks
can better capture long sequence dependencies, the problems
of larger model complexity and slower training speed when
dealing with data involving high dimensionality also limit
their application scope. Therefore, in the field of heart sound
signal classification, more advanced data pre-processing and
feature extraction methods combining multi-scale feature
information for modeling are needed to further explore to
better handle the complex information in heart sound signals
and improve the classification accuracy and robustness.

Fig. 1 Pre-processing and second-order spectral analysis feature
extraction, where aortic stenosis (AS), mitral stenosis (MS), mitral
regurgitation (MR), mitral valve prolapse (MVP) are four abnormal
categories

3 Methodology

3.1 Solution design overview

In this paper, we propose an improved method for heart
sound classification. Figure 1 shows pre-processing using
digital filtering, downsampling, normalization, overlap, and
feature extraction using second-order spectral analysis. This
process contains all the pre-processing performed on the one-
dimensional heart sound signal.

A classification model based on CNNs and transformer is
proposed to perform heart sound classification, as shown in
Fig. 2. The specific steps are as follows:

(1) Heart sound second-order spectral analysis feature map
using theMHTE-4module built by transformer to encode
and aggregate contextual information.

(2) Heart sound second-order spectral feature map increases
the diversity of local feature extraction and accelerates
feature extraction by parallel two-way CNNs modules.

(3) The rich heart sound local feature map information
extracted by parallel two-way CNNs and the global con-
textual information aggregated by MHTE-4 are fused by
a fully connected network.

(4) Finally, the classification vector of fused features is used
for the outcome prediction of the heart sound category.
It is worth noting that the prediction head here is a
single-branch prediction head. The reason is that the large
differences in the sample data of the two tasks make it
difficult to optimize into a model with an average view.
And the multi-branch prediction head generates a large
amount of computation and memory overhead, which
leads to a slower model runtime.

3.2 Second-order spectral analysis

Feature extraction can extract useful information from the
sound signal to better realize the processing of the sound
signal. Short-Time Fourier Transform (STFT) [26] is a time-
domain signal to frequency-domain signal transformation,
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Fig. 2 Model training and inference pipeline

which splits the time-domain signal into multiple short time
periods, and then performs Fourier transform on each short
time period to obtain a series of frequency-domain signals.
The STFT can be used to analyze the frequency character-
istics of the time domain signal and the trend of different
frequency components in the time domain signal. Wavelet
Transform [27] decomposes a signal into components of dif-
ferent scales to better characterize the signal. It can be used
to detect mutations in a signal, extract features in a signal,
and detect noise in a signal. All of the above are low-order
feature extraction methods.

Hiam et al. [28] have demonstrated that modern higher-
order spectral analysis methods in the field of digital sig-
nal processing extract significantly better features than the
results of lower-order feature extraction methods such as
short-time Fourier transform and wavelet transform. Bispec-
trum is one of the higher-order spectral analyses of signals.
It quantifies the degree of quadratic phase coupling (QPC)
and nonlinearity interactions in non-stationary signals. Sev-
eral types of medical signals are non-stationary signals, such
as ECG, EEG, and PCG.

A two-dimensional feature matrix (256×256×1) can be
generated using second-order spectral analysis, and we can
also visualize the extracted feature matrix as a contour map
(256 × 256 × 3) and a heat map (256 × 256 × 3).

Sx2 (ω1, ω2) =
+∞∑

τ1=−∞

+∞∑

τ2=−∞
cx3 (τ1, τ2) exp(A), (1)

where

A = − j(ω1τ1 + ω2τ2). (2)

cx3 (τ1, τ2) = E {x(n)x (n + τ1) x (n + τ2)} (3)

Eq. 1 represents the second-order Fourier change, and
Eq. 3 is the third-order accumulation.

Figure 3 shows the contour map and heat map of normal
and abnormal heart sounds extracted by the second-order

(A) Normal (B) Abnormal

Fig. 3 The first line is a contour map and the second line is a heat map.
A Bispectrum of normal class. B Bispectrum of abnormal class

(A) AS (B) MS (C) MR (D) MVP

Fig. 4 The first line is a contour map and the second line is a heat map.
A Bispectrum of AS class. B Bispectrum of MS class.C Bispectrum of
MR class. D Bispectrum of MVP class

spectral analysis,while Fig. 4 shows the contourmapandheat
map of four types of abnormal heart sounds extracted by the
second-order spectral analysis. The featuremaps obtained by
second-order spectral analysis can be well distinguished.

