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Fig. 1. Illustration of our NeRF-based video compression. The core idea of our frame-
work is frame-feature substitution for extremely low bandwidth. With NeRF-based face
reconstruction model ensuring high-fidelity portrait generation, our framework shows
significant compression performance for video conferencing application.

Abstract. Video conferencing has caught much more attention recently.
High fidelity and low bandwidth are two major objectives of video com-
pression for video conferencing applications. Most pioneering methods
rely on classic video compression codec without high-level feature embed-
ding and thus can not reach the extremely low bandwidth. Recent works
instead employ model-based neural compression to acquire ultra-low bi-
trates using sparse representations of each frame such as facial landmark
information, while these approaches can not maintain high fidelity due
to 2D image-based warping. In this paper, we propose a novel low band-
width neural compression approach for high-fidelity portrait video con-
ferencing using implicit radiance fields to achieve both major objectives.
We leverage dynamic neural radiance fields to reconstruct high-fidelity
talking head with expression features, which are represented as frame
substitution for transmission. The overall system employs deep model to
encode expression features at the sender and reconstruct portrait at the
receiver with volume rendering as decoder for ultra-low bandwidth. In
particular, with the characteristic of neural radiance fields based model,
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our compression approach is resolution-agnostic, which means that the
low bandwidth achieved by our approach is independent of video res-
olution, while maintaining fidelity for higher resolution reconstruction.
Experimental results demonstrate that our novel framework can (1) con-
struct ultra-low bandwidth video conferencing, (2) maintain high fidelity
portrait and (3) have better performance on high-resolution video com-
pression than previous works.

Keywords: Video conferencing · Neural radiance fields · Neural com-
pression.

1 Introduction

Video conferencing enables individuals or groups to participate in a virtual meet-
ing by using video, which has caught much more attention since the online
lifestyle becomes prevalent. Nowadays, the demand for video conferencing with
the large amount of simultaneous users also determines its extremely low band-
width limitations in application, which relies more heavily on efficient video
compression technologies. Video compression aims to reduce video bandwidth
while maintaining high fidelity. Over the past several decades, the dominant
video compression methods are based on classic video compression frameworks,
such as H.262, AVS, H.264, HEVC [2], and VVC [3], which have achieved sig-
nificant results. However, most classic methods reducing redundancy fully based
on images and pixels without high level feature coding, thus can not reach the
extremely limited low bandwidth while maintaining acceptable results in present
video conferencing scenarios.

With the development of computer science and deep learning, there are more
and more neural network based methods targeting the resolution and quality of
videos [4, 11, 15, 23, 27, 32, 38, 41–43]. Among them, the field of neural video com-
pression has attracted much attention, where some neural compression methods
[5, 7, 6, 8, 9] leverage face image generative models to deliver extreme compres-
sion by reconstructing video frame from a high-level feature, such as motion
keypoints [6, 8, 10]. Specifically, most previous works use 2D warping based syn-
thesis models to reconstruct portrait images. These warping methods deliver
good reconstructions when the difference between the reference and target im-
ages is small, but they fail (possibly catastrophically) when there is large head
pose movement or occlusion. As a result, lacking of 3D representation, these
warping based compression frameworks are not robust in maintaining high fi-
delity for some cases. Furthermore, most of these generative approaches have
restrictions on input resolution (e.g., usually 256 × 256), which means when it
comes to high resolution applications (e.g., typical video conferencing are de-
signed for HD videos), corresponding neural compression will not work. Mean-
while, with the superior capability in multi-view image synthesis of Neural Ra-
diance Fields (NeRF) [12], several feature-conditioned dynamic neural radiance
fields [1, 13, 14, 18] have be proposed for talking head and dynamic face recon-
struction. Rather than 2D warping, these models propose to use neural radiance
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fields to reconstruct portrait scene and represent the dynamics (e.g., expressions
and head motion) as high-level features. Thanks to implicit 3D representation
and volume rendering, these works are capable of producing natural portraits
with high fidelity and more specifics (e.g., illumination and reflection) even in
large movements. Nevertheless, to the best of our knowledge, the applications of
such NeRF-based reconstruction model have not been delivered to neural video
compression or video conferencing.

