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Abstract. Most existing Low-light Image Enhancement (LLIE) meth-
ods either directly map Low-Light (LL) to Normal-Light (NL) images or
use semantic or illumination maps as guides. However, the ill-posed na-
ture of LLIE and the difficulty of semantic retrieval from impaired inputs
limit these methods, especially in extremely low-light conditions. To ad-
dress this issue, we present a new LLIE network via Generative LAtent
feature based codebook REtrieval (GLARE), in which the codebook
prior is derived from undegraded NL images using a Vector Quantiza-
tion (VQ) strategy. More importantly, we develop a generative Invertible
Latent Normalizing Flow (I-LNF) module to align the LL feature dis-
tribution to NL latent representations, guaranteeing the correct code
retrieval in the codebook. In addition, a novel Adaptive Feature Trans-
formation (AFT) module, featuring an adjustable function for users and
comprising an Adaptive Mix-up Block (AMB) along with a dual-decoder
architecture, is devised to further enhance fidelity while preserving the
realistic details provided by codebook prior. Extensive experiments con-
firm the superior performance of GLARE on various benchmark datasets
and real-world data. Its effectiveness as a preprocessing tool in low-light
object detection tasks further validates GLARE for high-level vision ap-
plications. Code is released at https://github.com/LowLevelAI/GLARE.

Keywords: Generative feature alignment · Adaptive feature transfor-
mation · Codebook Retrieval · Low-light image enhancement

1 Introduction

Low light images often suffer from various degradations, including loss of de-
tails, reduced contrast, amplified sensor noise, and color distortion, making many
downstream tasks challenging, such as object detection, segmentation, or track-
ing [12,15,22,26,66]. Consequently, LLIE has been extensively studied recently.

Traditional techniques that leverage handcrafted priors and constraints [4,
20, 27, 29, 78] have made significant contributions to this field. However, these
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Fig. 1: (a) GLARE significantly outperforms SOTA methods on LOL [62]. (b) GLARE
can generate appealing results on both LOL (upper) and real-world (lower) images.

methods still exhibit limitations in terms of adaptability across diverse illumi-
nation scenarios [56]. With the rapid advancements in deep learning, extensive
approaches have been employed to learn complex mappings from LL to NL
images [5, 42, 49, 70]. Although their performance surpasses that of traditional
methods, once deployed in real-world scenarios with varying light conditions and
significant noise, these methods tend to produce visually unsatisfactory results.

Recent methods utilize semantic priors [17, 65, 78], extracted feature [30, 51,
69, 80], and illumination maps [56] as the guidance to tackle the uncertainty
and ambiguity of ill-posed LLIE problem. However, they still face challenges in
extracting stable features from heavily degraded inputs, which are often over-
whelmed by noise and obfuscated by low visibility. Besides, only utilizing the
extracted information from degraded images to build the LL-NL transformation
usually generate unsatisfactory results when testing on real-world scenarios.

To generate realistic and appealing outcomes, one possible solution is to ex-
ploit the prior knowledge of natural normal-light images. Therefore, we propose
to leverage a learned Vector-Quantized (VQ) codebook prior that captures the
intrinsic features of high-quality and well-lit images, to guide the learning of
LL-NL mapping. The discrete codebook is learned from noise-free images via
VQGAN [16]. It is worth noting that by projecting degraded images onto this
confined discrete prior space, the ambiguity inherent in LL-NL transformation is
substantially mitigated, thereby ensuring the quality of enhanced images. Fig. 1
illustrates the superiority of our method over current state-of-the-art (SOTA)
methods, both on the benchmark dataset and real-world images.

It is important to emphasize that the superior performance of GLARE over
other SOTA methods is not only attributed to the integration of the codebook
prior but also to our unique designs that address two main challenges associated
with leveraging the codebook prior for LL-NL mapping. First, as shown in Fig. 2b
column 2, solely exploiting VQGAN and NL prior may lead to unpleasant results
and the reason behind this lies in the evident discrepancy between the degraded
LL features and NL features in latent space, as depicted in Fig. 2a. Since the
Nearest Neighbor (NN) is commonly utilized in looking up codebook [7,10,21,61],
this misalignment poses challenges in accurately retrieving VQ codes for LLIE
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Fig. 2: (a) T-SNE [47] visualization of distributions of NL features, LL features, and
LL-NF features. Compared to LL features, NF-LL features are better aligned with NL
features. (b) Visual observations on each stage of GLARE on LOL [62] dataset. Column
2-4 represent the enhanced results from LL-feat, the enhanced images from NF-LL-
feat, and the final results of our GLARE. From column 2-4, we observe a noticeable
improvement on visibility, color preservation and detail recovery, which demonstrates
the effectiveness of each stage of our GLARE. [Key: NL-feat: generated by NL encoder
with NL inputs, LL-feat: LL features obtained form the fine-tuned NL encoder (Stage
I), NF-LL-feat: LL features generated by our generative I-LNF module (Stage II)]

task. Second, we notice that relying solely on matched codes for feature decod-
ing [7,10,61] might compromise the fine details. Without integrating information
from the original LL input, it could potentially introduce texture distortions.

