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Abstract

With the rapid advancements in AI-Generated Content
(AIGC), AI-Generated Images (AIGIs) have been widely ap-
plied in entertainment, education, and social media. How-
ever, due to the significant variance in quality among dif-
ferent AIGIs, there is an urgent need for models that con-
sistently match human subjective ratings. To address this
issue, we organized a challenge towards AIGC quality as-
sessment on NTIRE 2024 that extensively considers 15 pop-
ular generative models, utilizing dynamic hyper-parameters
(including classifier-free guidance, iteration epochs, and
output image resolution), and gather subjective scores that
consider perceptual quality and text-to-image alignment al-
together comprehensively involving 21 subjects. This ap-
proach culminates in the creation of the largest fine-grained
AIGI subjective quality database to date with 20,000 AIGIs
and 420,000 subjective ratings, known as AIGIQA-20K.
Furthermore, we conduct benchmark experiments on this
database to assess the correspondence between 16 main-
stream AIGI quality models and human perception. We
anticipate that this large-scale quality database will in-
spire robust quality indicators for AIGIs and propel the
evolution of AIGC for vision. The database is released
on https://www.modelscope.cn/datasets/
lcysyzxdxc/AIGCQA-30K-Image.

1. Introduction
AI Generated Content (AIGC) refers to various types

of content generated by artificial intelligence, such as im-
ages, videos, texts, and music. Among those modalities, AI-
Generated Images (AIGIs), especially Text-to-Image (T2I)
models, have already revolutionized the paradigm of enter-
tainment, education, and social media. According to hug-
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Figure 1. Illustration of the difference between Natural Sense Con-
tent and AI-Generated Content, whose perceptual quality are af-
fected by different attributes.

gingface1, there were 10,000+ T2I models coexisting on the
internet that generated results of widely varying quality. As
vision is the dominant way for humans to perceive external
information, a universal quality indicator for this new visual
information is a topic worth investigating in the AIGC era.

However, existing Image Quality Assessment (IQA)
metrics [12,20,23] cannot be applied in AIGIs directly. As
Figure 1 shows, the quality of Natural Sense Images/Videos
(NSIs) is determined by distortion in the imaging process
(e.g. blur, noise) [19, 54] while the quality of AIGIs is
more closely related to hardware limitations and techni-
cal proficiency [22, 39, 40, 42, 52] (e.g. unnatural, deep-
fake). Besides, T2I alignment is also an important factor for
AIGI which is absent in traditional IQA tasks. The quality
of AIGC is a mixture of perceptual and alignment quality.
Therefore, towards a strong quality indicator specifically for
AIGC, an AIGI quality database is highly demanded to il-
lustrate their quality-aware attributes besides NSIs.

In the past year, the emerging demand for AIGI qual-

1https://huggingface.co, data collected in March 2024
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Table 1. Existing quality databases for AI-Generated Images/Videos.

Database Grain Size Ratings Models CFG Iteration Resolution

HPD [43] Coarse-grained 98,807 98,807 1 Fixed Fixed Fixed
ImageReward [44] Coarse-grained 136,892 136,892 3 Fixed Fixed Dynamic

Pick-A-Pic [16] Coarse-grained 500,000 500,000 6 Fixed Fixed Dynamic
AGIQA-1K [49] Fine-grained 1,080 23,760 2 Fixed Fixed Fixed
AGIQA-3K [24] Fine-grained 2,982 125,244 6 Dynamic Dynamic Fixed
AIGCIQA [38] Fine-grained 2,400 48,000 6 Fixed Fixed Fixed

AGIN [38] Fine-grained 6,049 181,470 18 Dynamic Fixed Fixed
AIGIQA-20K Fine-grained 20,000 420,000 15 Dynamic Dynamic Dynamic

ity has spawned several related databases as shown in Table
1 including two main categories: coarse-grained and fine-
grained. The former usually has a larger data size, with only
one user scoring the images or selecting preferences for im-
age pairs. Thus, such scoring has strong discontinuities and
bias; the latter has a smaller scale, but the quality scores are
derived from the Mean Opinion Score (MOS) [50, 51, 53]
of more than 15 users, which accurately characterizes the
image quality. Meanwhile, along with the rapid develop-
ment of generative models, the AIGI quality database needs
to consider an increasing number of models. Besides, the
quality of AIGI not only depends on the T2I model itself,
where the hyper-parameters also play a decisive role. Thus,
to reflect the actual distortion of AIGI, these factors also
need to be dynamically adjusted.