3.3 PCTMF-Net

There are two effective approaches to audio classification.
One approach is to convert audio data into fixed-length time
series features, such as MFCC, and then pass them as input
to a deep learning model. However, this approach may miss
some critical temporal information when dealing with long
audio data. Another approach is to extract the Mel Spectro-
gram of audio data using a model combining convolutional
neural network (CNN) and recurrent neural network (RNN),
which can extract the frequency and spatial features of audio
data using convolutional layers, and then use recurrent layers
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Fig. 5 PCTMF-Net, consisting of two-way parallel CNNsmodule and multi-head transformer encoder with four attention heads (MHTE-4) module

to process the time series. This approach is more effective
in processing long audio data. However, LSTM and RNN
sequencemodels cannot be computed in parallel and the com-
putation time consumes long. Taking a separate CNN model
cannot have a good global view to extract global features
effectively.

For this purpose, combining CNNs and transformer is an
effective way to explore. CNNs will extract the most expres-
sive local feature representation at a low computational cost,
while the transformer is used to encode and fuse information
from the context, ultimately focusing on the global feature
structure. Figure 5 shows the specific network design of
PCTMF-Net. The fused features here come from a two-way
parallel CNNs module and multi-head transformer encoder
with four attention heads (MHTE-4) module, and this par-
allel CNNs and transformer structure can extract richer and
more comprehensive features and improve the classification
accuracy.

3.3.1 Two-way parallel CNNs module

In deep learning, CNNs are a class of artificial neural net-
works (ANN) commonly applied to image processing. CNNs
are considered shift-invariant and spatially invariant and are
based on a shared weight architecture of convolutional ker-
nels or filters that slide along the input features and provide
a translational isovariant response called the feature map.
CNNs utilize multiple different levels of convolutional ker-
nels to collect local features of an image for representation
and have a unique advantage in extracting local features of
an image. As the depth of the network increases, CNNs can
enrich the extraction of hierarchical features and enhance
their representation. Figure 6 depicts a one-layer CNN net-
work, but adding more convolutional layers, pooling layers,

Fig. 6 A simple one-layer CNN
network composition

and batch normalization layers can create a more sophisti-
cated network.

The VGGNet [29] has shown that using a large kernel
across heavily stacked CNN layers is not cost-effective. Two
benefits of using small stacked filters are computational
efficiency and the expressivity of feature representation.
Therefore, this paper utilizes small stackedfilters.Many tasks
have shown that a single CNN structure requires stacking a
large number of convolutional layers, pooling layers, etc.
to achieve good feature extraction, to reduce the difficulty of
updating a large number of parameters duringmodel learning
and the computational speed during processing. We propose
a parallel two-way CNNs structure. The parallel two-way
CNNs can better learn different features from each convo-
lutional layer to increase the diversity of information flow.
Table 1 shows the structural design of the one-way CNN.

3.3.2 MHTE-4 module

Transformer [30] is a model proposed by Google in 2017,
which is applied in the field of natural language process-
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Table 1 Architecture of the one-way CNN Network

Layer Output size KSize Stride P

Input 256 × 256

Conv1 256 × 256 3 × 3 1

BN1 16

MaxPool1 128 × 128 2 × 2 2

Dropout1 0.3

Conv2 128 × 128 3 × 3 1

BN2 32

MaxPool2 32 × 32 4 × 4 4

Dropout2 0.3

Conv3 32 × 32 3 × 3 1

BN3 64

MaxPool3 8 × 8 4 × 4 4

Dropout3 0.3

ing, due to its powerful performance, it has been gradually
introduced into computer vision. The transformer network
structure is mainly composed of attention mechanisms, and
its significant feature is the global receptive field. From
another perspective, transformer is actually a special CNN,
with a global feeling field. Figure 7 shows a complete
transformer structure, which consists of two big structures,
Encoder and Decoder.

In convolutional neural networks, convolution and pool-
ing continuously refine the edges of the object for feature
extraction. The encoder of the transformer corresponds to

the convolution in a convolutional neural network, while the
decoder structure is similar to the deconvolution. Both are
used to extract features and perform feature map interac-
tions. Transformer encodes the input data and then performs
self-attention to generate a new feature vector, which is
then mapped back to its original location by the decoder. In
heart sound classification, convolutional neural networks can
extract local features of heart sounds on a second-order spec-
tral featuremap,while the global features of the second-order
spectral feature map are also important. The entire beating
of the heart affects the entire frequency sequence, not just a
time step.