Taking into account these issues, we further introduce two specific modules
into GLARE. First, to bridge the gap between degradation features and NL rep-
resentations, we introduce a generative strategy to produce LL features based
on Invertible Latent conditional Normalizing Flow (I-LNF), which enables bet-
ter alignment with potentially matched NL features. Specifically, given LL-NL
pairs, our I-LNF transforms complicated NL features into a simple distribution
with the condition of LL features via the precise log-likelihood training strategy.
As shown in Fig. 2a, through this fully invertible network, our GLARE achieves
a generative derivation of LL features which are closely aligned with NL repre-
sentations and ensures accurate code assembly in codebook, thereby generating
better enhancement results as depicted in Fig. 2b column 3.

Second, to improve the texture details, we propose an Adaptive Feature
Transformation (AFT) module equipped with learnable coefficients to effectively
control the ratio of encoder features introduced to the decoder. By flexibly merg-
ing the LL information into the decoding process, our model exhibits resilience
against severe image degradation and one can freely adjust these coefficients ac-
cording to their preference for real-world image enhancement. Besides, the AFT
module adopts a dual-decoder strategy, which includes the fixed Normal-Light
Decoder (NLD) and the trainable Multi-scale Fusion Decoder (MFD). The NLD
specifically processes matched codes from the codebook, facilitating the gen-
eration of realistic and natural results. Meanwhile, the MFD handles the LL
features produced by our I-LNF module, enhancing the final result with more
refined details and texture, as demonstrated in Fig. 2b column 4.
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Contributions. The main contributions of this work are as follows: (i) We are
the first to adopt the external NL codebook as a guidance to enhance low-light
images naturally. (ii) We introduce GLARE, a novel LLIE enhancer leverag-
ing latent normalizing flow to learn the LL feature distribution that aligns with
NL features. (iii) A novel adaptive feature transformation module with an ad-
justable function for users is proposed to consolidate the fidelity while ensuring
the naturalness in outputs. (iv) Extensive experiments indicate that our method
significantly outperforms existing SOTA methods on 5 paired benchmarks and 4
real-world datasets in LLIE and our model is highly competitive while employed
as a pre-processing method for high-level object detection task.

2 Related Work

2.1 Deep Learning based LLIE methods

Similar to numerous approaches in other image restoration tasks [2,3,13,14,38,
39,54,73], end-to-end LLIE methods [5,19,28,33,42,67,74] have been proposed to
directly map LL images to NL ones. Most of them mainly resort to the optimiza-
tion of reconstruction error between the enhanced output and ground-truth to
guide the network training. However, they often fail to preserve naturalness and
restore intricate details effectively. These problems have given rise to the explo-
ration of leveraging additional information or guidance to aid the enhancement
process. For instance, some methods [32,56] achieve a simple training process for
LLIE by estimating illumination maps. However, these approaches have a risk
of amplifying noise and color deviations especially in real-world LL images [6].

Concurrently, other methods [17, 65, 78] argue that semantic understanding
can mitigate regional degradation problems and attain pleasing visual appear-
ance. Besides, several studies [51, 69, 80] have indicated that utilizing edge ex-
traction can direct the generation of realistic image details and mitigate the
blurry effects to an extent. Nevertheless, these methods are highly contingent
upon features extracted from degraded input, which could compromise the gen-
eralization capability and introduce artifacts. In contrast to existing methods,
we propose an informative codebook that encapsulates a diverse spectrum of NL
feature priors. This approach demonstrates resilience against various degrada-
tions, achieving more natural and appealing image enhancement.