Facing the above challenges, this paper lays the founda-
tion of the NTIRE 2024 AIGCQA Grand Challenge to in-
spire effective quality metrics for AIGC, which contributes
(i) a quality database named AIGIQA-20K that extensively
covers 15 T2I models. Meanwhile, it dynamically adjusts
for both resolution and hyper-parameters for the first time,
which comprehensively characterizes the visual distortion
of AIGC. (ii) a comprehensive set of subjective quality la-
bels. For the AIGIQA-20K, we organized 21 subjects to
produce accurate MOS scores. As a fine-grained AIGI
database, it has the largest size to date. (iii) an exhaus-
tive benchmark experiment for AIGC quality assessment.
The indicators cover both traditional IQA [6, 17] and T2I
alignment methods, which can inspire more accurate qual-
ity metrics in the future. The rest of the paper is organized
as follows. In Sec 2, details of the proposed AIGIQA-20K
are provided. Sec 3 analyze the features of AIGIs subjective
scoring. Sec 4 validate the several quality indicators on the
AIGIs. Finally, a conclusion is provided in Sec 5.

2. Database Construction
2.1. Hyper-parameter Configuration

The quality of model generation is closely related to the
hyper-parameters. Due to the limited computational re-

sources and different settings, these hyper-parameter con-
figurations change frequently in the actual generation pro-
cess. Among them, insufficient iterations will reduce image
detail; too high/low Classifier Free Guidance (CFG) will af-
fect the tradeoff between perceptual/alignment quality; non-
square resolution will cause a sharp drop in overall qual-
ity. Therefore, before the generation process for each T2I
model, our AIGIQA-20K database dynamically set these
quality-aware configurations with the following criteria:

• Iterations: 50% as default full epochs, 25% as 0.5×
epochs, and 25% as 0.25× epochs.

• CFG: 50% as default CFG number, 20% as 0.5× de-
fault CFG, 20% as 2× default CFG, and 10% applies
0.5 ∼ 2 default CFG randomly.

• Resolution: 50% as 1 : 1 square, four 10% as 3 : 4,
4 : 3, 9 : 16, 16 : 9, and final 10% as 9 : 16 ∼ 16 : 9
randomly. The longest edge is set as 512 or 1,024 ac-
cording to the maximum resolution of the model.

where the configuration adjustments for each model are de-
scribed in the next section.

2.2. Generative Model Collection

Based on the size of previous fine-grained database
[8, 18], the AIGIQA-20K includes 2,000 × 7+1,000 ×
4+500 × 4=20,000 images. Considering that the over-
all generation effect of the diffusion-based model is well-
developed and widely used, we discard previous Generative
Adversarial Network (GAN) and Auto-Regressive (AR) [5]
models that have been eliminated for the current T2I gener-
ation task. To ensure content diversity, our AIGCQA-20K
database considered 15 representative T2I generative mod-
els in Figure 2. For each model, with specific configurations
in Sec 2.1, we generate the following number of images:

• 2,000 images: Dreamlike, Pixart α, Playground v2,
SD1.4, SD1.5, SDXL, SSD1B [3,4,7,9,29,32]. These
models have strong generalize ability so we change all
three hyper-parameters with default iterations as 40.



DALLE 2 [31] DALLE 3 [31] Dreamlike [7]

IF [4] LCM Pixart [25] LCM SD1.5 [25]

LCM SDXL [25] Midjourney v5.2 [10] Pixart α [3]

Playground v2 [29] SD1.4 [32] SD1.5 [32]

SDXL [33] SDXL Turbo [34] SSD1B [9]

Figure 2. Visulization result of 15 Text-to-Image models in AIGIQA-20K.

• 1,000 images: LCM Pixart, LCM SD1.5, LCM SDXL,
SDXL Turbo [25, 34]. At the cost of a fixed CFG,
these models use acceleration mechanisms that signif-
icantly reduce iteration times. Thus, we only change
iterations/resolutions with default iterations as 4.