To address the defects of classic video codec and previous neural model-based
compression and preserve both high fidelity and ultra-low bandwidth, we pro-
pose to leverage Neural Radiance Fields (NeRF) [12] to reconstruct portrait in
implicit 3D space for model-based neural compression and video conferencing.
Specifically, we propose a novel neural compression framework using implicit
neural radiance fields. At the sender, instead of using warping keypoints, we
leverage 3D Morphable Face Models (3DMMs) [16] to extract facial expres-
sion feature and head pose from portrait frame. Due to its disentanglement of
face attributes as a 3D representation, 3DMMs can gain control of face synthe-
sis better. Besides, to obtain higher-level information representation and better
compression performance, we propose to employ an attention-based model [17]
as encoder for feature embedding, which is called fine-tuning embedding. Before
the features substituting frames to be transmitted, entropy coding as a lossless
coding strategy is employed to compress the features further. Once the features
have been received at the receiver, we leverage the feature-conditioned dynamic
neural radiance fields to reconstruct the portrait video. It’s worth noting that we
refer to [1], which has desirable performance in both face and torso rendering,
and replace the audio feature with expression feature to build the face recon-
struction model employed in our approach. We conduct extensive experiments
in both quantitative and qualitative aspects with comparisons to classic video
codec and previous model-based video compression. We demonstrate that our
approach can reach extremely low bandwidth while maintaining high fidelity
for video conferencing application. Furthermore, thanks to the characteristic of
NeRF rendering with unlimited resolution [12], our neural compression approach
is resolution-agnostic.

To summarize, the contributions of our approach are:

– Firstly, we leverage neural radiance fields for extremely low-bandwidth video
compression and high-fidelity video conferencing, which is resolution-agnostic.
To the best of our knowledge, our approach is the first NeRF-based video
compression method.

– Secondly, we holistically construct the framework for NeRF-based video com-
pression and design fine-tuning embedding model to obtain fine-tuned fea-
ture as frame substitution to be transmitted for better and adaptive com-
pression performance.

– Lastly, extensive experiments demonstrate that our proposed approach can
achieve resolution-agnostic and ultra-low bandwidth with high fidelity pre-
serving for applications in video conferencing, which significantly outper-
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forms classic video codec (HEVC) and previous model-based compression
methods.

2 Related Work

Classic Video Codec Many video applications utilize standard video com-
pression modules, commonly known as codecs, including AVS, H.264/H.265 [20,
2], VP8 [19], and AV1 [21]. These codecs employ a technique that divides video
frames into key frames (I-frames), capitalizing on spatial redundancies within a
frame, and predicted frames (P-/B-frames), leveraging both temporal and spa-
tial redundancies across frames. Over time, these standards have undergone en-
hancements, incorporating concepts like variable block sizes and low-resolution
encoding [21] to optimize performance at lower bitrates.

These codecs demonstrate notable efficiency in their slow modes, if ample
time and computational resources to compress videos at high quality are avail-
able. Nevertheless, for real-time applications like video conferencing, they still
demand a few hundred Kbps, even at moderate resolutions such as 720p. In
situations with limited bandwidth, these codecs face challenges and may only
transmit at lower quality, experiencing issues like packet loss and frame corrup-
tion [22].

Face Animation Synthesis Historically, face animation synthesis methods can
be categorized into warping-based, mesh-based, and NeRF-based approaches.
Among these, warping-based methods [24–26, 7] are particularly popular within
2D generation techniques. In these methods, source features are warped using
estimated motion fields to align the driving pose and expression with the source
face. For example, Monkey-Net [28] constructs a 2D motion field from sparse
keypoints detected by an unsupervised trained detector. Da-GAN [29] integrates
depth estimation to enhance the 2D motion field by supplementing missing 3D
geometry information. OSFV [6] attempts to extract 3D appearance features
and predict a 3D motion field for free-view synthesis.

Certain traditional approaches [31, 33] make use of 3D Morphable Models
(3DMM) [16, 30], enabling a broad range of animations through disentangled
shape, expression, and rigid motions. Models like StyleRig [34] and PIE [35]
leverage semantic information in the latent space of StyleGAN [36] to modulate
expressions using 3DMM. PIRender [37] employs 3DMM to predict flow and
warp the source image.