2.2 Vector-Quantized Codebook Learning

Vector Quantized Variational AutoEncoders (VQ-VAE) is firstly proposed in
[50] to learn discrete representations. This approach effectively tackles the pos-
terior collapse issue that is commonly encountered in VAE models. Then, VQ-
VAE2 [52] explores the hierarchical VQ code for large-scale image generation.
VQGAN [16] further enhances the perceptual quality by capturing a code-
book of context-rich visual parts via an adversarial method. The discrete code-
book has been successfully employed in image super-resolution [7], text super-
resolution [34], and face restoration [21,61,79]. However, there remains potential
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Fig. 3: The overall architecture of our proposed GLARE. There are three training
stages in our model. Stage I aims to learn a comprehensive normal-light codebook C
using VQGAN. In Stage II training, given the cll and zll generated by the conditional
encoder Ec and the convolution layer respectively, I-LNF module fθ learns to trans-
form the normal-light feature znl to a simplified Gaussian distribution v = fθ(znl; cll)
with the mean of zll. We optimize Ec and fθ by minimizing the negative log-likelihood
described in Eq. 3. In Stage III, the codebook C, the NL decoder Dnl, the conditional
encoder Ec, and the I-LNF fθ are all fixed. Our GLARE can effectively transform a
Gaussian density pv(v) ∼ N (zll,Σ) to the NL feature distribution pznl|cll(znl|cll,θ).
To further improve the enhancement performance, we propose an adaptive feature
transformation strategy. By leveraging Dmf and AMB to flexibly incorporate LL in-
formation for decoding (Fd = DeConv(Fnl, AMB(Fc,Fmf ))), our GLARE is capable
to generate results with more refined texture and details. [Key: Σ: The unit variance]

for further improvement. One of the key research directions is how to precisely
match the related correct code. Different from recent methods [72,79] that utilize
a Transformer to predict code indices in the codebook, we argue that prediction-
based strategies are inherently unable to address the significant differences be-
tween LL and NL features, resulting in suboptimal performance. To this end,
we propose a generative approach that produces LL features aligned with NL
counterparts to successfully bridge the gap between LL and NL representations.

3 GLARE

Besides introducing external NL codebbok to guide the Low-Light to Normal-
Light (LL-NL) mapping, the novelty of our work also lies in the distinctive In-
vertible Latent Normalizing Flow (I-LNF) and Adaptive Feature Transformation
(AFT) modules, which are designed to maximize the potential of NL codebook
prior and generate realistic results with high fidelity. The overview of our method
is illustrated in Fig. 3, where the training of our method can be divided into three
stages. In stage I, we pre-train a VQGAN on thousands of clear NL images to
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construct a comprehensive VQ codebook (Sec. 3.1). In stage II, the I-LNF mod-
ule is trained utilizing LL-NL pairs to achieve the distribution transformation
between LL and NL features (Sec. 3.2). In the final stage, the AFT module,
which contains the fixed NL Decoder (NLD), Adaptive Mix-up Block (AMB),
and Multi-scale Fusion Decoder (MFD), is employed to enhance the fine-grained
details while maintaining naturalness beneficial from the codebook (Sec. 3.3).

3.1 Stage I: Normal-Light Codebook Learning

To learn a universal and comprehensive codebook prior, we leverage a VQGAN
with the structure similar to [16]. Specifically, a NL image Inl ∈ R3×W×H is first
encoded and reshaped into the latent representation znl ∈ Rd×N , where W , H,
d, and N = W/f×H/f represent the image width, image height, the dimension
of latent features, and the total number of latent features; f is the downsampling
factor of the NL Encoder Enl. Each latent vector zinl can be quantized to the
corresponding code ziq using Nearest-Neighbor (NN) matching as:

ziq = argmin
cv∈C

∥∥zinl − cv
∥∥
2
, (1)

where C ∈ Rd×Nc denotes the learnable codebook containing Nc discrete codes,
with each element represented by cv. Then the quantized code zq is sent to NLD
(denoted as Dnl) to generate reconstructed image Irecnl .

To better illustrate the strengths and limitations of the codebook prior,
we fine-tune the pre-trained VQGAN encoder on LL-NL pairs. Specifically, we
achieve the enhanced results shown in Fig. 2b column 2 and we utilize t-SNE [47]
to visualize LL features generated by fine-tuned NL encoder in Fig. 2a, which
demonstrate the effectiveness of external NL prior in IILE. Besides, these visual
results inspire us to design additional networks to align LL features with NL
representations to further improve enhancement performance.

3.2 Stage II: Generative Latent Feature Learning

To fully exploit the potential of external codebook prior, we design additional
mechanisms from the perspective of reducing the disparity between LL and NL
feature distributions. Specifically, we develop an invertible latent normalizing
flow to achieve the transformation between LL and NL feature distributions,
thereby facilitating more accurate codes retrieval from codebook.