• 500 images: DALLE2, DALLE3, IF, Midjourney v5.2
[4, 10, 31]. Adjusting the hyper-parameters drastically
reduces the quality of their output. Due to overly com-
plex model structures or closed sources, we set all
three parameters to their own default values.

where we generate 20,000 images with different configura-
tions while ensuring 500 results from each model according
to the default configuration. Therefore, the database can be
used for both IQA tasks and horizontal comparisons of out-
put quality between different models.

2.3. Prompts Selection

For AIGI quality databases, prompts are typically from
real input or manually designed. Here, AIGIQA-20K re-
lies on the real input of AIGC community users. Firstly,
as a large-scale database, AIGIQA-20K has extensively
covered inputs of different lengths/themes/styles, eliminat-
ing the need to design manual prompts like previous small

databases to ensure the diversity of input content. Secondly,
using real user input is more in line with the real usage
scenarios of AIGC, and the quality score obtained is also
more reasonable. Therefore, we selected 30,000 prompt
words from DiffusionDB as the original input. Consider-
ing the presence of some junk data in the above prompts,
we adopt the following filtering mechanism: (1) Similar-
ity comparison: prompts with 90% consistent content will
be merged; (2) Character detection: Remove consecutive
spaces, parentheses, punctuation, and non-UTF-8 encoded
characters; (3) NSFW avoidance: First, delete prompts con-
taining sensitive words, and then use GPT-4 [28] to delete
NSFW prompts in semantic level. From this, we filtered out
20,000 prompts as inputs for T2I models.

2.4. Feature Analysis

After generating images from prompts and hyper-
parameters above, to evaluate the impact of different con-
figurations on the images, we calculated the distribution
of five quality-related attributes in Figure 3 for the en-
tire database, adjusted subsets of iteration, cfg, and resolu-
tion. The quality-related attributes include light, contrast,
color, blur, and Spatial Information (SI, representing the
content diversity of the image). Detailed explanations of



-4 -3 -2 -1 0 1 2 3 4
Values

0.0

0.2

0.4

0.6

Pr
ob

ab
ili

ty
 D

en
si

ty

Light
Contrast
Color
Blur
SI

(a) All images

-4 -3 -2 -1 0 1 2 3 4
Values

0.0

0.2

0.4

0.6

Pr
ob

ab
ili

ty
 D

en
si

ty

Light
Contrast
Color
Blur
SI

(b) Images with wrong CFG

-4 -3 -2 -1 0 1 2 3 4
Values

0.0

0.2

0.4

0.6

Pr
ob

ab
ili

ty
 D

en
si

ty

Light
Contrast
Color
Blur
SI

(c) Images with limited iterations
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(d) Images with non-square resolution

Figure 3. Distribution of quality attribute over the AIGIQA-20K database three sub-datasets with abnormal hyper-parameters.

these attributes can be found in work [11]. As previous
works [21, 24] state, AIGIs have more extreme blur dis-
tribution than NSIs, while the other four attributes are dis-
tributed more evenly. In addition, we also found that for
each subset of hyper-parameter anomalies, the maximum
probability values never exceed 0.6; however, for the entire
AIGIQA-20K, its distribution curve is sharper. This dif-
ference indicates a significant gap between the attributes of
default and abnormal hyper-parameter subsets, which indi-
rectly demonstrates the strong correlation between hyper-
parameters and image quality while demonstrating the ne-
cessity of such adjustments.

3. Subjective Experiment

3.1. Experimental Procedures

Compliant with the ITU-R BT.500-13 [36] standard, we
invited 21 subjects (12 male, 9 female) in this subjective ex-
periment with normal lighting levels. AIGIs are presented
on the iMac display together with the prompt in random or-
der on the screen, with a resolution of up to 4096 × 2304.
Both prompt and image are accessible for subjective, with
a translation of their mother tongue like Figure 4. Consid-
ering the average between perceptual quality and T2I align-
ment, subjects were asked to give an overall score within
the range of [0, 5], where each one-point interval stands for
poor, bad, fair, good, or excellent quality.

Figure 4. User interface for subjective quality assessment. The
image is given together with its correlated prompt. The score is an
overall consideration of perceptual quality and alignment.

