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Abstract— Online video streaming has fundamental limitations
on the transmission bandwidth and computational capacity
and super-resolution is a promising potential solution. How-
ever, applying existing video super-resolution methods to online
streaming is non-trivial. Existing video codecs and stream-
ing protocols (e.g., WebRTC) dynamically change the video
quality both spatially and temporally, which leads to diverse
and dynamic degradations. Furthermore, online streaming has
a strict requirement for latency that most existing methods
are less applicable. As a result, this paper focuses on the
rarely exploited problem setting of online streaming video super
resolution. To facilitate the research on this problem, a new
benchmark dataset named LDV-WebRTC is constructed based on
a real-world online streaming system. Leveraging the new bench-
mark dataset, we propose a novel method specifically for online
video streaming, which contains a convolution and Look-Up
Table (LUT) hybrid model to achieve better performance-latency
trade-off. To tackle the changing degradations, we propose a
mixture-of-expert-LUT module, where a set of LUT specialized
in different degradations are built and adaptively combined to
handle different degradations. Experiments show our method
achieves 720P video SR around 100 FPS, while significantly
outperforms existing LUT-based methods and offers competitive
performance compared to efficient CNN-based methods. Code is
available at https://github.com/quzefan/ConvLUT.

Index Terms— Adaptive online bitstream, online video super-
resolution, look-up table.

Manuscript received 18 June 2023; revised 10 November 2023 and
28 December 2023; accepted 15 February 2024. Date of publication 18 March
2024; date of current version 25 March 2024. The associate editor coordinating
the review of this manuscript and approving it for publication was Dr. Nam
Ik Cho. (Guanghao Yin and Zefan Qu contributed equally to this work.)
(Corresponding author: Xinyang Jiang.)

Guanghao Yin was with Microsoft Research Asia, Shanghai 200232, China.
He is now with the Key Laboratory of Design Intelligence and Digital
Creativity of Zhejiang Province, Zhejiang University, Hangzhou 310027,
China (e-mail: ygh_zju@zju.edu.cn).

Zefan Qu was with Microsoft Research Asia, Shanghai 200232, China.
He is now with the Department of Computer Science and Technology, Tongji
University, Shanghai 200092, China (e-mail: qzf@tongji.edu.cn).

Xinyang Jiang, Zhenhua Han, Ningxin Zheng, Huan Yang,
Yuqing Yang, Dongsheng Li, and Lili Qiu are with Shanghai AI/ML
Group, Microsoft Research Asia, Shanghai 200232, China (e-mail:
xinyangjiang@microsoft.com; zhenhua.han@microsoft.com; ningxin.zheng@
microsoft.com; huan.yang@microsoft.com; yuqing.yang@microsoft.com;
dongsheng.li@microsoft.com; liliqiu@microsoft.com).

Shan Jiang was with Microsoft Research Asia, Shanghai 200232, China.
He is now with the School of Computer Science and Technology, University
of Science and Technology of China (USTC), Hefei 230026, China (e-mail:
jiangshan@ustc.edu.cn).

Xiaohong Liu is with the John Hopcroft Center (JHC) for Computer Science,
Shanghai Jiao Tong University (SJTU), Shanghai 200240, China (e-mail:
xiaohongliu@sjtu.edu.cn).

Digital Object Identifier 10.1109/TIP.2024.3374104

I. INTRODUCTION

WITH the fast development of network infrastructure,
video delivery techniques, and the growing demand of

users, video streaming has become the “killer” application of
the Internet in the past two decades [1]. Due to users’ steep
expectations for quality, delivering high-definition (HD) video
to end users is important. However, the quality of streamed
video heavily depends on the network bandwidth between
servers and clients. Streaming 4K videos require over 40 Mbps
bandwidth per user [2], which is difficult to achieve in many
areas. With the ever-increasing computational power of client
devices and advances in deep learning, super-resolution (SR),
which aims to restore high-resolution (HR) frames by adding
the missing details from low-resolution (LR) frames, has been
considered as a promising direction to reduce the bandwidth
requirement of streaming HD videos [2], [3], [4], [5], [6], [7],
[8], [9].

While previous works have achieved great progress [2],
[5], [6], [8], [9], [10], [11], existing super-resolution methods
still face great challenges in real-world video streaming.
Adapting existing video super resolution (VSR) methods to
streaming data is non-trivial for two reasons. First, the VSR
task requires the inference speed of the SR method to be fast
(i.e., low-latency), especially for online scenarios involving
real-time user interaction (e.g., video conference or cloud
gaming), where slight latency will significantly harm the
user experience. Most state-of-the-art VSR methods involve
high complexity models and need to cache future frames for
super-resolving the current frame, inevitably introducing high
latency. Second, videos transmitted by streaming system suffer
dynamically changing degradations both temporally and spa-
tially. In temporal domain, in order to adapt the time-varying
network conditions, existing video streaming protocols (e.g.,
WebRTC [12]) adopt Adaptive Bitrate Streaming (ABR),
which adaptively changes the quality of the video frame at
each time step, as shown in Fig. 1. In spatial domain, the codec
used in the streaming system applies different compression
configurations to each macro-block within a frame, resulting
in degradation variations across different macro-blocks. Thus,
it is essential to develop VSR models capable of dealing with
spatial and temporal changing degradations.