As shown in Fig. 3, two key components are optimized in stage II: the Con-
ditional Encoder and the Invertible LNF. 1) The conditional encoder Ec,
structurally identical to the NL encoder Enl, inputs a LL image Ill and outputs
the conditional feature cll. 2) The I-LNF module in this work is realized through
an invertible network, represented as fθ. This module utilizes cll as the condition
to transform the complex NL feature distribution znl to a latent feature, namely
v = fθ(znl; cll). Stage II focuses on obtaining a simplified distribution pv(v) in
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the space of v, such as a Gaussian distribution. Consequently, the conditional
distribution pznl|cll

(znl|cll,θ) can be implicitly expressed as [43]:

pznl|cll
(znl|cll,θ) = pv(fθ(znl; cll))|det

∂fθ
∂znl

(znl; cll)|. (2)

Different from conventional normalizing flow applications [24, 43, 58, 65], we
uniquely employ normalizing flow at the feature level rather than the image
space, and our I-LNF module is designed without integrating any squeeze layers.
Moreover, instead of using the standard Gaussian distribution as the prior of v,
we propose to use the LL feature zll, generated by convolution layers based on
cll, as the mean value of pv(v). The conditional distribution in Eq. (2) allows us
to minimize the negative log-likelihood (NLL) in Eq. (3) to train the conditional
encoder and I-LNF module. Besides, through the fully invertible network fθ,
we derive clear features z′ll for LL inputs by sampling v ∼ pv(v) according to
z′ll = f−1

θ (v; cll).

L(θ; cll, znl) = −logpznl|cll
(znl|cll,θ). (3)

After training, we evaluate our model on LOL dataset [62] to validate the
effectiveness of the I-LNF. As shown in Fig. 2a, the LL feature distribution gen-
erated by I-LNF is closely aligned with that of the NL, facilitating accurate code
assembly in the codebook. Moreover, our network achieves satisfactory enhance-
ment results (Fig. 2b, column 3), indicating good LLIE performance after stage
II. However, these results still exhibit considerable potential for improvement, es-
pecially in fidelity. For example, the color (row 1 in Fig. 2b) or structural details
(row 2 in Fig. 2b) significantly diverge from the ground truth. This observation
motivates and drives us to incorporate the input information into the decoding
process to elevate the fidelity.

3.3 Stage III: Adaptive Feature Transformation

To further enhance the texture details and fidelity, we propose an adaptive fea-
ture transformation module that flexibly incorporates the feature Fc = {Fi

c}
from the conditional encoder into the decoding process, where i denotes the res-
olution level. Specifically, in order to maintain the realistic output of NLD and
avoid the influence of degraded LL features, we adopt a dual-decoder architec-
ture and develop MFD inspired by [21, 63]. Dual-decoder design enables us to
leverage the deformable convolution (dconv) to warp NLD feature (Fi

nl) as Eq. 4
and input the warped feature (Fi

d) into MFD to generate the final enhancement.

Fi
d = dconv(Fi

nl,F
i
t), (4)

where i and Fi
t denote the resolution level and the target feature respectively. In

this work, we design a novel feature fusion network that adaptively incorporates
LL information into the warping operation and provides a potential adjustment
choice for users when testing on real-world occasions.
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Table 1: Quantitative comparisons on LOL [62], LOL-v2-real [71], LOL-v2-
synthetic [71], SDSD-indoor [55], and SDSD-outdoor [55] datasets. Our GLARE
achieves superior performance compared to current SOTA methods. These results are
obtained either from original papers or by running their released codes. [Key: Best,
Second Best, ↑ (↓): Larger (smaller) values leads to better performance].

Methods LOL-v1 LOL-v2-real LOL-v2-syn SDSD-indoor SDSD-outdoor
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

SID [8] 14.35 0.436 — 13.24 0.442 — 15.04 0.610 23.29 0.703 24.90 0.693
IPT [9] 16.27 0.504 — 19.80 0.813 — 18.30 0.811 26.11 0.831 27.55 0.850

UFormer [59] 16.36 0.771 — 18.82 0.771 — 19.66 0.871 23.17 0.859 23.85 0.748
Sparse [71] 17.20 0.640 — 20.06 0.816 — 22.05 0.905 23.25 0.863 25.28 0.804
RUAS [37] 18.23 0.720 — 18.37 0.723 — 16.55 0.652 23.17 0.696 23.84 0.743
SCI [46] 14.78 0.646 — 20.28 0.752 — 24.14 0.928 — — — —