3.2. Data Processing

In case of visual fatigue, we split the database into g ∈
[0, 39] groups including M = 500 images each, while lim-
iting the experiment time to half an hour. After collecting
21×20,000=42,000 quality ratings, we compute the Spear-
man Rank-order Correlation Coefficient (SRoCC) between
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Figure 5. Distribution of raw and logarithmic normalized MOSs,
where the logarithmic function unifies the entire distribution.

them and the global average and remove the outliers with
SRoCC lower than 0.6. Then we normalize the average
score s for between each session to avoid inter-session scor-
ing differences as:

sij(g) = rij(g)−
1

M

g·M−1∑
i=0

rij + 2.5, (1)

where (i, j) represent the index of the image and viewer and
r stands for raw score. Then subjective scores are converted
to Z-scores zij by:

zij =
sij − µj

σj
, (2)

where µj =
1
N

∑N−1
i=0 sij , σj =

√
1

N−1

∑N−1
i=0 (sij − µi)2

and N = 40 is the number of subjects. Finally, the MOS of
image j is computed with the following formula:{

MOSi = log( 1
N

∑N−1
j=0 (zij) + 1)

MOS = 5 · norm(MOS),
(3)

where norm(·) indicates 0-1 normalization is a traditional
data-processing technique, but logarithmic function log(·)
is specially designed for AIGI. As shown in Figure 5, the
raw MOS data shows severe right deviation, almost all of
which are concentrated in the 4 to 5 interval. However, after
logarithmic processing, the distribution of MOS becomes
more uniform. This highly differentiated score is more suit-
able for IQA tasks.

3.3. Data Analysis

With the explosion of T2I models, their generative qual-
ity has become an unresolved issue. Compared to objec-
tive indicators, subjective evaluation indicators can better
reflect real human preferences. Based on the large-scale and
fine-grained subjective quality ratings in the AIGIQA-20K
database, we conducted an in-depth analysis of this issue
and summarized the influencing factors of AIGI subjective
quality as follows:
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Figure 6. Subjective quality score of images with default and
abnormal hyper-parameters. For all T2I models with abnormal
hyper-parameters, the subjective quality decreases to a certain ex-
tent compared to default. ({L} for LCM)

• T2I model: Generative models themselves are the pri-
mary determinant of AIGI quality. Under the same in-
put prompt, the generation quality of different mod-
els varies greatly. The lower limit of the latest models
even outperforms the upper limit of old models.

• Prompt: The prompt has a certain impact on the qual-
ity of AIGI. Different models apply their own text en-
coders, some are good at generating short prompts,
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Figure 7. Subjective quality score of images with different T2I models and prompt length. ({L} for LCM)

while others are suitable for long prompts.

• Hyper-parameters: The internal parameters of a model
can profoundly affect the quality of AIGI. As Sec 2.1
listed, CFG, number of iterations, and resolution can
all cause AIGI quality fluctuations.

For the influence of hyperparameters, we divided the entire
AIGIQA-20K database into two parts based on CFG, iter-
ation, and resolution, and compared their subjective qual-
ity distribution under normal (default value) and abnormal
(configuration in Sec 2.1) states, as shown in Figure 6.
Firstly, for CFG, there has been a slight decrease in qual-
ity after adjustment compared to the default value. This is
because CFG reflects the trade-off between perceived qual-
ity and fit. The larger the value, the more the model values
alignment, and vice versa, the more emphasis is placed on
perception. However, regardless of which side reduces and
which side increases, the quality score obtained by consid-
ering both factors will inevitably decrease. This demon-
strates the validity of the default CFG values in each T2I
model and it is not recommended to adjust them arbitrar-
ily. Secondly, for the number of iterations, the quality with
limited iterations has decreased to varying degrees against
full iterations. This indicates when iterations are insuffi-
cient, the AIGIs may lack certain details, leading to a de-
crease in quality. Compared to various models, the most
advanced Pixart, Playground, SDXL, SDXL Turbo, and
SSD1B [3, 9, 29, 33, 34] have the strongest robustness to
this descent. For models with the LCM acceleration mech-
anism, the number of iterations is already as low as 4,
and further reducing iterations will cause significant qual-
ity damage. Thirdly, for shapes, the quality of generating
irregular shapes is also lower than that of squares. Since
the target outputs during model training are all squares, it
is expected that generating rectangular images is not ideal.
Horizontally comparing others, LCM Pixart, Pixart, and
SSD1B [3, 9, 25] have the strongest robustness to such de-
scent. Overall, the newer the model, the better its support