As a result, this paper focuses on a rarely studied problem
setting, which aims at super-resolving videos transmitted by
real-world online streaming system, named online streaming
VSR. Since existing VSR datasets lack videos produced
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Fig. 1. Pipeline of online video streaming. A server uses the Adaptive Bitrate
streaming (ABR) to encode frames at multiple bitrates for delivery, and the
clients select one of the streams to decode. During this adaptive delivery, the
spatial-temporal dynamic degradations are inevitably introduced.

from real-world streaming system, a new online streaming
VSR dataset named LDV-WebRTC is proposed. Specifically,
we built a real-world online video streaming prototype based
on Web Real-Time Communication (WebRTC) [12], which
is used to transmit videos from LDV 2.0 dataset [13] with
ABR under different network conditions. As shown in Fig. 2,
compared to un-compressed videos or videos compressed
with fixed quantization parameter (QP), the quality and com-
pression configurations of the videos in this dataset vary
significantly through time, which further verifies the drastically
changing degradations. We have developed a benchmark based
on this dataset to assess both SR performance and model
latency of various VSR baselines.

Leveraging the proposed dataset, this paper proposes a
novel method tackling the aforementioned challenges of online
streaming VSR, named ConvLUT. To meet the low-latency
requirement, we propose a novel hybrid network structure
combining convolution and Look-Up Table (LUT) [14], [15],
[16], [17], [18], [19], [20], resulting in a balanced trade-off
between the high inference efficiency of LUT and the strong
computational capacity of neural networks. To tackle the
spatial-temporal dynamic degradations, ConvLUT adopts a
novel mixture-of-expert-LUT module. This module contains a
set of expert LUTs specialized in specific degradations, which
are built from state-of-the-art (SOTA) SR networks trained
on a pool of sampled degradations. The expert LUTs are
adaptively combined to address the diverse degradations across
different macro-blocks at each time step. Furthermore, since
the proposed Convolution-LUT hybrid structure is unfriendly
to parallel computing accelerators, such as GPU, NPU, and
FPGA [21], [22], [23], we further propose an efficient inter-
polation algorithm to support LUT inference in parallel.

In conclusion, our work contributes to threefold:
(1) We delve into the largely unexplored yet challenging

realm of online streaming video super-resolution. Our study
stands out as it specifically tackles the need for high-speed
inference and the ability to adapt to fluctuating video degra-
dation modes associated with changing network states.

(2) To facilitate research in online video streaming super-
resolution, we introduce the first real-world video streaming
SR dataset, LDV-WebRTC. This unique dataset, built upon
Web Real-Time Communication (WebRTC) and LDV 2.0,
provides a diverse range of network conditions.

(3) A novel ConvLUT hybrid VSR framework,
is designed to handle real-time process latency and manage

spatial-temporal degradation variations using a mixture of
expert LUTs. Our extensive qualitative and quantitative
experiments, conducted on the proposed LDV-WebRTC
dataset, demonstrate the effectiveness and efficiency of our
novel approach.

II. RELATED WORK

A. Adaptive Online Bitstream

Adaptive online streaming aims to handle unpredictable
bandwidth variations for high-quality video delivery. In online
streaming, a server first utilizes Video Coding Protocols, such
as H.264/AVC [24] or HEVC [25] to encode image frames at
multiple bitrates by adjusting QP in both spatial and temporal
domains. Then the client uses an ABR algorithm to select
suitable video quality and decode the received frames [26].
During this adaptive delivery, coding artifacts are inevitably
introduced [27]. Therefore, one of the major challenges for
high-quality online streaming is to handle the spatial-temporal
dynamic degradations adaptively.

B. Super-Resolution

Since the pioneering SRCNN [3], deep learning based
approaches [3], [4], [6] have exhibited impressive performance
in single-image SR (SISR) tasks. By considering the potential
dependency in consecutive frames, various VSR models [2],
[5], [7], [8], [9], [28], [29] have achieved great success,
many of which adopt computational intensive modules such
as optical flow alignment, deformable convolution and trans-
former. Recently, there has been an increasing interest in
efficient SR. For example, CARN [5] replaces the conven-
tional convolutions with group convolutions, which reduce
the parameters of its original big model. VESPCN [7] uses
lightweight motion estimation and pixel-shuffle modules to
conduct spatial-temporal upscaling. RRN [2] removes the
optical flow based alignment, but directly uses hidden states
of recurrent proceedings to involve temporal information.

C. Look-Up Table

Look-Up Table is an efficient tool for classic image pro-
cessing because it can replace complex computations with
direct query operations. The pre-defined LUT has been widely
used as the template to adjust the pixel distribution in photo
editing and camera imaging [14]. Recent deep models have
also extended LUTs to low-level vision tasks [14], [15], [16],
[17], [18]. For color enhancement, Zeng et al. [14] propose
learnable 3D LUT to achieve image-level LUT adaption.
Yang et al. [30] propose a more flexible sampling point allo-
cation to adaptively learn the non-uniform sampling intervals
in 3D color space. Liu et al. [16] propose a learnable context-
aware 4D LUT to achieve content-dependent enhancement.
Recently, some new attempts have also been proposed for
super-resolution. SR-LUT [17] first use a single 4D LUT to
transfer the LR-HR mappings from a pretrained SR model
with small receptive field (RF). SPLUT [18] uses the parallel
cascaded LUTs to process the high and low 4-bit components
of 8-bit LR images. Meanwhile, the padding aggregations
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Fig. 2. The variations of real-time bitrates, frame-average QP, and PSNR of streamed test video 005 using our LDV-WebRTC testbed under 100Kbps,
500Kbps and 1Mbps bandwidths.

are also applied to enlarge the receptive field of LUT. Nev-
ertheless, the fixed LUT mapping from the simple-designed
network structures still limits their performance for dynamic
degradations.

III. ONLINE STREAMING VSR AND DATASET

Online Streaming VSR is a rarely studied problem setting,
and since existing VSR datasets either contain uncompressed
raw video frames [13], [31], [32] or frames compressed with
fixed presets [13], they do not reflect the spatial-temporal
changing degradations of online video streaming. Hence,
to better tackle real-world challenges and facilitate research
on online streaming VSR, we collect a new video SR
dataset under real-world online streaming settings, named
LDV-WebRTC.