NeRF [12], a more recent method, represents implicit 3D scenes by rendering
static scenes with points along different view directions, which initially gained
prominence in audio-driven approaches [1, 39, 14] due to its compatibility with
latent codes learned from audio.

Neural Compression for Video Conferencing The limitations of clas-
sic codecs in achieving extremely low bitrates for high-resolution videos have
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Fig. 2. The overall framework of our proposed method. Face feature is extracted at
the sender and substitutes frame to be transmitted with ultra-low bandwidth. At the
receiver, NeRF-based model takes the received feature as input to reconstruct portrait
frame.

prompted researchers to explore neural approaches for reconstructing videos
from highly compact representations. Neural codecs have been specifically tai-
lored for applications such as video streaming, live video, and video conferencing.

However, video conferencing presents distinct challenges compared to other
video applications. Firstly, the unavailability of the video ahead of time hinders
optimization for the best compression-quality trade-off. Additionally, video con-
ferencing content predominantly consists of facial data, allowing for a more tar-
geted model design for generating facial videos. Several models [5, 7, 6, 8, 9] have
been proposed over the years, typically utilizing keypoints or facial landmarks as
a compact intermediary representation of a specific pose. These representations
are then used to compute the movement between two poses before generating
the reconstruction. The models may incorporate 3D keypoints [6], off-the-shelf
keypoint detectors [7], or a variety of reference frames [9] to enhance prediction.

Neural Radiance Field and Dynamic Rendering Our approach aligns with
recent advancements in neural rendering and novel view synthesis, particularly
drawing inspiration from Neural Radiance Fields (NeRF) [12]. NeRF employs a
Multi-Layer Perception (MLP), denoted as F , to acquire a volumetric represen-
tation of a scene. F , for each 3D point and viewing direction, predicts color and
volume density. Through hierarchical volume sampling, F is densely evaluated
throughout the scene for a given camera pose, followed by volume rendering
to generate the final image. The training process involves minimizing the error
between the predicted color and the ground truth value of a pixel.

While NeRF is originally designed for static scenes, several efforts have been
made to extend its applicability to dynamic objects or scenes. Some approaches
[1, 13, 14] introduce a time component as input and impose temporal constraints
by utilizing scene flow or a canonical frame for talking head and face anima-
tion synthesis. For example, AD-NeRF [1] proposes to use an audio feature
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Fig. 3. Training scheme of the NeRF-based reconstruction model. We leverage consis-
tency constraint code to get better generative results.

as additional input with head-torso separate modeling to reconstruct natural
and photo-realistic face animation. Nevertheless, NeRF-based face reconstruc-
tion model has not been proposed for video compression and video conferencing.

3 Methodology

3.1 NeRF-based Compression Framework

Our objective is to leverage neural radiance fields to design a video compression
framework for extremely low-bandwidth video conferencing with high fidelity.
Therefore, the overall framework of our proposed approach can be regarded as a
communication system which is composed of the sender, the receiver and trans-
mission. The key insight of the proposed approach is substituting face image with
feature which can be represented as low-dimensional vector for transmission.
Face tracking model and entropy coding are employed for facial feature extrac-
tion and further compression at the sender before transmission. At the receiver,
the face animation model based on NeRF is used to reconstruct high-fidelity
and photo-realistic portrait frames from the received features. Furthermore, the
overall system is end-to-end which is illustrated in Fig. 2.

Face Feature Extraction To reconstruct high-fidelity portrait frame with low-
bandwidth limitation, an appropriate representation of face is essential. Rather
than extracting motion keypoints in self-supervised manner described in [5, 10],
we propose to employ 3DMM [16, 30] as face tracking model to extract facial ex-
pression feature and head pose for face reconstruction. 3DMMs (3D Morphable
Models) utilize a PCA (Principal Component Analysis)-based linear subspace
to independently control face shape, facial expressions, and appearance. This
approach allows for a disentangled representation of these facial features, en-
abling more flexible and intuitive manipulation of individual components. This
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disentanglement is particularly valuable in applications such as face modeling
and synthesis, which delivers precise control over specific aspects of the face.
Therefore, we employ 3DMM as an intermediate 3D representation model to
extract facial expression feature δ and head pose p. Following [30], the primitive
facial expression feature can be represented as a 79-dimensional vector. In terms
of head pose, a 12-dimensional vector is employed: 9 numbers for the rotation
and 3 numbers for the translation.