In order to improve the classification of heart sound
diseases, we propose the use of a transformer-encoder for
global structure modeling of heart sound feature maps. By
switching from the transformer’s decoder to its encoder
structure, neural networks can be made lighter and require
fewer computer resources. Furthermore, the transformer
has a stronger parameter-sharing capability, making it eas-
ier to share features, and thus better equipped to capture
contextual information from heart sound interchanges. Our
proposed structure, the MHTE-4, uses four transformer-
encodermodules in the network, containing four independent
self-attention heads each. The MHTE-4 aims to enhance the
model’s capability formulti-scale informationmodelingwith
stronger perceptual contextual semantics. Each self-attention
head can learn separate attention weights that efficiently
capture feature representations from different locations and
achieve feature reconstruction prior to a specific downsam-
pling layer, through a multi-head parallel structure.

Fig. 7 Architecture of the transformer model
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To reduce the computational effort, we use global pooling
for the heart sound feature maps and then sample the fea-
tures before sending them to the MHTE-4 in parallel. Input
embeddings incorporate the features and provide location
information for context. Furthermore, by leveraging multi-
headed attention, the correlations between various heart
sound features are learned to create numerous attention vec-
tors. These vectors are then averaged and passed through
a normalization layer to simplify the optimization process.
Finally, the resulting vectors are given to a feedforward net-
work that converts the data into dimensions readable by the
fully connected layer.

4 Experiments and analysis

4.1 Implementation details

In this paper, the proposed algorithm was trained on an
Ubuntu−20.04 64-bit operating system, using a 7 vCPU
Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz and an
NVIDIA RTX 3060 high-performance GPU with 12GB
RAM on a single card. The model was built and trained
using Pytorch 1.11.0, CUDA 11.3, and CUDNN 8.5. The
initial learning rate was set to 0.0001, and the optimization
method used was Adam with a batch size of 32. To improve
training effectiveness, a cosine annealing restart learning rate
mechanism was employed. This allowed the model to restart
learning at a high learning rate after the optimized extremum
was reachedwith a small learning rate, eventually converging
at the 100th epoch.

4.2 Datasets

This paper presents two publicly available datasets of heart
sound signals that have been labeled with appropriate cate-
gories.

Yaseen et al. [31] created a dataset of 5 categories of heart
sound signals (PCG signals) from various sources in Table 2,
containing one normal category (N) and four abnormal cat-
egories, the four abnormal categories being: aortic stenosis
(AS), mitral stenosis (MS), mitral regurgitation (MR), mitral
valve prolapse (MVP), with a total of 1000 audio files for the
normal and abnormal categories (200 audio files/category)
in wav file format. The length of each audio file is fixed at
2 s.

Liu et al. [32] created a dataset in Table 3 for the 2016 Phy-
sioNet/CinC Computing Challenge. The archive comprises
nine different heart sound databases sourced from multiple
research groups around the world. It includes 2435 heart
sound recordings in total collected from 1297 healthy sub-
jects and patients with a variety of conditions, including heart
valve disease and coronary artery disease. The recordings

Table 2 Yaseen dataset

Class Heart status Total

AS Aortic stenosis 200

MS Mitral stenosis 200

MR Mitral regurgitation 200

MVP Mitral valve prolapse 200

Table 3 PhysioNet dataset

Class Original Total(+Overlap)

Normal 2575 23, 839

Abnormal 665 7422

Fig. 8 Next cut with 2 s as a segment with 50% overlap

were collected from a variety of clinical or nonclinical (such
as in-home visits) environments and equipment. The length
of the recording varied from several seconds to several min-
utes.

The criteria for producing audio data samples vary greatly
from dataset to dataset. Such differences include audio sam-
ple rate, number of channels, length, noise reductionmethod,
etc. These standards need to be unified to the maximum
extent possible before fusing the datasets. Therefore, we
pre-processed the audio files of the two publicly available
datasets and collated them to obtain the processed datasets.
The pre-processing process consists of three parts. To filter
out high-frequency noise as well as DC noise, a second-order
25–400 Hz Butterworth median is used for digital filtering.
To reduce the computational effort of the model, downsam-
pling is performed to 1000 Hz. To reduce the large-scale
differences between the audio files, the audio signal is nor-
malized.