WebRTC [12] is a real-time communication protocol that
is widely used to stream real-time videos to browsers or
mobile devices. We build a video streaming prototype based
on WebRTC, which uses a server to stream low-resolution
videos to a laptop client via a router. The router uses Linux
tc to control the network bandwidth between the server and
the client to emulate the diverse bandwidth settings of real-
world applications. We collect all 335 high-resolution videos
in the LDV 2.0 dataset [13], containing a rich diversity of
content scenes whose frame resolution is 960 × 512. The
high-resolution frames are downsampled by 4× in bicubic
mode to get 240 × 128 low-resolution frames, which are
encoded via FFmpeg-H.264 [33] and then transmitted from
the servers. The WebRTC server enables Adaptive Bitrate
streaming (ABR) that adjusts encoding quality with QP values
in a range of [0, 50], according to factors including network
bandwidth, encoding latency, and decoding latency. A larger
QP leads to worse quality of encoded frames. After receiving
an encoding video stream, the client decodes it into a sequence
of decoded low-resolution frames with timestamps. The target
of video streaming SR is to restore those received LR frames.
To involve different network conditions, three representative
types of networks are emulated in the router with an average
bandwidth of 100kbps, 500kbps, and 1Mbps. Note that, when
bandwidth is limited, not all frames are successfully received
due to frame drop. Thus we align the decoded frames at the
client with the original high-resolution frames using encoding
timestamps. In addition to the decoded frames, we also collect

TABLE I
STATISTICAL RESULTS OF OUR LDV-WEBRTC DATASET

the motion vector priors extracted by the video codec of the
streaming system.

Fig. 2 illustrates the statistics of real-time bitrates, QP and
PSNR of streamed frames using our WebRTC testbed under
different network bandwidths. It is clear that the PSNR of real
streamed video fluctuated more severely due to the real-time
encoding-decoding pipeline and the variation in bitrates. The
QP values of encoded frames also vary greatly and sometimes
even trigger resolution changes (i.e.WebRTC’s default strategy
degrades resolution when the frame-average QP is quite large).
Moreover, the frame drop also happens frequently for online
streaming. All those observations demonstrate the necessity of
building a more realistic dataset that reflects the diverse and
time-varying degradation of real-world online video streaming.

In conclusion, our dataset consists of the aligned LR frames
of the client, their original HR versions of the server, and the
bitstream priors at 100Kbps, 500Kbps, and 1Mbps bandwidths.
Table I illustrates the statistical results of average real-time
bitrates, QP and PSNR of streamed frames on the training,
validation, and test sets, which are collected by our WebRTC
testbed under different network bandwidths. When the band-
width setting decreases from 1Mbps to 100Kbps, the real
bitrate decreases and the online streaming system uses higher
QP to compress frames, which causes lower image quality.
Moreover, frame drops occur more frequently as the bandwidth
decreases. All those observations reveal the online streaming
degradations are dynamic and challenging.

IV. METHOD

A. ConvLUT Hybrid Network Architecture

As shown in Fig. 3, we design a hybrid VSR network
combining the convolution and LUT for online streaming,
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Fig. 3. The overall scheme of our proposed ConvLUT. (a) First, a set of n expert LUTs are built from N SR networks pre-trained on N static representative
degradations sampling from the configuration space. (b) Then, the spatial and temporal branches of our ConvLUT conduct adaptive LUT fusion and
multiple-frame fusion in parallel, and the outputs of the two branches are added to get the final SR results.

which contains two parallel branches. The LUT based spatial
branch learns a combination of a group of expert LUTs to
handle the dynamic degradation in the spatial dimension, and
the convolution based temporal branch further refines the LUT
outputs with temporal information from history frames and the
priors of codec (i.e. motion vectors).

B. Mixture of Expert LUT
As explained above, the challenge of online streaming VSR

is to handle the dynamic degradations at real-time speed and
with low latency. Despite LUT’s fast inference speed and small
parameter requirements, existing LUT-based super-resolution
(SR) methods [17], [18] fail to deliver promising results in
online streaming scenarios. This is due to the fact that their
LUTs are transferred from a single SR model with a simple
network structure, which constrains their ability to adapt to
various or complex forms of degradation. Additionally, these
methods apply the LUTs for each pixel solely within a small
query patch, which results in limited texture and structural
information due to their small receptive fields. This, in turn,
creates a significant challenge for online streaming VSR.
To address it, we propose to create a group of expert LUTs,
each of which specializes in a particular type of degradation.
Specifically, we propose transferring each expert LUT from a
state-of-the-art SR network that has been trained on a partic-
ular static degradation. During inference, the expert LUTs are
adaptively fused to handle macro-blocks in each video frame
with different degradations.

In this section, we elaborate on how to construct the expert
LUTs (IV.B.1) and how to dynamically fuse the expert LUTs
for degraded macro-blocks (IV.B.2). Moreover, we present an
efficient LUT query and interpolation method that makes LUT
more compatible with parallel acceleration (IV.B.3).

1) Transferring SR Networks to Expert LUTs: Here,
we introduce how to build expert LUTs specialized for differ-
ent degradations. The degradation variation of video streaming

systems is primarily caused by changes in the configuration
of video compression. In addition to the down-sampling oper-
ation, the quantization process used in video compression is
the main source of degradation, leading to a loss of details and
introducing artifacts. The combination of various compression
parameters leads to an extensive configuration space, making
it impractical to explore all possible options. As a result,
we select a static pool of representative degradations, sampling
compression parameter settings from the configuration space.
We then train SR networks on the videos corresponding to
each degradation in the pool, obtaining SR models specialized
in addressing specific type of degradation. Following [17],
[18], and [19], we treat the RGB channels equally with the
same SR networks and LUTs to reduce the LUT storage space
and query time consumption.