KinD [77] 20.87 0.802 0.207 17.54 0.669 0.375 13.29 0.578 21.95 0.672 21.97 0.654
MIRNet [74] 24.14 0.830 0.131 20.02 0.820 0.138 21.94 0.876 24.38 0.864 27.13 0.837
DRBN [70] 19.86 0.834 0.155 20.13 0.830 0.147 23.22 0.927 24.08 0.868 25.77 0.841
SNR [68] 24.61 0.842 0.151 21.48 0.849 0.157 24.14 0.928 29.44 0.894 28.66 0.866

URetinex-Net [64] 21.33 0.835 0.122 21.16 0.840 0.144 24.14 0.928 — — — —
Restormer [75] 22.43 0.823 — 19.94 0.827 — 21.41 0.830 25.67 0.827 24.79 0.802
Retformer [6] 25.16 0.845 0.131 22.80 0.840 0.171 25.67 0.930 29.77 0.896 29.84 0.877

MRQ [40] 25.24 0.855 0.121 22.37 0.846 0.142 25.94 0.935 — — — —
LLFlow [58] 25.19 0.870 0.113 26.53 0.892 0.135 26.23 0.943 — — — —
LL-SKF [65] 26.80 0.879 0.105 28.45 0.905 0.111 29.11 0.953 — — — —

GLARE (Ours) 27.35 0.883 0.083 28.98 0.905 0.097 29.84 0.958 30.10 0.896 30.85 0.884

Adaptive Mix-up Block. The MFD that aligns structurally with NLD aims to
decode the generated LL feature z′ll and obtain intermediate representations as
Fmf = {Fi

mf}, where i indicates the resolution level. At each resolution level, the
conditional encoder information Fi

c is added to the corresponding Fi
mf in order

to bring more LL information. Different from typical feature fusion operations
(i.e., skip connection [40]), our approach uses an adaptive mix-up strategy:

Fi
a = β × σ(θi)× Fi

c + (1− β × σ(θi))× Fi
mf , (5)

where θi represents a learnable coefficient, σ denotes the sigmoid operator, β
is used for the adjustment for real-world testing and is set to 1 when training.
Unlike skip connection, these learnable parameters can be adjusted effectively
during training, which contributes to enhanced performance shown in Sec. 4.5.
Flexible Adjustment. Even though β in Eq. (5) is set to 1 in the training
phase, one can flexibly adjust β according to their preference when testing with
real-world images. This design stems from the phenomena that many current
methods usually work struggling with real-world data, which often have different
illuminations with images used in the training phase.

4 Experiments

4.1 Datasets

Normal Light Datasets. To train the VQGAN in Stage I, we select images
with normal lighting conditions from DIV2K [1] and Flickr2K [35] datasets to
develop the NL codebook prior.
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Low Light Datasets. We conduct a thorough evaluation of our method using
various paired datasets, including LOL [62], LOL-v2-real [71], LOL-v2-synthetic
[71], and a large-scale dataset SDSD [55]. For LOL, LOL-v2-real, and LOL-v2-
synthetic, we use 485, 689, and 900 pairs for training, and 15, 100, and 100 pairs
for testing. The indoor subset of SDSD dataset includes 62 training and 6 testing
video pairs, while the outdoor subset contains 116 training and 10 testing pairs.
Besides, we also conduct cross-dataset evaluation on several unpaired real-world
datasets: MEF [45], LIME [23], DICM [31], and NPE [57].

4.2 Implementation Details

Experiment Settings. We use the Adam optimizer (β1 = 0.9, β2 = 0.99) for
all training stages. In Stage I, the training iteration is set to 640K with a batch
size of 4, a fixed learning rate 10−4, and image size of 256 × 256. In Stage II,
we retain the batch size, change the image size to 320× 320, and adopt a multi-
stage learning rates. Then, our GLARE is trained for 60K iterations on LOL and
LOL-v2, and 225K iterations on SDSD. In Stage III, the batch size is halved, the
initial learning rate is set to 5 × 10−5, and the training iterations are adjusted
to 20K, 40K, and 80K for LOL, LOL-v2, and SDSD datasets respectively.
Metrics. For paired datasets, we utilize Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM) [60] to assess pixel-level accuracy,
and use Learned Perceptual Image Patch Similarity (LPIPS) [76] for percep-
tual quality evaluation. As for real-world datasets, the Natural Image Quality
Evaluator (NIQE) [48] is adopted.