for non-square outputs.
For the T2I models themselves and prompts, Figure 7

lists the subjective quality of all 15 models at different
prompt lengths. All hyper-parameters are set by default for
a fair comparison. Firstly, by comparing the various models
at the level of human preferences, the most advanced mod-
els currently available are DALLE3, Midjourney, Pixart,
and Playground [3, 10, 29, 31]; and all other models have
certain quality defects. For the acceleration mechanism,
SDXL Turbo [34] is the most successful, as it reduces the
iterations by 10 times at a quality cost below 0.2; In con-
trast, after 10 times acceleration, the output quality of the
LCM [25] model is far inferior to the original, especially
the acceleration effect on SDXL is extremely poor. Sec-
ondly, except for LCM SDXL, the T2I model has slightly
better quality in generating short prompts than long texts.
This comes from the limitation of the number of embedding
tokens in the model text encoder. For example, CLIP only
supports 77 tokens in absolute terms; Even worse, exist-
ing research [45] indicates that it gradually fails even from
the 20th token onwards. Therefore, the defect in alignment
resulted in a decrease in overall scores. In summary, to im-
prove the output quality of the T2I model. Users should set
appropriate hyper-parameters while developers need to de-
sign more powerful models and enhance their support for
long text encoding and multiple resolutions.

4. Experiment
4.1. Experiment Settings

We first randomly split the AIGIQA-20K into train-
ing/validation/test sets according to the ratio of 7:1:2, with
14,000/2,000/4,000 AIGIs respectively. To benchmark the
performance of quality metrics, three global indicators, in-
cluding SRoCC, Kendall Rank-order Correlation Coeffi-
cient (KRoCC), and Pearson Linear Correlation Coefficient
(PLCC) are applied to evaluate the consistency between
the objective quality score and the subjective MOS, among



which the SRoCC and KRoCC represent the prediction
monotonicity while the PLCC measures the prediction ac-
curacy. To map the objective predicted scores to subjective
MOSs, a standard five-parameter logistic function is applied
as follows:

X̂ = α1

(
0.5− 1

1 + eα2(X−α3)

)
+ α4X + α5, (4)

where α1∼5 represent the parameters for fitting, X and X̂
stand for predicted and fitted scores respectively.

4.2. Benchmark Models

We apply 16 mainstream AIGI quality benchmarks for
comparison, including both perception and alignment met-
rics. For perception, 12 IQA metrics are selected in the ex-
periment. Including brisque [26], clipiqa [37], cnniqa [13],
dbcnn [46], hypetiqa [35], liqe [48], musiq [14], niqe [27],
qalign [41], topiq [2], unique [47], and wadiqam [1]. For
the lower-better indexes (brisque, niqe), their score is re-
versed. These indicators mainly focus on the image itself,
in the absence of the absence of text prompts. For align-
ment, we take 4 advanced metrics for AIGI quality. The
clip [30] mainly considers T2I alignment between AIGIs
and prompts while the hps [43], imagereward [44], and
picscore [16] also take the perceptual quality as an aux-
iliary indicator. Most of them are validated as zero-shot
models while cnniqa, clipiqa, and dbcnn [13, 37, 46] are
trained/validated on the target set (repeating 10 times with
the average result as final performance), and all the exper-
imental results are from the testing test. The Adam op-
timizer [15] (with an initial learning rate of 0.00001 and
batch size 128) is used for 100-epochs finetune training on
an NVIDIA RTX A6000 GPU.