As shown in Fig. 3(a), in our experiments, the configuration
space is defined by quantization parameter (QP), which is one
of the most critical parameters to control the quantization
process in video compression. Higher QP indicates higher
compression ratio and lower video quality. We uniformly
sample N different QP values from Dqp∈[0,m] corresponding
to N different degradations {Di }

N
i=0, and use them to generate

N video SR training subsets {X Di }
N
i=1. As a result, N SR

models { fsri }
N
i=1 are trained on those N subsets. It should be

noted that the structure of the SISR model has no restrictions
and any SOTA methods can be applied for training.

The pre-trained SR networks are then transferred to expert
LUTs specialized in different degradations, which are later
dynamically fused to handle degradation variation. Follow-
ing previous LUT works [14], [16], [17], [18], each expert
LUT stores a mapping between a LR patch and the patch
super-resolved by a SR network. Specifically, we create a full
value permutation of a 2 × 2 patches, which are 2564 patches
in total ranging from [0,0,0,0] to [255,255,255,255]. The SR
model fsri takes each 2 × 2 patch as input, and we store
all super-resolved r × r patches at the left-upper place of
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the 2r × 2r SR results into the LUT, which up-samples the
left-upper pixel of the low-resolution patch by scale factor r .
Eventually, when all permutations of input patches are pro-
cessed by SR model fsri , we get the transferred LU Ti with
the size of [256, 256, 256, 256, r, r ]. Moreover, we follow
SR-LUT [17] to compress LU Ti by uniformly sampling the
original LUT with the interval size of 16, resulting in the
compressed LU Ti with the size of [17, 17, 17, 17, r, r ].

2) Adaptive LUT Fusion: Given that the degradation of an
online streaming video varies both temporally and spatially,
it is crucial to obtain a specialized LUT for each macro-block
within each frame corresponding to its particular degradation.
Inspired by the concept of mixture of experts [34], [35], [36],
we can create a spatially and temporally variant look-up table
by combining expert LUTs with different weight combinations
at each pixel position, allowing LUTs to effectively adapt to
any type of degradation. Specifically, a lightweight predictor
is proposed to output the LUT combination weights for each
pixel based on the content of the input frames. The weight
predictor, denoted as fw, consists of 4 convolution layers with
Instance Normalization [37] and LeakyReLU [38] operations.
For the input LR frame X ∈ Rh×w×3, fw outputs a weight
tensor W ∈ Rh×w×N , where N is the number of expert LUTs.
To obtain the SR result of a specific pixel in the frame X i, j,k ,
the weighted LUT used for query is:

ˆLU T X i, j,k = Wi, j,1 × LU T1 + . . . + Wi, j,N × LU TN . (1)

It should be noted that the fusion operation is only conducted
on the 4D lattice surrounding the input pixel value, not
the whole LUT. Moreover, since our weight predictor takes
the entire frame as input, the weighted fusion is obtained
based on a much larger receptive field, providing more spatial
information than previous LUT-based methods [17], [18].

3) Efficient LUT Interpolation: In order to make the pro-
posed Conv-LUT hybrid structure more friendly to parallel
computing, we introduce an efficient method to query the
mixture of expert LUTs.

As illustrated in Section IV-B, the LUT takes 4 pixel values
in a patch as input (4D input).Given the 4D input values,
the output values of an anchor pixel X i, j,k are generated by
querying and interpolating the nearest sampled points in LUT.
Specifically, for the input (x, y, z, u), we first conduct the
look-up query operation to find its location in the 4D LUT
lattice. As explained in previous LUT works [14], [16], [17],
[18], the most significant bits (MSBs) of the input pixel value
can be used for LUT location, and the least significant bits
(LSBs) are used for interpolation.

ConvLUT uses tetrahedral interpolation [39], which needs
only 5 multiplications with the values of 5 bounding vertices
of 4-simplex geometry. However, in practice, finding the
5 vertices among total 24 neighboring vertices is implemented
with 24 control flow instructions, which is unfriendly to
parallel accelerators, resulting in a low inference speed. For
example, CUDA operators do not support such flow control
operation for parallel acceleration. Hence, we accelerate the
tetrahedral interpolation by replacing the complicated control
flow with the mapping table query. As shown in Table III, the
24 logical statements (x, y, z, u) in tetrahedral interpolation

TABLE II
THE NUMBER OF OPERATIONS OF DIFFERENT INTERPOLATIONS. DUE TO

THE COMPLICATED IF-ELSE CONTROL FLOW, TETRAHEDRAL INTER-
POLATION IS UNFRIENDLY TO ACCELERATORS LIKE BASIC CUDA

OPERATORS. OUR INTERPOLATION NEEDS FEWER OPERATIONS
AND CAN BE ACCELERATED BY CUDA

TABLE III
THE 24 CONTROL FLOWS OF TETRAHEDRAL INTERPOLATION EQUIVA-

LENT FOR 4D SPACE, ALSO PRESENTED IN SR-LUT [17]. SINCE THE
CONTROL FLOWS ARE UNFRIENDLY FOR PARALLEL ACCELERA-

TORS LIKE GPU, WE USE AN ADDITIONAL TABLE TO REPLACE
THE IF-ELSE LOGICAL OPERATIONS AND UNIFORMLY

CONDUCT THE INTERPOLATION

are equivalent to sorting the order of 4 input pixels from
small to large. Since all input permutations are countable,
we can use an additional table to store the sorted 4 values
(x ′, y′, z′, u′). The indexes of 5 corresponding neighboring
vertices (O1, O2, O3, O4, O5) can also be store according to
the 24 control flow instructions in Table III. It should be
noted that the relative indexes of O1 and O5 are kept fixed
at 0000 and 1111, and we only need to store the indexes
of (O2, O3, O4). Moreover, only the least significant 4-bits
determine the weights (w1, w2, w3, w4, w5), our additional
table only needs to save 164 permutations.