4.3 Performance on LLIE

Quantitative Results. As reported in Tab. 1, GLARE outperforms the current
SOTA methods on five benchmarks. Our GLARE excels in PSNR, outperforming
LL-SKF over 0.55 dB and 0.74 dB on LOL and LOL-v2-synthetic datasets.
Furthermore, it surpasses Retformer with improvement of 0.33 dB and 1.01 dB
on SDSD-indoor and SDSD-outdoor datasets. Additionally, our LPIPS scores
surpass the second best performance by 20.9% and 12.6% in Tab. 1, indicating
that the enhanced results from our network are more consistent with human
visual system. Tab. 2 presents the cross-dataset evaluation on unpaired real-
world datasets. We first train our GLARE on LOL training split. Then, the model
that performs best on LOL test data is deployed on four unpaired datasets. As
compared to the current SOTA methods, GLARE outperforms them on DICM
and MEF and achieves the optimal performance on average. This demonstrates
not only the superiority of our method in producing high-quality visual results
but also its good generalization capability.
Qualitative Results. The visual quality of our GLARE against others are
shown in Fig. 4, 5, and 6. Obviously, previous methods show inferior per-
formance on noise suppression. Besides, they also tend to produce results with
evident color distortion (See the enhanced results of KinD, LLFlow, Retformer,
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Fig. 4: Visual comparisons on LOL [62] dataset. Our method can effectively enhance
visibility and generate visually appealing results.

Fig. 5: Visual comparisons on LOL-v2-real [71] (top) and LOL-v2-synthetic [71] (bot-
tom) datasets. Previous methods suffer from either severe color distortion or detail
deficiency, while our GLARE performs favorably without these issues.

Table 2: Quantitative comparisons on real-world datasets. These results are obtained
either from the original papers or testing with their best LOL [62] weights. [Key: Best,
Second Best, ↓: Smaller value represents better quality].

Methods MEF LIME DICM NPE Mean↓
SNR [68] 4.14 5.51 4.62 4.36 4.60

URetinex-Net [64] 3.79 3.86 4.15 4.69 4.11
LLFlow [58] 3.92 5.29 3.78 4.16 3.98
LL-SKF [65] 4.03 5.15 3.70 4.08 3.92

RFR [18] 3.92 3.81 3.75 4.13 3.81

GLARE (Ours) 3.66 4.52 3.61 4.19 3.75

LL-SKF in Fig. 4, and SNR, LLFlow in Fig. 5). Additionally, from the qual-
itative comparison, it can be seen that LLFlow, LL-SKF, and Retformer may
induce the detail deficiency on their enhanced results (See Fig. 4 and Fig. 5), and
KinD in Fig. 4 and SNR in Fig. 5 perform poorly in vision due to the introduce
of unnatural artifacts. In comparison, GLARE can effectively enhance poor vis-
ibility while reliably preserving color and texture details without artifacts. The
visual comparisons on unpaired real world datasets in Fig. 6 also demonstrate
the strengths of our method in terms of details recovery and color maintenance.
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Original SNR LL-SKF GLARE

Original Retformer LL-SKF GLARE

Original SNR Retformer GLARE

Original SNR LL-SKF GLARE

Fig. 6: Visual results of cross-dataset eval-
uation on unpaired real-world datasets.
These four images are from DICM [31],
LIME [23], MEF [45], and NPE [57] respec-
tively. Our GLARE generates more pleasing
results without noise or artifacts.

Variant 1 Variant 2 GLARE GT

Fig. 7: Visual ablation results of AFT on
LOL [62]. Our GLARE with AFT mod-
ule is capable to generate results with im-
proved edge acuity and contour definition,
along with a more abundant detail tex-
ture.

CE+
Codebook

SimGLARE
(L1)

SimGLARE
(NLL)

GT

Fig. 8: Visual comparisons for ablation
study of I-LNF. Without our proposed
I-LNF module, the results exhibit signif-
icant detail loss and blurriness, coupled
with a notably darker tone in certain ar-
eas.