Fine-tuning Embedding However, in fact, the primitive face feature extracted
using the pre-trained face tracking model is still redundant. To obtain lower
bandwidth transmission and better performance in compression, we leverage an
attention-based encoder network [17] to construct a fine-tuning embedding of
primitive feature into lower-dimensional and higher-level representation. Specif-
ically, the fine-tuned feature used in our experiment is a 30-dimensional vector.

Further Compression As for face feature, it’s actually represented as vec-
tor with floating point values in 16 bits precision, and some classic compression
schemes can be employed for further compression. Due to the characteristic of
employed reconstruction model, the accuracy of the input features has a sig-
nificant impact on generative performance. Therefore, the lossless compression
scheme is recommended. In our approach, we compress fine-tuned face features
further using Entropy Coding. Then the coded fine-tuned face feature, together
with the coded pose, are transmitted to receiver.

Portrait Frame Reconstruction At the receiver, portrait frames are recon-
structed from received face features using NeRF-based face reconstruction model,
which hold the common facial expression and head poses as in source input im-
ages. Following the recent work of Guo Y et al. [1], we employ two individual
neural radiance fields to represent head part and torso part separately which
demonstrates significant performance in talking-head synthesis. Nevertheless,
rather than the audio feature used in [1], we build the reconstruction model with
facial expression feature from 3DMM as animation driving in order to maintain
consistency in source and reconstructed facial expressions. Furthermore, we pro-
pose a learnable constraint to optimize the degree of fit between head and torso
for better performance. More details of the reconstruction model are described
in Sec. 3.2.

3.2 Neural Radiance Fields for Face Reconstruction

Inspired by audio driven neural radiance fields for talking-head synthesis in-
troduced by Guo Y et al. [1], we utilize facial expression feature driven recon-
struction model for neural compression. In addition to the view directions (θ, ϕ)
and 3D locations (x, y, z), the facial expression feature δ is introduced as an
additional input to the neural radiance field which is represented as an implicit



8 Y. Li et al.

function NΘ. With the concatenated input vectors (δ, θ, ϕ, x, y, z), the network
estimates color values c accompanied by volume densities σ along the dispatched
rays:

NΘ(δ, θ, ϕ, x, y, z) = (c, σ). (1)

Consistency Constraint In addition, apart from the different selection of
driving feature, we observe that there will be a gap between head and torso
in reconstruction following the individual optimization strategy introduced in
[1], and thus we propose a learnable constraint code to improve the consistency
between head and torso part, which is substantiated in the ablation study of
our experiments. The overall training scheme of the reconstruction model is
illustrated in Fig. 3.

Volumetric Rendering of Face Radiance Fields To generate images from
this implicit geometry and appearance representation, we employ volumetric
rendering. The process involves casting rays through each individual pixel of
a frame, accumulating the sampled density and RGB values along the rays to
calculate the final output color. Leveraging head pose tracking with 3DMM, we
transform the ray sample points to the canonical space of the head model and
then evaluate the dynamic neural radiance field at these locations. It’s important
to note that the pose P , obtained from head pose tracking, provides us with
control over the head pose during test time. This control over head pose allows
for dynamic adjustments and customization when rendering the images.

Once the color c and volume density σ have been predicted by the implicit
function NΘ, the expected color C of a camera ray r(t) = o + td with camera
center o and viewing direction d = (θ, ϕ) is accumulated as:

C(r;Θ,P, δ) =

∫ bfar

bnear

σΘ(r(t)) · cΘ(r(t),d) · T (t)dt, (2)

where bnear and bfar are near bounds and far bounds of sampling along the ray.
T (t) is the accumulated transmittance along the ray from bnear to t:

T (t) = exp(−
∫ t

bnear

σ(r(x))dx). (3)

Besides, it’s worth noting that we use a similar two-stage volumetric integration
approach to Mildenhall et al. [12].