An example of our efficient LUT inference is presented in
Fig. 4. For the input (x, y, z, u), we first separate the MSBs
(Hx , Hy, Hz, Hu) and the LSBs (Lx , L y, L z, Lu). Specifically,
we separate the 8bit input pixel values to high 4bit integers
(Hx , Hy, Hz, Hu) as:

Hx =

⌊ x
W

⌋
, Hy =

⌊ y
W

⌋
, Hz =

⌊ z
W

⌋
, Hu =

⌊ u
W

⌋
, (2)
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Fig. 4. An example of the implementation of our efficient LUT inference. Here, the quantization value is set as 16 to compress LUT.

and low 4bit decimals (Lx , L y, L z, Lu) as:

Lx = x − Hx × W, L y = y − Hy × W,

L z = z − Hz × W, Lu = u − Hu × W, (3)

where ⌊·⌋ is the floor function, and W represents the quanti-
zation value to compress the LUT, which is set as 16 in our
paper. Then, we query the pre-defined additional table to get
the sorted LSBs (L ′

x , L ′
y, L ′

z, L ′
u) and the binary indexes of

(O2, O3, O4). When we get the sorted LSBs (L ′
x , L ′

y, L ′
z, L ′

u),
the calculation of interpolation weights (w1, w2, w3, w4, w5)

dose not need the if-else judgement in Table III, but can be
uniformly defined as:

w1 = W − L ′
x , w2 = L ′

x − L ′
y, w3 = L ′

y − L ′
z,

w4 = L ′
z − L ′

u, w5 = L ′
u . (4)

When we get the binary indexes of (O2, O3, O4), the values
of (O1, O2, O3, O4, O5) can be accessed by using their binary
indexes and MSBs (Hx , Hy, Hz, Hu) to conduct LUT query.
For example, if the index of O2 is 0001, the value of O2 is
P0001 = LU T [Hx ][Hy][Hz][Hu + 1]. Finally, the output of
weighted interpolation are calculated as:

Output =
1
W

5∑
i=1

wi ∗ Oi . (5)

During the LUT interpolation, the weighted combination of N
LUT bases can also be conducted in parallel.

Since only the sorted LSBs determine the interpolation
weights, the size of the mapping table can be efficiently com-
pressed to [16, 16, 16, 16, 8] by only storing 4-bit interpolation
weights (w1, w2, w3, w4, w5) instead of 2564 8-bit 4D-pixel
permutations. Moreover, the relative indexes of O1 and O5 are
kept fixed at 0000 and 1111, and we only need to store the
index of (O2, O3, O4). Once the order table is pre-defined,
the comparison and flow control operation can be replaced by
query, and the LUT inference can be accelerated in parallel.

Therefore, our accelerated LUT inference can be defined as
three steps: (1) For the input (x, y, z, u), we first separate the
MSBs (hx , hy, hz, hu) and LSBs (lx , ly, lz, lu); (2) we query
the pre-defined order table to get the interpolation weights
(w1, w2, w3, w4, w5) and the binary index of (O1, O2, O3);
(3) we conduct the unified tetrahedral interpolation with the

additional order table. As shown in Table II, the number of
operations of our accelerated interpolation is smaller and can
be easily deployed to accelerators. In our work, we use CUDA
accelerator to conduct parallel computation.

C. Temporal Branch for Multi-Frame Processing

To fully utilize the temporal information, our proposed
model contains a temporal branch responsible for refining
the result of the LUT branch with history frames and object
motions. While the LUT branch utilizes a look-up table to
handle spatial degradation, the temporal branch uses convolu-
tional networks with better computational capacity to handle
more complicated temporal and motion related information.

To achieve fast speed and low latency for online streaming,
commonly used optical flow alignment, deformable convolu-
tion and transformer [2], [5], [8], [9] are not suitable for our
task. Moreover, due to the latency restriction of online VSR,
the future frames cannot be utilized.

As shown in Fig. 3(b), our temporal branch only uses
4 convolutional layers with LeakyReLU [38] to fuse the
previous and current frames. To incorporate motion-related
information, we leverage a readily available video streaming
prior: motion vectors. Similar to optical flow, these vectors
provide a coarse approximation of patch-level correspondence
and alignment between two frames. However, unlike optical
flow, they require no extra calculation since they are part of
the streaming system’s prior knowledge. To avoid additional
computational cost, we simply add the motion vector between
two frames as an additional feature map.

V. EXPERIMENT

A. Experimental Setting

1) Datasets: The experiments are conducted on the
proposed real-world online streaming VSR dataset, LDV-
WebRTC. We focus on the scale factor r = 4. To assess
the model ability to deal with degradations under different
bandwidths, we use the LR-HR pairs under 1Mbps for training,
and evaluate SR models on 100Kbps, 500Kbps, and 1Mbps
testsets respectively.

2) Evaluation Metrics: We evaluate the SR performance for
online streaming from three perspectives: the number of model
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TABLE IV
×4 SR MODEL COMPARISONS ON LDV-WEBRTC TESTSETS UNDER 100KBPS, 500KBPS, AND 1MBPS. THE LATENCY LEVELS REQUIRED BY DIFFERENT

METHODS ARE SORTED FROM HIGH TO LOW. SIZE DENOTES THE STORAGE SPACE OR THE PARAMETER NUMBER OF EACH MODEL. THE ROW
HIGHLIGHTED IN GRAY MEANS THE SR METHOD HAS UNBEARABLE HIGH LATENCY, AND THUS CANNOT BE APPLIED FOR ONLINE

STREAMING. FOR ONLINE PRACTICAL SR METHODS, BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED IN RED AND BLUE.
RUNTIME IS MEASURED WITH 2080TI GPU FOR GENERATING 1280 × 720 RESULTS. *: THE LUT-BASED METHODS ARE

ACCELERATED BY OUR INTERPOLATION. †: THE STORAGE SPACE OF THE LUT-BASED METHOD

parameters, runtime, and the distortion quality of the gener-
ated results. Specifically, Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM) [24] are adopted for
evaluation. To compare the running speed, we measure and
report the runtime of super-resolving 320 × 180 LR images
on one NVIDIA RTX 2080Ti GPU.