4.3. Performance Discussion

Table 2 shows the performance of different IQA methods
across the entire AIGIQA-20K database. The most power-
ful quality metric currently based on multimodal large lan-
guage models, q-align, is used as the baseline. We use three
classic quality metrics based on deep learning, finetuning
them on the training set before testing, and comparing them
with the baseline. Experimental data shows that fine-tuning
is of great significance for AIGC quality assessment. The
performance of the three methods after training has signifi-
cantly improved, with SRoCC and PLCC improving by 0.4
and KRoCC at 0.3. The performance of clipiqa and dbcnn
after training has exceeded the baseline. This is because
most IQA models are designed for NSIs, and when they
are migrated to AIGIs, it is necessary to update the internal
parameters of the model to ensure good performance. Al-
though the fine-tuning effect is good, for promoting the ap-
plication of IQA in the whole AIGC community, this indi-
cator cannot be completely dependent on fine-tuning train-

Table 2. Performance results on the AIGIQA-20K database using
zero-shot or finetuned metrics. The zero-shot qalign [41] is set as
the baseline. [Key: Best, Second Best]

Metric SRoCC KRoCC PLCC

qalign [41] 0.7461 0.5511 0.7416
clipiqa [37] 0.3311 0.2257 0.4829
clipiqa+finetune 0.7863 0.5828 0.7117
cnniqa [13] 0.3299 0.2244 0.3666
cnniqa+finetune 0.5968 0.4183 0.5913
dbcnn [46] 0.4710 0.3244 0.5120
dbcnn+finetune 0.8506 0.6617 0.8688

ing. A powerful zero-shot model like qalign needs further
development in the future.

Table 3 further lists the performance of 12 perceived
qualities and 4 fit models on the sub-database of AIGIQA-
20K. According to CFG, iterations are divided into nor-
mal (default) and abnormal (adjusted) resolutions. Overall,
qalign remains the most accurate indicator of AIGC quality,
despite ignoring the consistency of information between im-
ages and text. The three correlation indicators rank first in
all sub-databases and lead the second by about 0.05. Among
the other methods, picscore, imagereward, and hps, which
take the T2I alignment into account, show a leading gap.
Except for hps with certain defects in PLCC, all other mod-
els have acceptable performance and can be preliminarily
used to predict the quality of AIGI. The zero-shot perfor-
mance of other models is not ideal, and they must undergo
fine-tuning similar to Table 2, which limits their universal-
ity. Vertically comparing various sub-databases, we found
that all models had more accurate AIGI evaluation results
for the default CFG, but they performed better on abnormal
data in terms of iteration times and resolution. Based on
the error bar analysis in Figure 6, for the vast majority of
T2I generative models, the limited iterations and compared
to all iterations have a wider range of quality distribution
compared to square resolution and rectangular resolution.
Under larger quality differences, the accuracy of the evalu-
ation will also further improve. As for CFG, there is no sig-
nificant difference in the range of error bars. At this point,
the more CFG deviates from the normal value, the more
unnatural the generated results (such as AI artifacts, multi-
finger content, etc.). Considering such distortion doesn’t
exist in NSIs, the zero-shot model alignment is not sensi-
tive. Therefore, the more abnormal the CFG, the worse the
performance of the evaluation.

5. Conclusion

In this paper, we establish the largest AIGI fine-
grain quality database to date, AIGIQA-20K. We first se-



Table 3. Performance results on different AIGIQA-20K sub-database using zero-shot perceptual quality or alignment metrics. The data is
split by default/abnormal CFG, iteration, and resolution. [Key: Best, Second Best]

Group Default CFG Default iteration Default resolution
Type Metric SRoCC KRoCC PLCC SRoCC KRoCC PLCC SRoCC KRoCC PLCC

Perce
-ption

brisque [26] 0.2755 0.1874 0.2933 0.2259 0.1526 0.2772 0.1883 0.1261 0.1900
clipiqa [37] 0.3889 0.2677 0.5375 0.2522 0.1719 0.4312 0.2964 0.2015 0.4041
cnniqa [13] 0.3289 0.2238 0.3691 0.3350 0.2274 0.3605 0.3102 0.2088 0.2889
dbcnn [46] 0.5051 0.3489 0.5304 0.4492 0.3085 0.4673 0.4380 0.2976 0.4307
hyperiqa [35] 0.4390 0.2990 0.4928 0.3528 0.2393 0.4073 0.3730 0.2526 0.4096
liqe [48] 0.4925 0.3391 0.5554 0.3675 0.2513 0.4445 0.4030 0.2746 0.4441
musiq [14] 0.5111 0.3546 0.5848 0.3833 0.2616 0.4418 0.4146 0.2837 0.4889
niqe [27] 0.1900 0.1266 0.3120 0.1999 0.1348 0.2977 0.0769 0.0516 0.1737
qalign [41] 0.7721 0.5764 0.7629 0.7145 0.5206 0.6813 0.7333 0.5383 0.7178
topiq [2] 0.5064 0.3491 0.5292 0.4374 0.2998 0.4487 0.4706 0.3228 0.4663
unique [47] 0.3038 0.2041 0.3843 0.1595 0.1075 0.2127 0.2245 0.1510 0.2974
wadiqam [1] 0.2821 0.1905 0.2855 0.2847 0.1916 0.2907 0.2516 0.1690 0.2351