4.4 Performance on Low-Light Object Detection

Implementation Details. To thoroughly evaluate our model, we also explore
its potential as an effective preprocessing method in object detection task on
ExDark dataset [41]. This dataset collects 7,363 low-light images, categorized
into 12 classes and annotated with bounding boxes. We first employ different
LLIE models trained on LOL to enhance the ExDark dataset, then carry out
object detection on the enhanced images. More concretely, 5,896 images are used
for training and the rest for evaluation. The adopted object detector is YOLO-
v3 [53] pre-trained on COCO dataset [36].
Quantitative Results. We calculate the Average Precision (AP) and mean Av-
erage Precision (mAP) scores as our evaluation metrics. We compare our GLARE
against current SOTAs in Tab. 3. As compared to KinD, MBLLEN, LLFlow, and
LL-SKF, our GLARE achieves at least 0.8 improvement in terms of mAP. More
importantly, our GLARE also outperforms IAT, which has demonstrated excep-
tional performance in low-light object detection.
Qualitative Results. The visual comparisons for low-light object detection is
demonstrated in Fig. 9. It can be seen that although each LLIE method enhances
the visibility to some extent, GLARE achieves the best visual performance, thus
benefiting the most to the downstream detection task. Not surprisingly, the
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Table 3: Quantitative low-light detection results on ExDark [41] using different LLIE
method as the enhancement tool. [Key: Best, Second Best, ↑: The larger represents the
better performance, Baseline: These scores are obtained by training the YOLO-v3 [53]
detector on original ExDark [41] dataset].

Methods Bicycle Boat Bottle Bus Car Cat Chair Cup Dog Motor People Table Mean↑
Baseline [41] 80.4 76.5 77.6 89.7 84.0 71.5 69.5 76.4 78.7 76.4 81.9 52.6 76.32

MBLLEN [44] 82.2 77.5 76.3 90.3 84.1 70.9 69.4 75.9 77.7 74.7 82.0 58.2 76.59
KinD [77] 79.7 77.4 78.8 92.5 84.9 70.8 67.5 78.3 78.7 77.1 80.9 53.7 76.69

LLFlow [58] 81.6 75.5 74.3 92.5 84.5 69.7 69.0 75.8 79.0 76.5 80.9 57.9 76.44
IAT [11] 82.5 76.0 75.6 92.3 83.0 72.4 70.8 79.6 78.6 76.2 81.5 57.9 77.19

LL-SKF [65] 80.2 75.0 76.6 91.3 84.7 69.5 71.1 76.5 77.5 76.4 81.1 57.1 76.43

GLARE (Ours) 83.4 75.8 77.6 91.7 83.9 70.1 70.0 79.1 81.5 77.2 82.0 57.9 77.50

Table 4: By incorporating AFT, GLARE gains significant improvements on PSNR,
SSIM, and LPIPS. Besides, our GLARE also performs better than two variants based
on SimGLARE. [Key: SC: Skip Connection operation [25], Dual-d: Dual decoder ar-
chitecture, Best, Second Best]

.
Methods SC AMB Dual-d PSNR↑ SSIM↑ LPIPS↓

(1) SimGLARE 26.51 0.855 0.109
(2) Variant 1 ✓ 26.60 0.867 0.093
(3) Variant 2 ✓ ✓ 26.88 0.877 0.087
(4) GLARE ✓ ✓ 27.35 0.883 0.083

Methods L1 Lper Lssim PSNR↑ SSIM↑ LPIPS↓
(5) GLARE ✓ 27.02 0.870 0.099
(6) GLARE ✓ ✓ 27.09 0.871 0.091
(7) GLARE ✓ ✓ ✓ 27.35 0.883 0.083

enhanced results from GLARE enables the YOLO-v3 detector to recognize more
objects with higher confidence.

4.5 Ablation Study

To verify the effectiveness of each component of GLARE and justify the optimiza-
tion objective utilized for training, we conduct extensive ablation experiments
on LOL dataset. Specifically, we discuss the importance of AFT module, I-LNF
module, and NL codebook prior in this section.
Effectiveness of Adaptive Feature Transformation. By removing the AFT
module from our GLARE, we obtain a Simple LLIE model denoted as SimGLARE.
Basically, SimGLARE only utilizes the information from NL codebook without
feature transformation. The quantitative results of SimGLARE are shown in
Tab. 4. SimGLARE is quite competitive on LLIE in terms of PSNR, SSIM, and
LPIPS (compared with SOTAs in Tab. 1). However, with the proposed AFT
module, our GLARE achieves further improvements on both quantitative met-
rics and visual results (as shown in Fig. 7). In addition, various loss functions are
examined in Tab. 4, showing that our choice of losses in Stage III is reasonable.
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Fig. 9: Visual comparisons and detection results of enhancement-based low-light object
detection on the ExDark [41] dataset. Previous enhancement methods, when employed
as preprocessing modules for object detection, encountered issues with object loss.
In contrast, utilizing images enhanced by our GLARE enables YOLO-v3 to robustly
detect targets with high confidence and our enhanced images exhibit better visual
quality. Please zoom in for better view. [Key: Baseline: Test results of YOLO-v3 [53]
detector trained on original ExDark [41] dataset].