3) Implementation Details: As explained in Sec. IV-B.1,
we uniformly select 6 QP values (Q P = 0, 10, 20, 30, 40, 50)

and use these QP values to encode 6 degraded video subsets
{D1, . . . , D6}. Three state-of-the-art SR models, SRRes-
Net [4], CARN [5], and RCAN [6] are trained on the 6 datasets
and transferred to 3 groups of expert LUTs. Finally, Con-
vLUT is trained with the expert LUTs, resulting in three
models, denoted as ConvLUT-SRResNet, ConvLUT-CARN,
and ConvLUT-RCAN.

The number of channels of spatial and temporal branches
is set to 64. The number of output channels of pixel-level
weight predictor is set to 6, matching the number of expert
LUTs. In training configurations, the image patch is randomly
cropped with the size of 48 × 48, and the batch size is set
to 16. The whole ConvLUT is jointly trained by imposing
Charbonnier loss on the final SR outputs. We use Adam
optimizer with β1 = 0.9 and β2 = 0.999 to update model
parameters. The initial learning rate is 10−4. We conducted
the model training with NVIDIA Tesla V100 GPUs.

B. Experiments on LDV-WebRTC Dataset

We compare our method with various SOTAs. Among these
methods, SRResNet [4], CARN [5], and RCAN [6] are the
base networks for expert LUT construction. PAN [40] is
a widely used single-image SR structure with low model
complexity and fast inference speed. We also compare with
two fast VSR methods VESPCN [7] and RRN [2]. Due to
low latency requirement in online streaming scenario, it is

infeasible to cache future frames for VSR models. As a result,
we modify VESPCN by removing the next frame branch
and only extract the spatial-temporal information with the
previous and current frames. BasicVSR++ [9] and TTVSR [8]
are much larger bi-directional VSR models. Although it is
infeasible to apply them to online scenarios, we still involve
them as the performance upper bound. Moreover, we further
compare two LUT-based SISR models, SR-LUT [17] and
SPLUT [18]. Note that the GPU inference speed of the current
SR-LUT implementation is quite slow due to the large portion
of if-else control flow operations and serial for-loop processing
for each pixel. For a fair comparison, we also accelerate those
LUT-based models with our efficient interpolation method in
parallel, as explained in Sec. IV-B.3. We used the open-source
codes provided by the authors to implement the compared
methods. All methods use the same train-test set partition.

All the evaluation results are reported in Table IV. Due to
the strict requirement of latency for online streaming, we fur-
ther measure runtime and FPS to evaluate the model efficiency.
Based on FPS, We categorize the compared SR methods into
three types. We categorize methods with FPS lower than
30 as High Latency methods, which are hard to support
online streaming applications. Low Latency group refers to
methods with FPS higher than 60, fast enough to support high-
frame-rate gaming. The rest methods in the range of 30 FPS
and 60 FPS are marked as Middle Latency. Benefited from
spatial-temporal feature extraction and deep network structure,
VSR methods BasicVSR++ [9] and TTVSR [8], as well
as SISR models RCAN [6] and SRResNet [4] achieve high
PSNR/SSIM performance, in exchange of very high latency
impractical to online streaming. Compared with methods
in the Middle Latency group, our model outperforms them
with a marginal improvement in terms of PSNR and SSIM,
and in the meantime achieves a much better latency and
FPS. In low latency scenarios, our method can significantly
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Fig. 5. SR perceptual results (×4) of images selected from 100Kbps and 1Mbps testsets. Best results are highlighted in red.

outperform other lightweight models such as PAN [40] and
LUT-based SR-LUT [17] in terms of PSNR/SSIM values
and meanwhile achieves the lowest latency. The comparisons
between our models using 3 types of expert LUTs can also
give some interesting findings. When the quality of LR frames
decreases (i.e.100Kbps), the expert LUTs transferred from bet-
ter SR structures (i.e.RCAN) produce better results. Moreover,
by comparing model sizes, we can see that our method only
brings a linear increase in storage costs because of multiple
expert LUTs. We believe the model size of our ConvLUT
is acceptable for current devices. All those results verify
the effectiveness of our ConvLUT in the online streaming
scenario.

Visual comparisons are shown in Fig. 5. Here, we choose
SR methods relatively practical for streaming in the Middle
and Low Latency groups for comparisons. It can be seen
that previous LUT-based methods, including SR-LUT [17] and
SPLUT [18], fail to present natural details and produce more
artifacts like blocking effect. Limited by fewer conventional
layers and network parameters, the lightweight CNN-based SR
models, such as PAN [40] and VESPCN [7], generate results
with fewer high-frequency details. And our models produce
fewer artifacts than previous LUT-based methods and present
a similar level of sharpness to CARN [5] and RRN [2] at faster
speed. In addition to the detailed comparison in Fig. 5, we also
demonstrate the advantages of our approach over some typical
rapid super-resolution networks with more samples in Fig. 6.