3.3 Optimization Details

Dataset We employ HDTF [40] as the main dataset for face animation recon-
struction in the applications of video conferencing. We select videos of different
identities from HDTF dataset [40]. There are several input resolutions for train-
ing: 128× 128, 256× 256, 512× 512 and 1024× 1024.
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Fig. 4. Qualitative results of the proposed framework compared with previous model-
based compression (FOMM [5] and Bi-layer [7]) and classic video codec (HEVC [2]).
Our approach, which employs NeRF-based model for high-fidelity reconstruction and
feature-frame substitution for ultra-low bandwidth, outperforms other methods in im-
age quality significantly. f.t. represents fine-tuning embedding employed in the frame-
work.

Training Loss As the overall system is end-to-end, we leverage a photo-metric
reconstruction error metric over the training images Ii to optimize both the
coarse network and fine network:

L =

M∑
i=1

Li(Θc) + Li(Θf ), (4)

where Θc and Θf are parameters of coarse and fine networks and Li is:

Li =
∑

j∈pixels

∥C(rj ;Θ,Pi, δi)− Ii[j]∥2. (5)

4 Experiments

4.1 Overview

The goal of the proposed framework is to construct resolution-agnostic NeRF-
based compression for high-fidelity portrait video conferencing with extremely
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low bandwidth. To demonstrate the significant performance of our approach for
applications in video conferencing, we conduct both quantitative and qualita-
tive evaluation compared with state-of-the-art model-based video compression
approach and classic video codec and discuss ablation studies of our method.

Metrics & Setting We measure the performance of reconstruction-based mod-
els and classic codec using both quality metrics (SSIM, PSNR, LPIPS) and
fidelity metrics. Specifically, following [25], we employ CSIM, AUCON and
PRMSE to evaluate the fidelity. Cosine similarity (CSIM) is used to evaluate
the quality of identity preservation. PRMSE, the root mean square error of the
head pose angles is leveraged to inspect the capability of the model to properly
reenact the pose and the expression of the driver. And AUCON represents the
ratio of identical facial action unit values between generated images and driving
images. As for qualitative evaluation, we design the similar bandwidth of classic
codec as other methods and evaluate the quality of images. In terms of quan-
titative evaluation, we first compare both quality metrics and bitrate-quality
trade-off, which is represented as SSIM/b.r., PSNR/b.r. and LPIPS×b.r.,
where b.r. represents bitrate. And then we compare the fidelity metrics and
bitrate-fidelity trade-off, which is represented as CSIM/b.r., AUCON/b.r.
and PRMSE×b.r.. Furthermore, we also demonstrate the compression perfor-
mance using rate-distortion curve.

4.2 Qualitative Evaluation

In terms of qualitative evaluation, we compare our method with the SOTA
model-based compression Bi-layer [7] and FOMM [5] together with the most
available and efficient classic video codec, HEVC. Specifically, we preserve the
regular keypoint/landmark settings proposed in Bi-layer and FOMM and employ
Entropy Coding for further compression as well to make comparisons. For HEVC,
we choose the appropriate Constant Rate Factor to obtain similar bandwidth as
our proposed method and compare the compression performance.

As illustrated in Fig. 4, our method can generate more realistic and high-
fidelity results under extremely low bandwidth. Neither Bi-layer nor FOMM
can reconstruct high-fidelity portrait due to their 2D warping based method.
Classic codec HEVC has little implication on fidelity, while in similar condition
(compared to ultra-low bandwidth in our method) there is much distortion that
degrades the image quality. Consequently, our proposed framework delivers more
appealing results for applications in video conferencing.

4.3 Quantitative Evaluation

With regards to quantitative evaluation, we first compare both the quantitative
metrics (quality and fidelity metrics) and trade-off between the bitrate and qual-
ity/fidelity represented as SSIM/b.r.,PSNR/b.r., LPIPS×b.r.,CSIM/b.r.,
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Table 1. Quantitative results over quality metrics and bitrate trade-off.