Table 5: NLL can help achieve better enhancement result compare to L1 loss. While
replacing the I-LNF module with a transformer or removing I-LNF entirely, the signif-
icant performance decline highlights the importance of the proposed I-LNF module.

Methods PSNR↑ SSIM↑ LPIPS↓
(1) SimGLARE (L1) 25.69 0.842 0.132

(2) Codebook + Transformer (L1) 25.12 0.834 0.148
(3) Conditional Encoder + Codebook (L1) 24.53 0.825 0.161

(4) SimGLARE (NLL) 26.51 0.855 0.109

We also design two variants, named Variant 1 and Variant 2, to shed light on
the importance of proposed dual-decoder architecture and AMB, respectively.
Specifically, Variant 1 directly incorporates LL feature to NLD using AMB while
Variant 2 adopts parallel decoder strategy but replaces AMB with skip connec-
tion operation [25]. By comparing (4) with (2) and (3) in Tab. 4, we observe
that PSNR and SSIM are negatively correlated with LPIPS, which verifies the
effectiveness of our AMB and dual-decoder design.

Effectiveness of Invertible Latent Normalizing Flow. To show the impor-
tance of I-LNF and the adopted NLL loss, we implement several adaptations
based on SimGLARE. (1) We train SimGLARE using L1 loss to validate the
effectiveness of NLL loss adopted in our work. (2) We replace the I-LNF module
by leveraging a Transformer model structurally similar to [79] to directly predict
the code index in the codebook. (3) We remove the I-LNF module in (1) and train
the conditional encoder on LL-NL pairs. The quantitative results are reported
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Table 6: The quantitative results of ablation experiments related to NL codebook
prior. We observe significant decrease on metrics when the codebook is removed.

Methods PSNR↑ SSIM↑ LPIPS↓
(1) Encoder-Decoder (L1) 22.79 0.804 0.195

(2) Conditional Encoder + Codebook (L1) 24.53 0.825 0.161

(3) Variant 3 (L1) 23.42 0.812 0.176
(4) SimGLARE (L1) 25.69 0.838 0.132

in Tab. 5. The superiority of NLL loss can be verified by comparing (4) and (1).
Moreover, a comparison between the images in the second and third columns
of Fig. 8 also reveals that the use of NLL loss, as opposed to L1 loss, results
in sharper contours and edges. Besides, as compared to the Transformer-based
code prediction, our proposed I-LNF module can help generate LL features that
are better aligned with NL ones, thus ensuring more accurate code matching
and achieving superior performance. More importantly, with the I-LNF module
removed from SimGLARE (L1), we notice a significant decrease in PSNR (1.16
dB ↓) and SSIM (0.017 ↓), which demonstrates the effectiveness of our proposed
I-LNF module.

Effectiveness of Codebook Prior. To investigate the importance of the NL
codebook prior, based on SimGLARE (L1), we remove the codebook and the
quantization process in VQGAN. The resulting model is denoted as Variant 3
and is trained using a strategy similar to that for SimGLARE (L1). Similarly, we
remove the codebook in the model reported in row 3 of Tab. 5 to learn the LL-NL
mapping. Quantitative results are reported in Tab. 6. The absence of a codebook
prior notably impacts performance, as evidenced by an average decrease of 2.0
dB in PSNR and a 0.024 drop in SSIM. This highlights the critical importance
of the codebook prior in our method.

5 Conclusion

A novel method named GLARE is proposed for LLIE. In view of the uncertainty
and ambiguity caused by ill-posed nature of LLIE, we leverage the normal light
codebook, which is obtained from clear and well-exposed images using VQGAN,
to guide the LL-NL mapping. To better exploit the potential of codebook prior,
the invertible latent normalizing flow is adopted to generate LL features aligned
with NL latent representations to maximize the probability that code vectors
are correctly matched in codebook. Finally, the AFT module with dual-decoder
architecture is introduced to flexibly supply information into the decoding pro-
cess, which further improves the fidelity of enhanced results while maintaining
the perceptual quality. Extensive experiments demonstrate that our GLARE
significantly outperforms the current SOTA methods on 5 paired datasets and
4 real-world datasets. The superior performance on low light object detection
makes our GLARE an effective preprocessing tool in high-level vision tasks.
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