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ABSTRACT

In an era where 3D Digital Humans (DHs) are becoming
increasingly prevalent in fields like gaming, automotive, and
the metaverse, the demand for high DH visual quality is
rising. This paper presents the first-ever reduced-reference
(RR) quality assessment metric tailored specifically for tex-
tured mesh DHs, aiming to optimize transmission systems
and improve Quality of Experience (QoE) for viewers in
resource-constrained environments. Four critical geometric
curvature-related attributes and two texture-related indica-
tors are computed, which are then statistically analyzed and
utilized in a Support Vector Regression (SVR) model for
robust and efficient quality prediction. Experimental results
confirm that our method outperforms existing full-reference
(FR) metrics, making it an invaluable tool for the future of
3D DHs in various applications. The code is available at
https://github.com/zzc-1998/RR-DHQA.

Index Terms— Quality assessment, 3D digital humans,
textured mesh, reduced-reference

1. INTRODUCTION

Digital humans (DHs) are computer-simulated people, which
are widely used in gaming, automotive, and the metaverse.
However, the high storage and bandwidth requirements ne-
cessitate compression/simplification, often at the cost of
visual quality [1]. Therefore, in this paper, we introduce
the first reduced-reference (RR) quality assessment metric
specifically designed for textured mesh DHs, which can pro-
vide useful guidelines for the compression/simplification
algorithms and improve Quality of Experience (QoE) for the
viewers as shown in Fig. 1.

The 3D digital human quality assessment (DHQA) is
intrinsically linked to the 3D model quality assessment
(3DQA). However, the content of DHs is more complicated
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Fig. 1. Application of the proposed RR DHQA method. The
reference quality features are extracted and transmitted along
with the DHs. Then the distorted quality features are com-
pared with the reference quality features for evaluation, which
can help optimize the compression/simplification settings and
improve the experience of the users.

than common 3D models, and people tend to be more sen-
sitive to perceptual distortions. Previous 3DQA methods
extract features either from the projections of the 3D models
(projection-based) [2, 3, 4, 5, 6, 7, 8] or directly from the
3D models themselves (model-based) [9, 10, 11, 12, 13, 14].
Projection-based methods transfer the problem to an image
quality assessment (IQA) task but are constrained by ren-
dering configurations and viewpoint selection [2]. On the
other hand, extracting features directly from the 3D model
is more stable but also increases computational complexity
[12]. Given the limited prevalence of rendering modules in
transmission systems, extracting features directly from 3D
models is more universally applicable. While full-reference
(FR) methods provide a thorough comparison of distorted
and reference models, transmitting these reference models in
real-time systems leads to significant overhead. Additionally,
deep neural networks are expensive for high-quality DHs
with vast faces and vertices. Thus it is more cost-effective to
prioritize the abstraction and transmission of quality features
from the reference model [15] with handcrafted descriptors.
Hence, our model-based RR DHQA metric aims to strike a
balance between efficiency and perceptual loss capture.
Specifically, our method assesses the quality of DHs by
extracting quality-aware features from both 3D geometric
mesh and 2D texture map. In terms of geometry, the pro-
posed method calculates four key curvature-related feature
attributes to capture the geometry quality patterns. For the
texture aspect, quality indicators are extracted from the gray-
scale map and the gradient magnitude map. These features
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are quantitatively evaluated using a variety of statistical pa-
rameters and subsequently employed in a Support Vector
Regression (SVR) model for quality prediction. The exper-
imental results show that our method outperforms all the
compared FR metrics on the two selected DHQA databases.

2. PROPOSED METHOD

Since the 3D DHs are represented in textured meshes, we pro-
pose to extract the quality-aware features from the 3D geom-
etry mesh and 2D texture separately. Given a textured mesh
DH, we define the 3D mesh M as:

M={V,E F}, H

where V, £, and F represent the set of vertices, edges, and
faces respectively. Then the 2D texture is simply defined as
T, which is a common RGB image. The framework of the
proposed method is shown in Fig. 2.