In addition to applying the same pre-processing steps to
both public datasets, an overlappingmethodwas employed as
a data augmentation technique to generate sufficient anoma-
lous and normal classification data. Specifically, each audio
file was segmented into 2-second increments with a 50%
overlap. Also, to obtain as many data samples as possible, a
cut with 50% overlap was chosen. Figure 8 shows the overlap
workflow, which intercepts 2 s as one record while overwrit-
ing the old 1 s and the new 1s to form a new record.

Finally, we divide the pre-processed dataset in the ratio of
6: 2: 2 and use them as training set, validation set, and test

123



3818 R. Wang et al.

Table 4 Comparison of performance metrics of different models on MFCC feature extraction

Methods Yaseen dataset PhysioNet dataset
Accuracy (Top-1) Precision Recall F1-score Accuracy (Top-1) Precision Recall F1-score

Tschannen [33] 0.667 0.761 0.666 0.638 0.676 0.740 0.675 0.696

Li [34] 0.762 0.804 0.762 0.747 0.705 0.705 0.706 0.705

Zheng [35] 0.763 0.812 0.763 0.748 0.750 0.774 0.751 0.761

Maknickas [36] 0.871 0.880 0.872 0.871 0.765 0.795 0.765 0.778

PCTMF-Net (ours) 0.925 0.941 0.929 0.930 0.827 0.788 0.817 0.790

set respectively. This ensures objectivity when evaluating the
model performance.

4.3 Evaluationmetrics

In order to evaluate the merits of the proposed method,
some evaluation metrics were used for experimental com-
parisons.Commonly used concepts in evaluation metrics are
expressed as follows:

• True Positive (TP): the number of positive classes pre-
dicted to be positive classes.

• True Negative (TN): the number of negative classes pre-
dicted as negative classes.

• False Positive (FP): the number of negative classes
predicted as positive classes, which is the number of
detection errors.

• False Negative (FN): the number of positive classes pre-
dicted as negative classes, which is the number of missed
detections.

For a single-label task, each sample has only one correct
category, and a prediction of that category is a correct classi-
fication, and a failure to predict is a misclassification, so the
most intuitive indicator of classification is accuracy, which
is calculated as follows:

Accuracy = ncorrect
ntotal

= TP + TN

TP + FN + FP + TN
(4)

Precision rate is the ratio of the number of correctly clas-
sified positive samples to the number of samples determined
to be positive by the classifier. The precision rate is a statis-
tic for some samples, focusing on the data that the classifier
determines as positive classes:

Precision = TP

TP + FP
(5)

Recall is the ratio of the number of correctly classified pos-
itive samples to the number of true positive samples. Recall
is also a statistic for partial samples, focusing on the true

positive class of samples:

Recall = TP

TP + FN
(6)

F1-score is the summedaverage of the precision and recall
rates, which is defined as:

F1-score = 2 × Precision × Recall

Precision + Recall
(7)

4.4 Experimental results

The first dataset is a binary classification dataset, namely the
S1–S2 heart sound classification dataset, used to determine
whether the heart is normal or abnormal. The second dataset
is the heart sound four-class classification dataset, used to
classify heart sound signals into normal, systolic murmurs,
diastolic murmurs, and early systolic diagnosis.

Table 4 shows the results of feature extraction and clas-
sification using MFCC. Our proposed PCTMF-Net achieves
the best results in terms of accuracy, recall, and F1-score;
however, these results are far from being up to the standard
of being applied in reality.

Table 5 shows the results of feature extraction using the
second-order spectral analysis and performing classification,
and our proposed PCTMF-Net achieves the best results in
terms of accuracy, precision, recall, and F1-score. Compared
with MFCC for feature extraction, the second-order spectral
analysis achieves better results, which proves that the second-
order spectral analysis can better extract the features of heart
sounds. Also, PCTMF-Net has better performance compared
to the CNNs network obtained alone.