Methods
Quality Quality-bitrate Tradeoff

L1↓ SSIM↑ PSNR↑ LPIPS↓ SSIM/b.r.↑ PSNR/b.r.↑ LPIPS×b.r.↓

FOMM [5] 0.038 0.77 24.37 0.12 0.04 1.41 2.07
Bi-layer [7] 0.23 0.55 15.88 0.44 0.014 0.41 17.23
HEVC [2] 0.019 0.89 28.83 0.091 0.068 2.22 1.21

Ours 0.014 0.95 29.97 0.048 0.036 1.144 1.19
Ours(f.t.) 0.015 0.934 30.85 0.05 0.077 2.55 0.6

Table 2. Quantitative results over fidelity metrics and bitrate trade-off.

Methods
Fidelity Fidelity-bitrate Tradeoff

CSIM↑ AUCON↑ PRMSE↓ CSIM/b.r.↑ AUCON/b.r.↑ PRMSE×b.r.↓

FOMM [5] 0.829 0.856 2.79 0.048 0.0495 48.2
Bi-layer [7] 0.518 0.626 4.86 0.013 0.016 190

Ours 0.956 0.989 1.21 0.036 0.0377 31.7
Ours(f.t.) 0.945 0.967 1.29 0.078 0.08 15.609

AUCON/b.r. and PRMSE×b.r., as shown in Table 1 and Table 2. Further-
more, to demonstrate compression performance more clearly, we employ rate-
distortion curve analysis in Fig. 5.

Fig. 5. Rate-distortion curve for our proposed framework compared with existing
model-based compression method and classic codec HEVC. The resolution for HEVC
codec is 256× 256.

Resolution-agnostic Analysis It’s worth noting that besides the significant
bitrate-quality trade-off, our NeRF-based compression framework is resolution-
agnostic due to the characteristic of neural radiance fields. That is the extremely
low bandwidth achieved by our approach is independent of video resolution,
while maintaining fidelity for higher resolution reconstruction and compression.



12 Y. Li et al.

As illustrated in Fig. 6 rate-distortion curve, Bi-layer [7] and FOMM [5] have no
support for variation in resolution, while higher resolution has significant affect
on performance of HEVC.

Fig. 6. Rate-distortion curve of resolution-agnostic analysis for our proposed frame-
work compared with classic codec HEVC in several different resolution settings.

Subjective Evaluation Following [6] and [10], we conduct subjective evalua-
tion as well. We compress several clips using our framework and HEVC sepa-
rately and show the compressed clips to users in video conferencing application.
With various bitrate settings, we ask the users to choose the preference and com-
pute the percentage as shown in the left side of Fig 7, and to rate the clips by
Mean Opinion Score (MOS) as shown in the right side of Fig 7. And in extremely
low bandwidth setting, our framework shows significant performance compared
to HEVC.

Fig. 7. Subjective evaluation on the proposed framework and HEVC.
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4.4 Ablation Study

We also benchmark our performance gain upon our modules. Specifically, we
conduct ablations about our proposed fine-tuning embedding model and head-
torso consistency constraint code. As for fine-tuning embedding, we have demon-
strated its significant effects on video compression performance from previous
experimental results, where fine-tune embedding has little affect on image quality
with similar fidelity (PSNR is even higher), and reduces bandwidth significantly.
The ablation study of consistency constraint is described in Table 3.

Table 3. Ablation study on head-torso consistency constraint.

Setting L1 SSIM PSNR LPIPS CSIM AUCON PRMSE

w/o. constraint 0.019 0.91 28.68 0.06 0.94 0.958 1.31
w. constraint 0.015 0.934 30.85 0.05 0.945 0.967 1.29

5 Conclusion

In this work, we propose to leverage neural radiance fields face reconstruction
model for neural video compression. Based on our NeRF-based reconstruction
model, we substitute frames with features to be transmitted for video confer-
encing. With extensive experiments in both qualitative and quantitative aspects,
we demonstrate that our novel framework implements resolution-agnostic neural
compression with high-fidelity portraits in extremely low bandwidth for video
conferencing, which outperforms the existing methods. As for future work, there
are more further compression methods for the extracted facial feature besides
lossless Entropy Coding, and we plan to leverage deep compression scheme for
further feature compression to obtain better performance.
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