2.1. Mesh Feature Extraction

The mesh representations serve as the foundational geomet-
ric structures for DHs, encompassing facial features, limbs,
and the torso. Unlike conventional 3D objects encountered
in everyday life, the 3D representation of a digital human en-
tails a higher level of complexity [1]. In particular, curvature
attributes often serve as critical indicators of geometric com-
plexity. Therefore, we propose mapping the mesh geometry
into the curvature domains for feature extraction. To ensure
diversity and comprehensiveness, we initially focus on two
primary curvature-related attributes: Vertex Defect and Di-
hedral Angle. Subsequently, we construct a local spherical
subspace within the mesh and compute the Discrete Gaus-
sian Curvature and Discrete Mean Curvature within this
subspace [16], which can provide an enhanced representation
of local curvature patterns and furnish a more complete pic-
ture of the geometric features intrinsic to DHs.

1) Vertex Defect: The vertex defect ¢ (v) can be com-
puted as 27 minus the sum of the angles incident to the cor-
responding vertex v:

PP (v) =21 = 0, 2)

where > 6, denotes the sum of the angles incident to vertex
v. Each vertex in the mesh has a defect value and we can get
the set of the vertex defects as ¢2.

2) Dihedral Angle: The dihedral angle ¢ (e) between
two adjacent faces f; and fo sharing an edge e can be com-
puted using their respective normals N; and No:

N; N )

—_— 3
TN [N ®)

*(e) = arccos (

where each edge in the mesh has a dihedral angle value and
we can obtain the set of the dihedral angles as ¢4.
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Fig. 2. The framework of the proposed RR DHQA method.
The geometry and texture attribute distributions are extracted
from the mesh and texture map respectively. Afterward, the
statistical parameters are estimated from the distributions.
The computed error between the reference and distorted pa-
rameters is then fed into the quality regression module.

3) Discrete Gaussian Curvature: The discrete Gaussian
curvature ¢%(v) at the vertex v can be approximated as the
sum of the neighboring vertex defects:

%)= Y "), &)

veESNY

where S is a spherical region centered at the vertex v with a
radius of » = ¢y * BB (c; is a constant and BB is the longest
side of the binding box), v stands for the neighboring vertices
that belongs to the intersection of S and V. Therefore, each
vertex has a discrete Gaussian curvature value and we can get
the set of the discrete Gaussian curvature as ng

4) Discrete Mean Curvature: The discrete mean curva-
ture M (v) at the vertex v can be obtained as a weighted sum
of the neighboring dihedral angles:

M (v) = lenS| - sgn(d?(e)), 5)

ecf

where |e N S| indicates the length of intersection between the
edge e and the spherical region S as described above (if e has
no intersection with S, the length is zero), the sign sgn(-) of
the neighboring ¢ (e) is positive if e is convex and negative if
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Fig. 3. Visualization results of discrete Gaussian/mean curva-
ture. (a), (b), (e), and (f) represent the reference/compression-
distorted textured mesh DH examples and the corresponding
geometry meshes. (c), (d), (g), and (h) denote the reference
discrete Gaussian/mean curvature and the distorted discrete
Gaussian/mean curvature projections respectively, where the
red/green colors signify relatively greater/smaller curvature
values. It is obvious that compression notably alters the DH
geometry patterns and the corresponding visual quality.

it is concave. Thus each vertex has a discrete mean curvature
value and we can get the set of the discrete mean curvature
as é% . As shown in Fig. 3, it is clear that distortions signifi-
cantly impact the patterns of curvature.

2.2. Texture Feature Extraction

Textures can take many forms, from simple color patterns
to complex, high-resolution images. They are used for var-
ious purposes, including simulating complex surface proper-
ties like fur, grass, or subsurface scattering. Practically, the
DH textures can be distorted with sub-sampling, compres-
sion, and noise. The texture feature extraction can be rec-
ognized as a similar task to image quality feature extraction.