C. Experiments on Static Degradation

The expert LUTs of our method are determined by the
structure of SISR model and the corresponding training
degradations of those SR models. Here, we evaluate the
effectiveness of the fusion of expert LUTs with different SR
network structures, which are trained with the same static
degradation. Specifically, we follow the NTIRE 2022 chal-
lenge [13] to conduct experiments on the static Q P =

37 compression degradation. Three SISR model SRResNet [4],

TABLE V
ABLATION STUDIES OF THE COMPONENTS OF CONVLUT ON 1MBPS

TESTSET. THE EXPERT LUTS ARE TRANSFERRED FROM RCAN [6].
EACH COMPONENT BRINGS IMPROVEMENTS IN TERMS OF PSNR

CARN [5], and RCAN [6] are used as the base networks for
LUT construction, and our model is denoted as ConvLUT-
RCAN+SRResNet+CARN. All those 3 SR networks are
trained with the same training set and three corresponding
transferred LUTs are grouped as the bases for LUT fusion.
And we follow the NTIRE 2022 challenge [13] to train and
test SR models on LDV 2.0 dataset.

The SOTA comparisons are presented in Table VI. Except
the 3 mentioned SR models above, we further add 3 novel
methods presented in NTIRE 2022 Report [13]. Although
cannot outperform the deep VSR methods, such as the 1st
winner model GY-Lab, our model still outperforms both
LUT-based models and three SR base networks. Those results
proves that the combination of LUT bases can also efficiently
fuse the capabilities of different SR structures. In practice, the
LUT fusion can be considered in both the training degradation
and the SR structure.

D. Experiments of GPU Memory Occupancy

Table VII shows the average GPU memory occupancy
of different methods. All the gpu memory consumption is
calculated when processing video in frame-to-frame mode,
except for BasicVSR++. Since BasicVSR++ model is a
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Fig. 6. More qualitative comparisons of SR-LUT [17], SP-LUT [18], RRN [2], and CARN [5] on our LDV-WebRTC testset. The frames listed are from
video 007, 013, 010, 011, 012, 001 and 002.

TABLE VI
×4 SR MODEL COMPARISONS OF NTIRE 2022 CHALLENGE TRACK3 ON

SUPER-RESOLUTION AND QUALITY ENHANCEMENT OF COMPRESSED
VIDEO. THE RESULTS FROM THE 1ST ROW TO 3RD ROW ARE

DIRECTLY EXTRACTED FROM NTIRE 2022 REPORT [13].
*: THE LUT-BASED METHODS ARE ACCELERATED BY

OUR INTERPOLATION

recurrent video SR approach, which needs the complete video
to process each frame. The memory of the BasicVSR++ is
obtained from the statistics of a 100-frames video.

Since we have made improvements to the LUT interpolation
method, ConvLUT consumes more GPU memory compared
to some SISR methods [4], [5] for it uses more intermediate
variables during inference. However, the memory consumption
of 60-70MB is much smaller than the upper memory of
current mainstream GPUs, so we consider that the memory
consumption of ConvLUT is acceptable. The recurrent video
SR methods [2], [9] consume large amounts of GPU memory,
which is more demanding on the GPU device and not suitable
for online environments.

E. Ablation Analysis

1) Effectiveness of Different Modules: Table V shows the
effectiveness of different modules in ConvLUT. The baseline
model (A), where only one LUT is applied, is quite similar
to SR-LUT [17], and it produces poor PSNR result, which
proves the small receptive field and single neural networks
cannot handle the dynamic degradations of online streaming.
By adding adaptive LUT fusion, the PSNR has increased
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TABLE VII
GPU MEMORY OCCUPANCY COMPARISONS OF CONVLUT WITH

DIFFERENT METHODS. THE MEMORY IS MEASURED WITH
2080TI GPU FOR GENERATING 1280 × 720 RESULTS

IN A FRAME-TO-FRAME MANNER

by 0.26dB, showing that the pixel-level weight predictor
effectively fuses the expert LUTs to adaptively handle dynamic
degradations. The weight predictor cost more storage and
computation, but the 12.62MB increase should be acceptable
in practice.

Video SR task has more temporal information compared to
single image SR task, which can be extracted and utilized to
efficiently recover the degraded details of the video. When
retaining only the temporal branch, the shallow convolutional
layers predicted the super-resolution results by both the video
spatial and temporal information and achieved the result of
24.65 dB. When co-optimizing the two branches, since the
multi-LUTs part has fully utilized the spatial information in
the video to process the SR results, then the temporal branch
can concentrate more on the temporal information of the video
and utilize it to complement the results after the LUT fusion.
When both branches are used simultaneously, the performance
of the network is improved by 0.15 dB compared to utilizing
only the temporal branch, which proves that the spatial and
temporal branches can promote each other to fully utilize the
spatial and temporal information in the video SR task.

To better extract the temporal information, the reference
frame needs to be spatially aligned. The commonly used
temporal fusion modules such as optical flow estimation or
deformable convolution are too slow to be applied to online
streaming, and hence we adopt the motion vector information
to efficiently and effectly process the reference frame and
obtain 0.04 dB performance improvement.

2) Runtime of Different Modules: Table V also shows the
runtime of different modules in ConvLUT. When only using
the baseline model, we obtain the SR results by querying a
single table, and our CUDA acceleration of the interpolation
process enables the runtime of the table query to be only
2.82ms, but it has performance degradation compared to the
BI interpolation results due to the limited receptive field and
information storage capacity of a single table. When multiple
LUTs are used, the network can efficiently handle multiple
video degradations, but the runtime increases 1.18ms due to
the multiple query process.