The confusion matrix is a summary of the predictions for
a classification problem. The number of correct and incor-
rect predictions is summarized using numerical values and
broken down by each category, which is the key to the con-
fusion matrix. The confusion matrix shows which part of
the classification model is confused when making predic-
tions and provides insight not only into the errors made by
the classification model, but more importantly, the types of
errors that occur. If a model performs well, then the diagonal
of the confusion matrix should have the maximum number
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Table 5 Comparison of performance metrics of different models on second-order spectral analysis feature extraction

Methods Yaseen dataset PhysioNet dataset
Accuracy (Top-1) Precision Recall F1-score Accuracy (Top-1) Precision Recall F1-score

Tschannen [33] 0.833 0.852 0.833 0.834 0.756 0.576 0.759 0.655

Li [34] 0.910 0.921 0.910 0.911 0.807 0.792 0.807 0.793

Zheng [35] 0.923 0.932 0.923 0.930 0.833 0.828 0.833 0.830

Maknickas [36] 0.974 0.976 0.974 0.974 0.847 0.841 0.847 0.843

PCTMF-Net (ours) 0.994 0.994 0.993 0.993 0.930 0.929 0.930 0.927

Fig. 9 Confusion matrix of PCTMF-Net on four-category dataset

Fig. 10 Confusion matrix of PCTMF-Net on two-category dataset

of correctly classified samples. Figure 9 shows the results
of PCTMF-Net for classifying samples on the four-category
dataset and Fig. 10 shows the results of PCTMF-Net for clas-
sifying samples on the two-category dataset. It predicts the
maximum number of correct samples in two tasks.

High-dimensional data visualization frequently employs
the potent non-linear dimensionality reduction technique
known as t-distributed Stochastic Neighbor Embedding (t-
SNE) [33]. Minimizing the divergence between probability

(A) Maknickas [36] (B) PCTMF-Net(ours)

Fig. 11 Reduced dimensional presentation of the features of the four
classification test set extracted by two models using t-SNE

distributions over pairs of input and output points relies
on mapping similar data points in high-dimensional space
to their equivalents in low-dimensional space. Thus, t-SNE
enables in-depth analysis of test set data by allowing us
to visualize high-dimensional data in two or three dimen-
sions, allowing us to see semantic distances between various
classes of data points, identify outliers, categorize fine-
grained issues, and view high-dimensional data structures.

The semantic properties of the input imageswere retrieved
using feature maps created from the intermediate layers of
the PCTMF-Net heart sound classification model. To bet-
ter comprehend the connections and similarities between the
samples in the test set, we then used t-SNE dimensionality
reduction to these characteristics and plotted the outcomes
in a two-dimensional coordinate system. This made it possi-
ble for us to examine the connections between various heart
sound classes and helped us spot any possible misclassifica-
tions. Overall, the performance of the classification model
was enhanced by the knowledge of the semantic aspects of
the heart sound data using t-SNE.

Figures 11 and 12 show the classification performance of
PCTMF-Net on a test set of both four and two classifications.
In the low-dimensional visualization space, the classification
features of the samples of different categories in the test set
are obvious, and the samples of the same category are clus-
tered together. This indicates that the second-order spectral
analysis feature extraction and PCTMF-Net have good clas-
sification ability on heart tone classification.
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(A) Maknickas [36] (B) PCTMF-Net(ours)

Fig. 12 Reduced dimensional presentation of two classification test set
features extracted by two models using t-SNE

5 Conclusions

In this paper, PCTMF-Net is proposed for heart sound clas-
sification. The second-order spectral analysis is first used
to extract higher-order features from the heart tone sig-
nal, and then, the higher-order extracted feature maps are
classified using PCTMF-Net. PCTMF-Net uses a CNNs-
transformer architecture, which employs two-way parallel
CNNs to extract hierarchical features. Then, a transformer-
based MHTE-4 module is designed to encode contextual
information in multi-scale features, and contextual aggre-
gation connections are applied to help the fusion and aggre-
gation of features at different levels.

Experiments on Yaseen Dataset and PhysioNet Dataset
demonstrate the feasibility of the proposed second-order
spectral analysis and PCTMF-Net for heart sound clas-
sification. Comparison experiments performed on MFCC
feature maps and second-order spectral feature maps show
that higher-order extraction methods such as second-order
spectral analysis have better characterization than lower-
order extraction methods. The effectiveness of the combined
two-way parallel CNNs and MHTE-4 is further validated
by ablation studies. More specifically, the two-way parallel
CNNs help to obtain local semantic properties of the heart
sound feature map in terms of edges and morphology and to
obtain efficient information flow interaction, while MHTE-4
can efficiently extract global information of the feature map
and perform contextual information aggregation. The high
accuracy of the two public datasets shows the potential of
applying our solution as an aid in heart disease diagnosis.
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