Therefore, we simply use the gray-scale illumination map
and gradient magnitude map of the texture for feature extrac-
tion [17, 18, 19]. Given the texture 7, the gray-scale illu-
mination map <I>§- can be derived as the maximum of RGB
channels:

7 = max T(i,]), 6)

c€{r,g,b}
where ¢ and j are pixel indexes of the texture. The gradient
information has been proven to be very effective in many IQA
methods [20]. A Sobel gradient operator is applied to calcu-
late the gradient maps. Then the gradient magnitude map <I>$;-

Table 1. Overview of the employed feature domains.

Group Symbol Description
D Vertex Defect
o Dihedral Angle
Mesh oS Discrete Gaussian Curvature
M Discrete Mean Curvature
oL Gray-scale [llumination Map
Texture oS Gradient Magnitude Map
can be computed as follow:
G 2 2
G = \/(<I>§®Sm) + (eF® S,)7, (7

where the symbol & denotes the convolution operation, and
Sy and Sy, are the horizontal and vertical Sobel filters.

2.3. Statistical Estimation

It has been proved in many works that different types of dis-
tortions can corrupt the appearance of geometry and texture
attribute distributions [25, 12]. Therefore, we employ sev-
eral basic statistical parameters (mean, variance, and entropy)
and classical distributions (generalized Gaussian distribution
(GGD) and the general asymmetric generalized Gaussian dis-
tribution (AGGD) [26]) to quantify the perceptual loss from
the feature domains described above. A summary of the fea-
ture domains is illustrated in Table 1. The estimation process
can be described as:

D ~ Basic(u,0?, E),

D~ GGD(a1, B),

D ~ AGGD(as, B2, 07, 02),
D e{ov, 6,0, oV, oF, ©F},

®)

where D and D represent the original and normalized fea-
ture distributions, (u, 02,E) parameters in the Basic(-) func-
tion stand for (mean, variance, entropy), (o1, 51) indicate the
GGD estimated features, and (v, 32,07, 02) stand for the
AGGD estimated features.

2.4. Quality Regression

Finally, we can get a quality-aware feature vector for a single
DH, which consists of 54=6x9 features in total. The mapped
error between the features extracted from the reference and
distorted DHs are taken as the input features Fj,,:
1

F’L' - ]_+e*(FR*FD)7 (9)
where F'r and F'p indicate the features extracted from the ref-
erence and distorted DHs respectively, and the sigmoid func-
tion is used to bind the values of the feature error. Further-
more, we utilize the support vector regression (SVR) as the
regression model.
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Table 2. Benchmark Performance on the SJITU-H3D and DHHQA databases. Best in RED and second in BLUE.

Ref Type Method SITU-H3D DHHQA
yP SRCCT PLCCT KRCCT RMSEJ] | SRCCT PLCCT KRCCT RMSE]
PSNR 05139 04974 03170 09441 | 0.8347 08371 0.6405 11.5822
SSIM [21] 07336  0.6888  0.5416  0.8626 | 0.7355 0.7253  0.5388  14.5221
Projection-based | MS-SSIM [22] | 02417 02776  0.1822  1.0150 | 0.8557 0.8396  0.6653  11.4953
R GMSD [23] 02574 03538  0.1855 09833 | 0.8411 0.8350 0.6534  11.6441
G-LPIPS [3] 06930 0.6112 05343  0.7966 | 0.8389  0.8069  0.6446  12.0051
PSNR, 2,0 0] | 02636 02680 02154  1.0134 | 02891 02916 02359 21.0813
Model-based PSNR,2,; [10] | 02101 02114  0.1686  1.0244 | 02698 02961  0.2250  21.0520
PSNRy.. [24] | 05247 05638 04141 09199 | 0.1761 02272  0.1369  21.4299
RR | Model-based Proposed 0.8420 0.8486  0.6612  0.5422 | 0.5796 0.8862  0.6969  9.9143