With the introduction of temporal branch, the network
performs an additional 4 layers of convolutional computation,
which increases the runtime by 6.14ms but brings 0.33dB per-
formance improvement to the network. While temporal branch
increases the runtime substantially, this branch fully utilizes
the temporal information of the video SR task, and meanwhile

TABLE VIII
PERFORMANCE COMPARISON OF CONVLUT WITH

DIFFERENT EXPERT LUT NUMBERS

TABLE IX
PERFORMANCE COMPARISON OF CONVLUT WITH SINGLE MODEL LUTS

AND MULTI MODELS LUTS ON 1MBPS LDV-WEBRTC TESTSETS

it has a mutually promoting effect with the spatial branch,
which greatly increases the performance of the network. The
introduction of the temporal branch is one of the reasons why
ConvLUT achieves a significant performance improvement
over SR-LUT [17] with less inference time. The Motion Vector
comes from the codec information obtained during video
decoding, which does not increase the network’s inference
time, but can solve the network’s problem of misalignment of
the previous and subsequent frames in the video, thus slightly
improving the performance of the temporal branch.

3) Configurations of Expert LUT: The Expert LUT of Con-
vLUT can be constructed from different SR networks. The last
3 rows of Table IV show how Expert LUT transferred from dif-
ferent SR networks affect the performance of ConvLUT, where
better performed SISR network can help the corresponding
Expert LUT to get better results in severe degradations.
We also analyze how the number of Expert LUTs affects the
performance of ConvLUT. We evenly selected N QP values
from the range of 0 to 50, where the corresponding videos are
used to construct N expert LUTs. As shown in Table VIII,
increasing the number of expert LUTs constantly improves
the SR performance, but more LUTs result in more storage
and computational overhead. When the number of LUTs is
larger than 6, our model only has a minor improvement, and
hence achieves the best trade-off between SR performance and
efficiency.

Besides generating multiple LUTs for a single model,
we also attempted to fusion the experts LUTs of the 3 models,
as shown in Table IX. Specifically, in ConvLUT-18LUTs we
take all 18 LUTs of the 3 models as experts LUTs and generate
an 18-channel weights as pixel-level weights for each LUT
with spatial branch. The performance improvement achieved
by the obtained model is very marginal, and the obtained
images are similar in quality to those generated by Conv-
SRResNet. This is due to computing the weights of 18 LUTs
is overly difficult for the spatial branch with only 4 layers
of convolution layers, so the model does not significantly
improve with multi-model LUT fusion. However, the storage
and runtime metrics of the model have increased substantially
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TABLE X
RUNTIME OF LUT INTERPOLATION INFERENCE. AFTER USING OUR

ACCELERATED TETRAHEDRAL INTERPOLATION, THE PARALLEL
ACCELERATION CAN BE APPLIED WITHOUT IF-ELSE CONTROL

FLOW INSTRUCTIONS. THE INFERENCE SPEEDS OF BOTH OUR
MODEL AND SR-LUT GET SIGNIFICANTLY IMPROVED

TABLE XI
COMPARISON OF OUR CONVLUT-RCAN WITH DIFFERENT SAMPLING

INTERVAL SIZES. WE SET THE SAMPLING INTERVAL SIZE AS 16 FOR
OUR MODEL TO REDUCE THE LUT SIZE, MINIMIZING THE DROP

OF THE ORIGINAL PERFORMANCE

TABLE XII
THE PERFORMANCE UPPER BOUND OF THE THREE MODELS IN OUR

CONVLUT FRAMEWORK. UPPER BOUND MEANS DIRECTLY USING
THE PRE-TRAINED NETWORK INSTEAD OF THE LUT IN CONVLUT

when using more LUTs, so we can obtain the same conclusion
as in Table VIII, that the optimal number of LUTs in our model
is 6.

4) Effectiveness of Interpolation Acceleration: As shown in
Table X, with the proposed the efficient interpolation method,
both SR-LUT [17] and the proposed ConvLUT achieve more
than 35 times inference acceleration on GPU devices. Since
ConvLUT only needs to query one fused LUT while SR-LUT
needs to repeatedly query one LUT for 4 times, our methods
outperform SR-LUT in terms of runtime after acceleration.

5) Analysis of LUT Sampling: For LUT-based SR meth-
ods [17], [18], the original LUT is commonly sampled with
a quantization value to compress the size of LUTs. For our
method, we also uniformly sample the LUT. In table XI,
we present the comparisons of our ConvLUT models with dif-
ferent quantization values. The uncompressed LUT bases (20)
produces the best results but have unbearable storage (384GB).
When the sampling size increases from 22 to 24, the size of
LUT significantly decreases from 1632MB to 7.644 MB while
getting acceptable performance drop. Therefore, we choose the
quantization value 16 as our default setting. If the LUT size
matters, sampling sizes 25 and 26 could also be considered.
For practical implementation, the sampling size should be

considered as the tradeoff between the storage cost and the
performance.

6) The Performance Upper Bound of ConvLUT: As shown
in Table XII, we test the upper bound performance of the
three SR models in ConvLUT framework. Specifically, after
pre-training the model on the six QPs compressed video,
instead of converting it to a LUT, we directly weight the
results generated by the six networks to obtain the output
of the spatial branch. It can be concluded that all three
models have experienced a certain performance degradation
in the ConvLUT framework due to the great reduction of
the receptive field by storing and replacing the network with
the LUT structure. To further minimize the impact of this
degradation on the network is one of the feasible directions
to continue to improve the SR capability of the ConvLUT
framework, which we will explore in our future work.

VI. CONCLUSION

Online video streaming presents unique challenges for
super-resolution due to dynamically changing degradations
and strict latency requirements. This paper addresses this
problem with a new benchmark dataset, LDV-WebRTC, pro-
duced with real-world online streaming system. A novel hybrid
network that combines convolution and Look-Up Table (LUT)
is proposed to achieve a better performance-latency trade-
off. Our proposed mixture-of-expert-LUT module builds a set
of LUTs specialized in different degradations and adaptively
combines them to handle changing degradations. Experiment
results show that our method achieves 720P video SR at
around 100 FPS, outperforming existing LUT-based methods
and offering competitive performance compared to efficient
CNN-based methods.
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