Align
-ment

clip [30] 0.4701 0.3656 0.5341 0.3804 0.2969 0.4733 0.3309 0.2580 0.2673
hps [43] 0.6749 0.4899 0.6111 0.6288 0.4514 0.5052 0.6214 0.4434 0.4865
imagereward [44] 0.6597 0.4767 0.7162 0.6150 0.4387 0.6691 0.6098 0.4316 0.6579
picscore [16] 0.7009 0.5093 0.7201 0.6474 0.4642 0.6638 0.6458 0.4617 0.6474

Group Wrong CFG Limited iteration Rectangular resolution
Type Metric SRoCC KRoCC PLCC SRoCC KRoCC PLCC SRoCC KRoCC PLCC

Perce
-ption

brisque [26] 0.1853 0.1239 0.2040 0.2447 0.1661 0.2394 0.2968 0.2028 0.3326
clipiqa [37] 0.2134 0.1427 0.3343 0.3961 0.2688 0.4996 0.3500 0.2379 0.5254
cnniqa [13] 0.3397 0.2309 0.3910 0.3429 0.2338 0.3806 0.3178 0.2168 0.3857
dbcnn [46] 0.4034 0.2773 0.4763 0.4990 0.3434 0.5424 0.4945 0.3442 0.5601
hyperiqa [35] 0.3352 0.2295 0.4268 0.4510 0.3069 0.5071 0.4318 0.2946 0.4984
liqe [48] 0.3431 0.2333 0.4029 0.5061 0.3455 0.5395 0.4966 0.3417 0.5664
musiq [14] 0.3673 0.2504 0.4515 0.5415 0.3751 0.6082 0.5144 0.3575 0.5968
niqe [27] 0.0033 0.0020 0.0854 0.0326 0.0166 0.1767 0.1861 0.1220 0.3004
qalign [41] 0.6914 0.4986 0.6841 0.7767 0.5768 0.7708 0.7526 0.5556 0.7486
topiq [2] 0.4265 0.2950 0.4757 0.5191 0.3580 0.5479 0.4847 0.3356 0.5435
unique [47] 0.1389 0.0940 0.2346 0.3198 0.2134 0.3987 0.2944 0.1980 0.3991
wadiqam [1] 0.2819 0.1891 0.3346 0.2983 0.2019 0.3166 0.2876 0.1953 0.3237

Align
-ment

clip [30] 0.3267 0.2531 0.3165 0.4735 0.3671 0.5155 0.4991 0.3851 0.5855
hps [43] 0.6388 0.4583 0.4697 0.6971 0.5072 0.6370 0.6983 0.5099 0.5991
imagereward [44] 0.6247 0.4452 0.6421 0.6755 0.4891 0.7098 0.6722 0.4896 0.7039
picscore [16] 0.6372 0.4566 0.6368 0.7090 0.5154 0.7124 0.7019 0.5109 0.7116

lect 15 mainstream T2I generation models and made dy-
namic adjustments on CFG, iteration, and resolution hyper-
parameters for the first time. From this, 20,000 AIGIs are
generated with different qualities to characterize the com-
mon images in today’s AIGC community. Then, subjective
quality labels are processed as the golden truth of quality.
Finally, benchmark experiments are conducted to verify the
performance of the current AIGI quality evaluator, includ-
ing IQA and T2I alignment methods. Experimental results
indicate that the universal zero-shot quality model is not yet
complete and requires further development based on com-

prehensive subjective labels in this database.
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