Table 3. Ablation study results on the SJTU-H3D and
DHHQA databases.
Feature Group SJITU-H3D DHHQA
SRCCYT PLCC?T SRCC?T PLCC?T
Gl 0.7984 0.8084 0.8485 0.8470
G2 0.8312 0.8355 0.6548 0.6719
G3 0.6598 0.6901 0.6546 0.7480
G4 0.7973 0.8128 0.8274 0.8429
G5 0.8257 0.8326 0.8405 0.8326
All 0.8420 0.8486 0.8796 0.8862

3. EXPERIMENT

3.1. Databases & Experimental Setup

The publicly available full-body DH quality assessment
(SJTU-H3D) database [27] and the DH head quality assess-
ment (DHHQA) database [28] are selected for validation. The
SJTU-H3D database contains 1,120 distorted full-body tex-
tured mesh DHs while the DHHQA database contains 1,540
distorted textured mesh DH heads. For both databases, we
chose a k value of 5 for conducting k-fold cross-validation,
aiming for a balanced assessment over various subsets. It is
important to note that the training and testing folds do not
share any overlapping content.

The Support Vector Regression (SVR) model with RBF
kernel is implemented with the Python scikit-learn package.
The popular Spearman Rank Correlation Coefficient (SRCC),
Pearson Linear Correlation Coefficient (PLCC), Kendall’s
Rank Order Correlation Coefficient (KRCC), and Root Mean
Squared Error (RMSE) are utilized as evaluation criteria.

3.2. Competitors

The competitors’ selection is conducted to ensure high diver-
sity, which includes both projection-based and model-based
methods. The former includes: PSNR, SSIM [21], MS-SSIM
[22], GMSD [23], and G-LPIPS [3]. These methods are ap-
plied to the six cube-like projections of the DHs, and the av-
eraged scores are recorded. The latter includes: PSNR2,,
[9], PSNR,,;; [10], and PSNR,,,,, [24]. These methods are
developed by the MPEG group and we convert the textured
meshes into point clouds for validation.

3.3. Performance Discussion

The overall experimental performance is exhibited in Table
2, from which we can make several useful conclusions. 1)
The proposed RR DHQA method achieves the best perfor-
mance among all the FR competitors, which confirms the
effectiveness of the proposed method for predicting the vi-
sual quality of DHs. 2) Benefiting from the mature and ad-
vanced development of IQA, the projection-based competi-
tors seem to achieve relatively better performance than the
model-based competitors. However, the projection-based FR
methods except SSIM all experience significant performance
drops from the DHHQA to SITU-H3D database, which indi-
cates the projection-based methods are less robust.

3.4. Ablation Study

To better understand the impact of different feature sets, we
conduct a comprehensive ablation study in this section. We
define the groups of features as follows: G1++>w/o vertex de-
fect & dihedral angle features, G2<+w/o discrete Gaussian &
mean curvature features, G3<w/o texture features, G4<>w/o
basic statistical parameters, and G5<»w/o GGD & AGGD sta-
tistical parameters. Our observations indicate that the removal
of any feature group results in a decrease in performance, un-
derscoring the importance of each feature set in the overall
result. Upon closer examination, it becomes apparent that G3
achieves the lowest performance in terms of SRCC, which
suggests that texture features play a particularly significant
role in contributing to the model’s performance.

4. CONCLUSION

This paper introduces a pioneering reduced-reference (RR)
quality assessment metric specifically crafted for 3D Digi-
tal Humans. Through the careful extraction and statistical
analysis of critical geometric and texture-related features,
the proposed metric offers an efficient yet robust means for
quality prediction. Not only does it outperform existing full-
reference methods, but it also holds the potential to signifi-
cantly enhance the Quality of Experience (QoE) for viewers.
This makes it an indispensable asset for advancing the visual
quality of 3D Digital Humans across diverse applications.
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